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Introduction: The reconstruction of PET images involves converting sinograms,
which represent the measured counts of radioactive emissions using detector
rings encircling the patient, into meaningful images. However, the quality of
PET data acquisition is impacted by physical factors, photon count statistics
and detector characteristics, which affect the signal-to-noise ratio, resolution
and quantitative accuracy of the resulting images. To address these influences,
correction methods have been developed to mitigate each of these issues
separately. Recently, generative adversarial networks (GANs) based on machine
learning have shown promise in learning the complex mapping between
acquired PET data and reconstructed tomographic images. This study aims to
investigate the properties of training images that contribute to GAN
performance when non-clinical images are used for training. Additionally, we
describe a method to correct common PET imaging artefacts without relying
on patient-specific anatomical images.
Methods: The modular GAN framework includes two GANs. Module 1,
resembling Pix2pix architecture, is trained on non-clinical sinogram-image
pairs. Training data are optimised by considering image properties defined by
metrics. The second module utilises adaptive instance normalisation and style
embedding to enhance the quality of images from Module 1. Additional
perceptual and patch-based loss functions are employed in training both
modules. The performance of the new framework was compared with that of
existing methods, (filtered backprojection (FBP) and ordered subset
expectation maximisation (OSEM) without and with point spread function
(OSEM-PSF)) with respect to correction for attenuation, patient motion and
noise in simulated, NEMA phantom and human imaging data. Evaluation
metrics included structural similarity (SSIM), peak-signal-to-noise ratio (PSNR),
relative root mean squared error (rRMSE) for simulated data, and contrast-to-
noise ratio (CNR) for NEMA phantom and human data.
Results: For simulated test data, the performance of the proposed framework
was both qualitatively and quantitatively superior to that of FBP and OSEM. In
the presence of noise, Module 1 generated images with a SSIM of 0.48 and
higher. These images exhibited coarse structures that were subsequently
refined by Module 2, yielding images with an SSIM higher than 0.71 (at least
Abbreviations

PET, positron emission tomography; GAN, generative adversarial network; AdaIN, adaptive instance
normalization; DL, deep learning; SNR, signal-to-noise ratio; CNR, contrast-to-noise ratio; NLS, non-
linear least squares; 18F-FDG, 18F-fluorodeoxyglucose; FBP, filtered backprojection; OSEM, ordered subset
expectation maximisation.

01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fradi.2024.1466498&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fradi.2024.1466498
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fradi.2024.1466498/full
https://www.frontiersin.org/articles/10.3389/fradi.2024.1466498/full
https://www.frontiersin.org/articles/10.3389/fradi.2024.1466498/full
https://www.frontiersin.org/articles/10.3389/fradi.2024.1466498/full
https://www.frontiersin.org/journals/radiology
https://doi.org/10.3389/fradi.2024.1466498
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


Vashistha et al. 10.3389/fradi.2024.1466498

Frontiers in Radiology
22% higher than OSEM). The proposed method was robust against noise and
motion. For NEMA phantoms, it achieved higher CNR values than OSEM. For
human images, the CNR in brain regions was significantly higher than that of
FBP and OSEM (p < 0.05, paired t-test). The CNR of images reconstructed with
OSEM-PSF was similar to those reconstructed using the proposed method.
Conclusion: The proposed image reconstruction method can produce PET
images with artefact correction.

KEYWORDS

PET image reconstruction, deep learning, generative adversarial network, noise and
motion correction, non-clinical training data
1 Introduction

The reconstruction of PET images transforms a sinogram,

representing counts of radioactive emissions measured in rings of

detectors placed around the patient, into images. Analytical and

iterative reconstruction methods based on mathematical models

that represent imaging systems have been widely used in

commercial scanners. For example, early reconstruction

algorithms such as filtered backprojection (FBP) utilised the

Radon transform, and incorporated corrections to account for

random noise, attenuation and scatter (1). The transition from

analytical to iterative methods improved image quality by

explicitly incorporating domain knowledge of imaging physics in

more sophisticated mathematical models. With these methods,

overfitting may cause artefacts and noise in the reconstructed

images (2), necessitating regularisation strategies which increase

the complexity and computational load of reconstruction and

sometimes require additional information from other imaging

modalities (3).

Recently, Deep Learning (DL) neural networks have been

applied to image reconstruction, with the goals of improving

spatial resolution and signal-to-noise ratio with lower scan time

and injected dose. The state-of-the-art DL methods for PET

image reconstruction have recently been reviewed (4, 5). One

application of DL has been to correct errors after iterative or

analytical image reconstruction (3, 6, 7). Recent studies have

adopted the strategy of incorporating neural networks within an

iterative image reconstruction framework (8). Incorporating

neural networks into iterative processes enhances reconstruction

quality but requires experimental fine-tuning of the

hyperparameters (9). Mehranian and Reader introduce a model-

based deep reconstruction network for data-driven

hyperparameter adaptation (10) to enable parameter sharing,

thus reducing the number of trainable parameters. In a different

method deep image prior was used in an unsupervised manner

for sinogram to PET image reconstruction using a forward

projection model (11). The results of these studies are promising,

however the strategy inherits the complexity of iterative methods

in which multiple forward and backward projections and

modelling of imaging systems are required (10). In addition,

iterative reconstruction with deep learning falls short with respect

to total reconstruction time, whereas direct data-driven models

once trained adequately, have the potential for rapid, high quality
02
image reconstructions (with remarkable, up to 36-fold,

reductions in reconstruction time) compared to traditional

iterative algorithms (12).

Direct data-driven reconstruction methods do not rely on

iterative models and ignore the physics underpinning the

imaging modality. They do not require explicit modeling of

imaging systems. However, their performance does depend on a

comprehensive and diverse training dataset. Automated

Transform by Manifold Approximation (AUTOMAP) established

the feasibility of purely data-driven approaches with convincing

results demonstrated for MRI reconstruction (13). Reconstructed

PET images were unable to resolve smaller anatomical structures

well, perhaps because the network used for PET reconstruction

was trained using the 2D Radon transform of MRI data,

resulting in a mismatch between the resolution of the training

and test data set (14). The structure of the neural network

structure required large computational memory, particularly

for large images, because raw data were fully connected to the

dense layer.

DeepPET utilised high resolution PET training data, thereby

obviating resolution mismatch (15). An encoder-decoder network

was used, with the convolution layer connected to the raw input

data, reducing memory requirements compared to AUTOMAP.

The encoder network transformed input sinograms to a learned

latent space, a representation of limited spatial sampling of

sinogram features. The PET image was then reconstructed by

progressive deconvolution of the latent space information by a

decoder network. PET images reconstructed using DeepPET were

blurred and lacked fine detail (14), motivating the development

of methods such as LAFOV-PET utilising perceptual loss

functions. Perceptual losses reflect the difference between

generated and target images in features such as texture (spatial

intensity variations) or edges (contours with abrupt changes in

intensity), object shape or patterns in the image (16). Despite

this, LAFOV-PET did not produce high-quality images when

large anatomical distortions were present in patient images or

when non-anatomical objects such as the NEMA phantom were

imaged, highlighting the dependence of the method’s

performance on information in the training data (12).

Generative adversarial networks (GAN) require substantially

smaller training datasets than previously used DL methods.

During training, generated images are quantitatively evaluated by

an adversary network (discriminator) to minimise the difference
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between the real and the generated image (17). GANs allow

implicit learning of the underlying feature distribution in the

training data and, once trained, generate images using the

learned distribution (18). In comparison, encoder-decoder based

methods explicitly learn the internal representation of training

data by minimising pixel-wise error. A GAN based method for

direct sinogram to image reconstruction, DPIR-NET, required

fewer training images than LAFOV-PET and produced high

quality images. Validation studies only addressed small-scale

variability in the test set, raising questions about overfitting to

application specific training data (12). A consequence of

overfitting is that if training using images from normal subjects

may not enable accurate reconstruction of images from patients

with structural abnormalities due to pathology.

In this paper, we propose a GAN that learns the sinogram to

image translation from a limited number of synthetic training

images. We explore the properties of training images that prevent

overfitting by the GAN to a specific image type when non-field

specific training images are used. The proposed methodology

comprises two distinct modules. Module 1 is designed following

the Pix2pix-HD architecture and is trained using pairs of non-

clinical sinograms and images (19). Module 2 aims to perform

image to image translation with the aim to enhance image

quality without the need for additional clinical images. Here, we

utilise a Style GAN framework by using an additional mapping
FIGURE 1

(A) The figure illustrates the framework of the modular GAN. It comprises
image. The output of Module 1 serves as input for Module 2, another G
of the GAN. The generator and discriminator engage in an adversarial pro
(C) Represents the architecture of the generator for Module 1 and (D) rep
receptive field of 10 for discriminators used to train the generators of two m
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network to generate style-regulating parameters (20). This

additional mapping network transforms the encoded input

representations into an intermittent latent code. This intermittent

latent code, when subjected to an affine transformation, governs

styles through adaptive instance normalisation (AdaIN). For

localised style transfer, AdaIN first normalizes and then scales

and shifts the feature maps based on the style-regulating

parameters. As a last step, the synthesis network generates an

image using the transformed latent code. We compared the

performance of the proposed direct reconstruction method

against existing algorithms (FBP, OSEM and OSEM-PSF) and

assessed its ability to correct errors due to signal attenuation,

patient motion and low count/noise in the acquired data.
2 Method

2.1 PET image reconstruction

We propose the use of a modular deep learning method

consisting of two GANs. The first GAN transforms the sinogram

to a coarse-grained image, and the second GAN takes the output

of the first GAN and performs fine-grain image enhancement.

The GANs are based on the Pix2Pix and style GAN frameworks,

respectively (refer to Figure 1).
two modules: Module 1 transforms the sinogram into a coarse-grained
AN that performs fine-grain image enhancement. (B) Training process
cess, competing with each other using three different types of losses.
resents the architecture of the generator for Module 2. (E) Shows the
odules.
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2.1.1 Module 1—Pix2Pix GAN
We used the conditional GAN proposed in (19) as the base

model for this part of the deep learning framework. The

generator here is a cascaded U-Net (21), and the discriminator is

based on patchgan (18). The input to the U-Net is the PET

sinogram, here considered to be of dimension 256 × 256 × 3,

where the last dimension is produced by replicating the sinogram

three times to satisfy the VGG-19 input condition. The encoder

part of the U-Net involved eight convolutional layers followed by

instance normalisation and leaky-ReLU activation. The first layer

had 64 filters of kernel size 4 × 4 and stride 2. Subsequent layers

had the same kernel size, and filter sizes were set to 128, 256,

512, 512, 512, 512 and 512. The bottleneck layer had ReLU

activation without normalisation. Similarly, the decoder consisted

of eight layers of transpose convolution with filters in reverse

order and the same kernel size and stride as the encoder. The

decoder output layer incorporated the Tanh activation function.

The discriminator network was based on patchgan, consisting of

convolution layers having 64, 128, filters followed by instance

normalisation and leaky-ReLU activation. The kernel size was set

to 4 × 4 with a stride of 2. The last layer involved a filter size,

kernel size and stride of 1.
2.1.2 Module 2—style GAN
Style GAN involves an encoder, a mapping network and a

synthesising network (C-Decoder). Here, we have added an

encoder, called the C-Encoder, as the first step. The C-Encoder

consisted of convolutional layers of filters of size 64, 128, 256,

512 and 512, and kernel size of 4 × 4 and stride of 2, except the

64-filter layer which had a stride of 1. The last layer was

followed by three residual blocks, consisting of two 512 filer size

layers involving instance normalisation and ReLU activation with

kernel size of 4 × 4 and stride of 1. To form the residual

connection, the output prior to the residual blocks was

concatenated with the output of the second residual block

convolutional layer. The C-Encoder is used to extract the

hierarchical features from the images generated using Module

1. The use of two-stride convolution layers enables neural style

transfer and super resolution (22). The mapping network, FC-

Block consisted of 3 fully connected layers followed by instance

normalisation and ReLU activation. The dimension of each fully

connected layer was kept the same, corresponding to the filter

size of the style embedding layer. Latent noise of dimension

1,024 was passed to the FC-Block.

The output of the C-Encoder was embedded with the FC-Block

output using AdaIN blocks (20). Then AdaIN block consisted of

the two convolution layers followed by adaptive instance

normalisation and ReLU activation, added using skip

connections. The C-Decoder consisted of transpose convolutional

layers having 512, 256, 128, 64 filters and kernel size of 4 × 4 and

stride of 2. All transpose convolutional layers were followed by

an instance normalisation and Relu activation, while 512, 256

and 128 layer constitutes dropouts between normalisation and

activation. The last layer of the decoder was a convolutional layer

with kernel size 4 × 4, filter size 3 and stride of 1. Module 2
Frontiers in Radiology 04
discriminator was patchgan based with 64 and 128 filters for the

convolutional layers, followed by instance normalisation and

leaky-ReLU. The kernel size was set to 4 × 4 with a stride of 2.

The last layer involved a filter size, kernel size and stride of 1.
2.2 Adversarial and non-adversarial loss
functions

Adversarial loss and non-adversarial losses were implemented

in both Module 1 (M1) and Module 2 (M2) (19). The M1

adversarial loss function for the discriminator output was

defined as:

LM1,adv ¼ Es,t{logD(s, t)}þ Es{log (1� D(s, G(s)))}, (1)

where, D(s, t) and D[s, G(s)] denote the outputs of the

discriminator for real and fake outputs respectively, t’ [t’ =G(s)]

denotes the image generated from s and E denotes mathematical

expectation. LM2,adv is of the same form as (1), but s is replaced

by t’, the output of M1 and t" [t"= G(t’, z)] is the output of M2,

where z is the latent noise. Notably, M1 involves domain

transformation and we did not explicitly add z in M1 as the

dataset itself contains enough variance, whilst M2 performed

the task of image-to-image enhancement and z is added in the

generator to involve stochastic transformation for corrections.

The M1 pixel reconstruction loss is defined as:

LM1,pix ¼ Es,t{t
0 � t}, (2)

where for LM2,pix , s is replaced by t’. Wang et al. concluded that the

need for an additional network for adversarial perceptual loss can

be eliminated by using a discriminator as a trainable feature

extractor (19):

LM1,perc ¼
XL

n¼1

wp
1
Nn

{Es[Dn(s, G(s))]� Es,t[Dn(s, t)]}, (3)

where, L is the number of hidden layers in the discriminator, Dn

defines the feature representations extracted from the nth hidden

layer of the discriminator, wc ¼ 1=2, is the weighting of the

contribution of each convolutional layer of the discriminator and

Nn is the number of elements in each layer. LM2,perc has the same

form as (3), but s is replaced by t’. Style and content transfer

non-adversarial loss were adopted from a neural style transfer

framework using VGG-19 as the pretrained network. Style loss

was incorporated by calculating the Frobenius squared norm:

LM1,style ¼
XB

i¼1

ws
1
4d2i

Grami(t
0)� Grami(t)

2
F , (4)

where, B is the number of convolutional blocks used from the

pretrained VGG-19, ws ¼ 1=5, is the weighting of the
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contribution of each convolutional block, d is the spatial depth,

Gramn(t) and Gramn(t0) are the Gram matrices that represent

the feature correlations of each convolutional block (Vi) for the

target image and generated image, respectively. LM2,style has the

same form as (4), but t’ is replaced by t’’. The content loss was

calculated using:

LM1,content ¼
XB

i¼1

wc
1
Ni

Vi(t
0)� Vi(t)

2
F , (5)

where, B is the number of convolutional blocks, wc ¼ 1, is the

weighting of the contribution of each convolutional block, Ni is

the number of elements in each layer, Vi(t) and Vi(t0) are the

feature maps extracted for each convolutional block for the target

image and generated image, respectively. LM2,content is of the same

form as (5), but t’ was replaced by t" (23).

To measure the global similarity between the target image and

reconstructed image, we used a previously proposed structural

similarity loss function:

LM1,ssim ¼ 1� SSIM(t, t0), (6)

and for LM2,ssim t’ is replaced by t". The holistic loss function is the

weighted sum of all the loss functions as depicted in Equations 1–6,

including adversarial and non-adversarial losses:

LM1 ¼ LM1,adv þ w1LM1,pix þ w2LM1,perc þ w3LM1,style þ w4LM1,cont

þ w5LM1,ssim,

where weights w1 to w5 scale the contribution of non-adversarial

losses to the overall M1 loss function. Here, we set weights to 1,

10, 0.0001, 0.0001 and 5, respectively. LM2 is formed similarly to LM1.
2.3 Training dataset

Most GAN studies derive training and testing data from a

single type of data source, whereas we chose to create a training

dataset independent of the testing data. The training data were

derived from synthetic images (24–27) and testing was

performed on acquired real human brain images. A detailed

description of training dataset features is provided in

Supplementary Material-1, including measures of entropy,

symmetry, contrast and fractal dimension (28–31). These metrics

were used to characterise the optimal training dataset. The

training dataset providing the best performance was used to train

the intermediate module. The synthetic training images can be

accessed via a supplied link. To train Module 2 only, synthetic

PET brain images, generated using an atlas MRI, were used in

addition to synthetic non-PET images with fractal dimensions

and entropy resembling that of brain images. In addition, data

augmentation (including flipping, rotation, wrapping, intensity

adjustments, blurring, and cropping) were applied to the

synthetic PET brain images, before training Module 2 (32, 33).
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2.4 Testing dataset—simulated brain images

For test data, anatomical MR images of the brain from various

participants were utilised. These images were obtained from an

open-source medical imaging repository known as Brainweb (34).

These were used to generate synthetic FDG-PET images by

simulating tissue tracer uptake with the two-compartment

irreversible uptake model of FDG metabolism. To generate the

PET image, tracer uptake was modelled using kinetic parameters

for voxels in four tissue classes were segmented from the MRI

into gray and white matter, vessels, and tissue around the brain

fat (35). Uptake values for each of the tissue types were set to

match the contrast of a typical 18F-FDG PET scan, with uptake

in the gray matter being four times greater than the uptake in

the white matter. The voxel size of the resulting simulated brain

test data was 1 × 1 × 1 mm3 with a matrix size of 256 × 256. A

smoothing kernel based on the effective resolution of a clinical

scanner was not applied.

In the testing data set, we simulated lesions with high FDG

uptake by randomly placing circular lesions with higher tracer

uptake in different regions of the brain. Axial, sagittal and

coronal PET image slices were converted to noise free sinograms

(representing high true counts) using the Radon transform in a

PET simulator (36). These simulated synthetic FDG-PET images

were used as ground truth images to test the performance of the

proposed proposed method against FBP and OSEM. dPETSTEP

was used for FBP and OSEM reconstructions (36). In addition,

structural similarity (SSIM), peak signal to noise ratio (PSNR)

and relative root mean squared error (rRMSE) were used to

quantitatively compare the image reconstruction methods (16).

The image matrix size of training and testing images was 256 ×

256. Before being used as inputs to the network, source and target

images were normalised to −1–1 according to the nomenclature

used in Pix2Pix GAN (18). Sinograms of training and test images

were generated to match the input of the network. Sinograms

and source images were converted to 3 channels, replicating the

last dimension by multiplying it, using the tile function to enable

use with the pre-trained VGG-19 network to evaluate style

transfer losses.
2.4.1 Artefact simulation
The proposed method was assessed against noise, motion and

attenuation-based artefacts. To simulate motion, synthetic PET

brain images (ground) were subjected to rotation with three

different angles: 2°, 5°, and 10°. The radon transform of the

original ground image and the subsequently rotated images were

weighted and added together, as depicted in Supplementary

Figure 3s-A. To simulate low true counts and assess the impact

of noise, Poisson noise of varying magnitudes was applied to the

sinogram of the ground truth image. The resulting noisy

sinograms were utilised as inputs and compared with the known

ground truth. To assess the impact of attenuation, smaller

circular cavities and a wedge section from the white and grey

matter of the ground PET brain images were removed. Radon

transformations of the resulting images were then used as input.
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The removal of parts of the image enabled us to evaluate the ability

of the proposed method to accurately reconstruct the image taking

into account spatial attenuation effects.
2.5 Validation dataset

2.5.1 NEMA phantom
A whole body NEMA phantom was scanned on a Biograph

Horizon (Siemens Healthineers) scanner. The phantom consists

of four parts in a solid polyethylene cylinder—the background

body, six fillable spheres with internal diameters of 10, 13, 17,

22, 28 and 37 mm, a non-radioactive cylindrical insert in the

centre of the phantom and a line source (37). F-18 was used to

fill the phantom background and the four small spheres with an

activity concentration ratio of 1:8 (background: spheres). The two

largest spheres were filled with water only. The non-radioactive

cylindrical insert was placed in the centre of the phantom. The

line source used to simulate scatter fraction, count losses and

random measurement was injected with 110 MBq of activity to

yield an effective activity concentration equal to the background.

The whole phantom was scanned for 20 min. The percentage

contrast recovery was calculated by comparing the measured

activity concentration in each sphere to the known true activity

concentration as defined by the NEMA standards (37). In

addition, the contrast-to-noise ratio (CNR) was calculated

specifically for the spheres filled with activity (38):

CNR ¼ ROI i� background i
standard deviation of the background ROI counts

, (7)

where ROI i denotes average counts in the region of interest (ROI)

for sphere and background i denotes the average counts in a ROI

placed in a uniform area outside the spheres.

2.5.2 Human dataset
Approval for this project was granted by the Human Research

Ethics Committee of the University of Queensland (2021/

HE001605). Written consent was obtained from the five healthy

male participants. List mode acquisition using the Biograph

Horizon PET scanner (Biograph Horizon 3R-VJ21C) at the Centre

for Advanced Imaging, University of Queensland, was started 15 s

prior to the intravenous bolus injection of −200 MBq of 18F-FDG

followed by a 50 ml saline flush. Total acquisition time was 60 min.

2.5.2.1 Qualitative and quantitative comparison
47–59 min list mode data were used to compare FBP, OSEM,

OSEM-PSF and the proposed method. Standard scanner-based

corrections were applied for time-of-flight, normalisation, gap

filling, attenuation, scatter and random. Two-dimensional Fourier

rebinned sinograms, obtained using the investigational software

prototype e7 tools (Siemens Healthineers), were of dimension

140 × 360 (angular and radial bins) (23). Supplementary

Figure 7s depicts the steps followed to ensure compatibility of

the acquired scanner data with the input training data having

dimension 256 × 256. The sinograms were flipped vertically and
Frontiers in Radiology 06
then horizontally concatenated with the original sinograms to

increase the sampling of projection angles from 180° to 360°.

The resultant sinograms were centrally cropped to eliminate void

spaces. The cropped sinograms were normalized to make them

compatible with the training data. The images reconstructed by

the proposed method were qualitatively compared with FBP,

OSEM and OSEM-PSF reconstructions implemented on the

scanner. The axial image matrix size was set to 256 × 256,

resulting in an image resolution of 2.89 × 2.89 × 2.02 mm3.

To appreciate the differences between FBP, OSEM, OSEM-PSF

and the proposed method, we performed a second level

quantitative analysis on all participants. Six brain regions

(caudate, lentiform nucleus, cerebellum, parietal lobe, frontal gray

matter and temporal lobe) were considered for contrast-to-noise

ratio analysis, with respect to the background taken from the

genu and splenium regions of white matter (refer Equation 7).

2.5.2.2 Validation against artefacts
To validate the proposed method against motion, noise and

attenuation, data from different time frames were used. To assess

motion, participants were asked to move their head slightly during

the last minute of the 60 min list mode acquisition. To assess the

impact of noise, we generated sinograms and images using data

corresponding to low count (53–54 min). To test against noise

with motion, we used low count data with motion (59–60 min)

and high count data with motion (53–60 min). In contrast, to

compare reconstructed images, we utilised data from high count

and without motion as reference (53–59 min, Figure 2A). The

same high count time frame was also used to test the impact of

not using attenuation correction in the input sinogram.
2.6 Statistical analysis

The differences in SSIM, PSNR, rRMSE (for simulated data)

and CNR (for NEMA phantom and human data) between the

proposed method, FBP and OSEM, were evaluated for statistical

significance using the paired t-test. The threshold for statistical

significance was set at p < 0.05 (one-tailed test). To confirm the

normality assumptions, the Shapiro-Wilks test was used at a

significance level of p < 0.05 (39).
2.7 Comparative analysis

The Module 1 of proposed method has been compared with

the DeepPET and image conditional GAN trained using the non-

clinical images. We have used the original architecture as

proposed in DeepPET (15) and conditional GAN, lacking the use

of perceptual or style transfer-based loss functions (18).
3 Results

Results are provided for synthetically created test images,

followed by in vivo human PET experiments. The results have
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https://doi.org/10.3389/fradi.2024.1466498
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


FIGURE 2

PET reconstruction qualitative comparisons between OSEM and proposed method against corrections. (A) Influence of using low count sinogram data
as input in Modular GAN is assessed. (B) Low count data acquired in the presence of extensive participant motion is analysed and compared with high
count motion images. (C) Impact of not using attenuation correction for the input sinogram data.
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been arranged in a way which allows verification of the Modular

GAN components in Figure 1.
3.1 Module 1—sinogram to intermediate
image mapping using simulated data

Figure 3 presents the reconstructed synthetic output images of

Module 1 (refer to Figure 1B). Examples denoted by s1–s4

correspond with the training of Module 1, and b1–b4 are unseen

synthetic brain images used for testing. Module 1 maps a

sinogram to the intermediate image. The intensity difference

between the intermediate image and the target image is provided

to appreciate the quality of the mapping achieved by Module

1. SSIM and PSNR are provided as a measure of how well the

sinogram has been mapped to the target image. The achieved

SSIM between intermediate and target images was between 0.56

and 0.85, providing an output with reasonable structural similarity

and intermediate image quality sufficient to discern object detail.

In the Supplementary Figure 5-s, Module 1 of the proposed

method has been compared with two direct PET image

reconstruction methods when non-clinical images were used for

training. A qualitative examination of the results reveals that

deepPET produces images with increased blurriness and fewer

details. The conditional GAN, which does not use perceptual or

style transfer-based loss functions, generates images of better

quality than deepPET. Both deepPET and the conditional GAN

yield inferior images to those generated by Module 1.
3.2 Module 2—intermediate image to final
image mapping using simulated data

3.2.1 Qualitative and quantitative comparison
Figure 4 provides the test results for the simulated data. The

output of Module 2 is labelled as “Proposed method”. The
Frontiers in Radiology 07
ground is the simulated subject image from Brainweb, without

the use of standard smoothing filters applied in PET

reconstruction. It can be seen in Figure 4B that the proposed

method produced higher quality images than FBP and OSEM.

This is quantitatively confirmed by the SSIM, PSNR and rRMSE

values provided in Table 1 for four example brain images (b1–

b4). The differences in SSIM, PSNR and rRMSE between the

proposed method and FBP were found to be statistically

significant (p = 0.0001, 0.0022 and 0.0004, paired t-test).

Similarly, the differences in PSNR and rRMSE between the

proposed method and OSEM were also significant (p = 0.02 and

0.002). However, the difference in SSIM between OSEM and the

proposed method (p = 0.06) was not statistically significant.

3.2.2 Validation against noise, motion, and cavities
Figure 4A shows the effects of injecting different levels of

Poisson noise into the sinogram, Figure 4B provides results for

low count sinograms, Figure 4C provides the simulated motion

result and Figure 4D depicts the effects of cavities (i.e., spatial

inconsistencies in images). Qualitatively, the figures provide

strong evidence for the robustness of the proposed method to

both noise and motion. They show improved contrast and a

reduction in motion and noise-based artefacts when compared to

FBP. In Figure 4D, the observed partial recovery of missing data

in the cavities, but not in the wedges, illustrates the spatial

consistency of the intensity projection from sinogram to the image.

Figure 5 provides an evaluation of the output produced by

Module 1 and Module 2 for the test brain images. The results

produced using style embedding within the generator are also

provided. In Figure 5A, in the absence of noise, Module 2 with

and without the use of style embedding produces images with

high contrast, effectively enhancing images produced by Module

1. To appreciate the quality of the mapping achieved by

Module 2 with style embedding, the intensity difference between

Module 2 variants and the ground truth image is provided,
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FIGURE 3

The figure presents the results of the reconstructed synthetic training (s1–s4) and testing images (b1–b4) using only module 1 GAN. The top row
displays the input sinogram provided as input to the GAN. The third row showcases the ground truth images, representing the ideal reference
images for comparison. In the second row, the reconstructed images obtained from Module 1 GAN are displayed. The fourth row exhibits the
difference images, highlighting the variations and discrepancies between the ground truth and reconstructed images. SSIM and PSNR metrics
quantifying the similarity and quality of the reconstructed images in comparison to the ground truth. This evaluation allows for a comparison
against ground truth images.

FIGURE 4

Ground truth images are displayed at left. (A) Validation against noise. Top row represents the filter back projected images of the noisy sinograms (with
varied noise intensities) and bottom row represents the image reconstructed using proposed method. (B) Comparison of image quality for noisy
sinogram when reconstructed with FBP, OSEM and proposed method. (C) Noise and motion with simulated head degree reconstructed using the
FBP and proposed method. (D) Cavities forward projected using Radon transform and reconstructed using the proposed method.

Vashistha et al. 10.3389/fradi.2024.1466498
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reflecting around 5% improvement in SSIM and PSNR values.

Figures 5B,C explore the case of varying noise intensities and

different head motions. The quantitative evaluation suggests

improvements in PSNR and SSIM with style embedding in Module 2,

compared to when style embedding is not used. However, the amount

of improvement was found not to be statistically significant.
3.3 Trained modular GAN tested using
NEMA phantom

Figure 6 provides images of the phantom reconstructed using

OSEM and the proposed method. Table 2 quantifies the image

quality for each case measured by the contrast recovery (%) and

contrast-to-noise ratio. The image reconstructed using the

proposed method appears to be less noisy than that obtained

using OSEM. On average, the proposed method achieved around

10% larger contrast recovery and 21% larger contrast-to-noise

ratio for hot spheres than OSEM. For all hot and cold spheres,

the proposed method achieved higher contrast recovery (p = 0.01)

and contrast-to-noise ratios (p = 0.003) than OSEM.
3.4 Trained modular GAN tested using
human PET data

3.4.1 Qualitative and quantitative comparison
Figure 7 compares the images reconstructed using FBP, OSEM,

OSEM-PSF and the proposed method for acquired human data.

Qualitative inspection reveals that the proposed method

surpasses FBP and OSEM in performance. Specifically, the

proposed method reduced noise, enhanced contrast and

improved depiction of structures compared to FBP and OSEM.

Additionally, OSEM-PSF tended to blur smaller anatomical

structures, while the proposed method provided a clear depiction

of these structures. Notably all images for P1, and others, have

differences amongst them. The proposed method produces

images with the clearest level of detail, particularly evident for

cortical regions. This may be due to the fact that the point-spread-

function defines the apparent resolution limit of the OSEM and

OSEM-PSF reconstruction. However, the proposed method relies

on the MRI atlas, which according to our results, is beneficial for

improving the level of detail in reconstructed images.

In Figure 8, the bar graphs show that for each region, OSEM

(with and without PSF) outperformed FBP, and the proposed

method outperformed both FBP and OSEM. However, the

contrast-to-noise ratio achieved by the proposed method and

OSEM-PSF were similar. Table 3 summarises the results of

statistical analysis of these findings. The proposed method

provided significantly larger contrast-to-noise ratios compared to

FBP and OSEM (p < 0.05) for all regions defined in Figure 8A.

However, except for caudate (p = 0.012), the difference in

contrast-to-noise ratio between the proposed method and OSEM-

PSF was not significant (p > 0.05) for cerebellum, frontal gray

matter, lentiform nucleus, parietal and temporal lobe.
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FIGURE 5

Comprehensive analysis of the output produced by module 1 and module 2 for the test brain images. The results produced using style embedding
within the generator of Module 2 are also provided. The two modules have been compared in presence of no noise (A), against simulated varying noise
intensities (B) and different head motion (C) to validate performance without and with style embedding.

FIGURE 6

NEMA image quality analysis for the image reconstructed using OSEM and developed proposed method.

Vashistha et al. 10.3389/fradi.2024.1466498
The degree of contrast-to-noise ratio improvement was both

participant and region dependent. For example, in the caudate

for P1, the proposed method provided nearly 17% improvement

in contrast-to-noise ratio. In contrast, in temporal region for P2,

the difference between OSEM-PSF and the proposed method was

negligible. The contrast-to-noise ratio obtained by the proposed

method in all participants was better than for FBP and OSEM,

irrespective of the brain region considered. Consequently, we
Frontiers in Radiology 10
limit our subsequent comparisons to OSEM-PSF and the

proposed method.

3.4.2 Validation against noise, motion and
attenuation

Figure 2 shows the results of testing against noise, motion and

attenuation artefacts. When low count input data were used, the

proposed method outperformed OSEM-PSF in image contrast
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TABLE 2 Comparison between OSEM and proposed method using NEMA standards. Table presents contrast recovery percentage and contrast-to-noise
ratio for hot spheres with diameter of size 10, 13, 17 and 22 and cold spheres with diameter of size 28 and 37.

Sphere diameter (mm) Contrast recovery %
OSEM

CNR
OSEM

Contrast recovery %
Proposed method

CNR
Proposed method

Hot spheres
10 31 43 39 54

13 47 71 48 92

17 70 74 73 87

22 74 104 79 118

Cold spheres
28 62 – 63 –

37 67 – 71 –
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and signal-to-noise ratio. OSEM-PSF resulted in higher levels of

noise compared to the high-count reference image but a good

level of structural detail was retained. Noise in images produced

using the proposed method did not increase when low count

sinograms were used as inputs.

When low count sinograms were combined with simulated

motion, (see Figure 2B) OSEM-PSF images were further

degraded. While the images generated by the proposed method

were also degraded, they were substantially superior to the

OSEM-PSF images. The proposed method was able to generate

high quality images in the presence of motion provided high

count data were used (compare the third column of Figure 2B to

the first column of Figure 2A).

When attenuation correction was not incorporated into the

sinogram, both OSEM-PSF and the proposed method created

similar images which differed from the reference image but

preserved brain anatomy (compare Figure 2C to reference images

in Figure 2A). Differences included increased signal variation

across anatomically similar brain regions, widening of the

extracerebral space and image blurring, all of which are known

artefacts of non-attenuation corrected PET images. Taking these

findings together, Modular GAN appears to provide a valid,

high-quality projection from a sinogram to the corresponding

PET image.
4 Discussion

Analytic and iterative PET image reconstruction methods such

as FBP and OSEM are routinely used. Machine learning methods

provide new opportunities in medical image reconstruction. We

proposed Modular GAN as a deep learning method of mapping

a brain sinogram to a PET image. The key benefits of using this

method over FBP and OSEM include training with synthetic

data, robustness to low count data and participant motion, and

production of high quality images when benchmarked against

FBP and OSEM. We quantitatively confirmed that structural

similarity, PSNR, contrast recovery and contrast-to-noise ratio all

improved with the use of Modular GAN. The results suggests

that the generated image quality is superior to the current state-

of-the-art method, indicating that the proposed method can be

beneficial clinically.
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The Modular GAN is trained using non-clinical and atlas-

based images. Interest in using deep learning to directly

reconstruct high PET images from the sinogram is growing (12).

Once trained, these methods generate images more rapidly than

conventional methods, creating the potential for real time

application. Training datasets for direct methods can be created

from existing clinical images, or by performing phantom based

studies. However, the paired clinical images (consisting of high

dimensional features necessary for adequate training) are often

unavailable or difficult to attain and phantom studies may lack

the feature space of real images. This gap in the literature

motivated us to develop a data-driven method that does not

require clinical training images.
4.1 Comparison between data-driven
methods

A key challenge in machine learning is the collection of

sufficient training and testing data. In our work, we trained and

tested using non-application specific images, and provided

verification of the modular GAN for PET image reconstruction

based on scanner collected data. Our results suggest that this

type of framework where the modular GAN is trained using

non-application specific images can be used to perform PET

image reconstruction. Previous work has not evaluated DeepPET

and cGAN using non-application specific training and

testing images.

As we show in Supplementary Figure 5s, the previous methods

are unable to reconstruct a high quality image using non-

application specific images for training and testing. Whilst we

could have provided DeepPET and GAN results in Figures 2, 7, 8,

they would not be a fair comparison since they would not

perform as well as the modular GAN based on the non-

application specific images employed in our work (refer to

Supplementary Figure 5s). However, we can make a few

comments. We tested cGAN and DeepPET using 13,000

application specific synthetic images and found Module 1 to

produce qualitatively superior images. For DeepPET, the images

appeared more blurred, while cGAN had better structural

information it was unable to reproduce the hotspot (refer to

Supplementary Figure 6s). We recommend future studies to
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FIGURE 7

Qualitative comparison between the images reconstructed using FBP, OSEM, OSEM-PSF and proposed method has been shown for five human
participants (P1–P5).
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evaluate how other machine learning PET image reconstruction

methods should be trained and tested using non-application

specific images.

We, and others, have SSIM to measure structural similarity

between images but this measure has distinct shortcomings when

applied to comparisons across studies (40). The SSIM value

generated depends on the intensity range in the image, what area

or how much of the image is used to compute the value, and

whether negative values are used in the SSIM calculation (40).
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For these reasons, comparisons based on rRMSE provide a better

benchmark across studies. Hence while we evaluate SSIM

improvements within studies, the metric is not used for

comparisons across studies.

AUTOMAP was the first direct reconstruction method

proposing automated image transformation using non-clinical

images (13). PET images reconstructed using AUTOMAP were

inferior in quality to OSEM images. The likely cause of this was

reported to be due to conversion to 2D sinograms using the
frontiersin.org
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FIGURE 8

Quantitative comparison of the contrast-to-noise ratio of brain cortical regions represented at the top of the figure (caudate, lentiform nucleus,
cerebellum, parietal lobe, frontal gray matter and temporal lobe, background from genu and splenium of white matter). The bar graphs show that
for the five human subjects in each region the OSEM (with and with-out PSF) method outperforms FBP, and the proposed method also
outperforms FBP and OSEM. Insignificant difference was observed between proposed method and OSEM-PSF.

TABLE 3 P-values showing statistical significance using paired t-test (p < 0.05 than significant) for proposed method by comparing contrast-to-noise
ratio of the reconstructed images with FBP, OSEM and OSEM-PSF.

Comparison between Caudate Cerebellum Front GM Lentiform nucleus Parietal lobe Temporal lobe
FBP vs. proposed method 0.0008 0.0013 0.00297 0.0024 0.0023 0.0016

OSEM vs. proposed method 0.0004 0.0033 0.0192 0.0097 0.0077 0.0085

OSEM-PSF vs. proposed method 0.0116 0.0606 0.3762 0.1505 0.4551 0.2653
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method of single slice rebinning and to mismatched training and

test data (41). DeepPET was the next direct PET image

reconstruction method to be developed. It used convolutional

layers without a fully connected layer within the encoder-decoder

framework (15), thereby allowing training using higher resolution

phantom data. DPIR-Net added the use of discriminator and

perceptual losses to the DeepPET model and required real

human PET imaging data for training (42).

The published results of quantitative (using phantom images)

and qualitative (using human images) assessment of DeepPET

indicate that for phantom images it resulted in 11% smaller

rRMSE, 1% larger SSIM, and 1.1 dB higher PSNR than OSEM.

For clinical images, qualitatively Deep PET resulted in the loss of

structural information compared to OSEM. However, signal-to-

noise ratio was larger, possibly because DeepPET produced

smoother images. Arguably the smoothing also results in loss of

small hotspots in PET images, not apparent in the OSEM image

reconstruction. The excessive smoothness and loss of detail was a

primary reason for creating DPIR-Net, with the addition of

perceptual and Wasserstein distance losses to the framework.
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Quantitative assessments using simulated or phantom images

have not been published for DPIR-Net. Scanner generated PET

images were Radon transformed to a sinogram which was used

as the input into the network. DPIR-Net achieved a high SSIM

(0.917–0.980,) when compared to the scanner image indicating

that DPIR-Net potentially outperforms DeepPET. However, the

SSIM improvement over DeepPET was marginal (at best 2%, but

mostly less than 1% and no rRMSE calculations were provided).

DeepPET produced images which were comparable to OSEM in

SNR and SSIM. In contrast, as shown in Figure 4, Modular GAN

outperformed OSEM on average by 15% (refer to Table 1).

Recently, an encoder-decoder network was used to

demonstrate the feasibility of deep learning to rapidly reconstruct

images acquired using a long axial field of view PET (12).

Corresponding sinograms and PET images from 80 participants

were used for training and the algorithm was compared against

the ground truth of scanner generated images (using OSEM with

time-of-flight correction) and images reconstructed using

DeepPET. The phantom results were not as good as human

results, which can be explained by the network having been
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trained using only human data, with potentially insufficient

variability. The SSIM with ground truth high count human test

images was 0.90–0.975 compared to 0.87–0.95 for DeepPET.

rRMSE was slightly smaller than for DeepPET (<10%), and

PSNR was slightly larger (<2%). For low count data, the metrics

were worse than for the DeepPET image generated using high

count data. Our benchmark NEMA phantom results, refer to

Figure 6 and Table 2, showed that Modular GAN outperforms

OSEM on every metric provided (10% larger contrast recovery,

21% larger contrast-to-noise ratio). These findings, in addition to

qualitative human brain images in Figure 7 and quantitative

results in Figure 8, demonstrate the ability of Modular GAN to

produce high quality, low noise images, with image contrast

better than in OSEM images.
4.2 Modular GAN features

GANs are trained via adversarial learning of generator-

discriminator networks. Conditional GANs are the state-of-the-art

for image-to-image synthesis, such as sinogram to image mapping

in this study. We added receptive field constructs to the

discriminator to define a relationship for an output activation with

an area in the input image. We found this to be critical for the

training of Modular GAN. Our loss-convergence plots for

receptive fields of 70 × 70, 16 × 16 and 10 × 10 concluded that

training convergence was best when the smallest receptive field

was used (see Supplementary Figure 4s). Improved training

performance was also reported in work conducted by Jaipuria

et al. (43), which considered GANs for multi-modal image synthesis.

The use of adversarial loss tends to produce smooth, low

contrast images, while non-adversarial and perceptual losses lead

to better network performance after training (44). Our improved

contrast recovery and contrast-to-noise ratio for the NEMA

phantom study (see Figure 6 and Table 2) are likely due to the

incorporation of these losses into Modular GAN (see Figure 1).

Our finding that contrast-to-noise ratio in human images

improved by as much as 20% for Modular GAN compared to

OSEM is consistent with the NEMA phantom results, where

14%–30% improvement was achieved for different regions

(compare Figure 8 with Table 2). The human contrast-to-noise

ratio results are lower than expected from the NEMA phantom

findings, possibly because the selected regions of interest contain

mixtures of cerebrospinal fluid and white and gray matter.

The design of conditional GANs capable of producing highly

stochastic outputs that capture the full entropy of the conditional

distributions they aim to model is an open question identified by

Isola et al. (18). Studies in multi-modal image synthesis have

been conducted, attempting to answer this question (45).

Normally, the latent code is provided to the generator through

an input layer, i.e., the first layer of a network. However, style

GAN departs from this design by omitting the input layer and

by starting with a learned constant instead (20). Here, a non-

linear mapping network first produces an intermediate latent

space, which then controls the generator through adaptive
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instance normalisation (AdaIN) at each convolution layer. By

doing so, spatially invariant style features can be computed from

a vector, instead using an image prior.

Noise or motion reduction techniques in PET studies have

often relied on information from MRI to compensate for signal

loss due to acquisition limitations. However, our proposed

method takes a different approach. Inspired by the idea from

style GAN, we mixed style-regulating parameters using a non-

linear mapping network after the bottleneck layer of the residual

network-based encoder using adaptive instance normalisation

(see AdaIN in Module 2 of Figure 1). It is worth noting that

these style-regulating parameters are not generated using patient

images but are instead determined by the additional mapping

network, which depends on the data distribution used for

training Module 2. This can be evident from the ablation study

performed with and without style embedding in Module 2 (refer

to Figure 5). The enhancements in PSNR (on average by 4.5%)

and SSIM (on average by 4.2%) are particularly noteworthy when

style embedding is used compared to the performance of Module

2 without style embedding. Nonetheless, the observed

improvement was non-systematic and statistically insignificant,

likely attributable to the network architecture of Module 2. Here,

latent noise of dimension 1,024 was passed through the FC-

Block. How the fully connected layers in the FC-Block influence

noise intensities warrants further examination.

The network learns spherical cavities as controlled stochastic

variations, but retains global features for the wedge sections

(Figure 4D). As such, the network does not make spatially

inconsistent mappings. Based on our experiments, this helps with

mapping low count data to a high-quality image and motion.

However, the network sometimes produces random non-linear

artifacts (Figure 2B). Signal attenuation is also not completely

recovered for cortical regions in the final reconstructed images

(Figure 2C). Nevertheless, results for attenuation were promising

when compared to non-attenuated corrected OSEM, especially

close to the skull. Because of the “black box” nature of deep

learning, the process underlying learning of the attenuation

transformation is unclear and requires additional, dedicated

experiments; our purpose was to validate the effectiveness of

non-clinical training images using GANs.

We note that the number of angular bins for the acquired

sinogram is scanner specific. If the model is trained with inputs

of the same size as scanner sinogram data (140 × 360), the

restricted information within the input domain imposes

limitations on the model’s ability to learn the underlying

sinogram to image mapping. To overcome this limitation, the

scanner-based sinograms were reorganised. We observed that

while the acquired scanner data sampled sinograms from 0° to

180°, we achieved more favorable outcomes for training Module

1 when sinograms were sampled from 0° to 360°. This choice is

guided by the fact that sampling over 360° provided an effective

information set in the input domain compared to the 180-degree

sampling. This observation can be validated by comparing

Supplementary Figures 7sA, sD, where the increased information

in the sinogram is evident.
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5 Conclusion

We propose a two-module GAN-based direct reconstruction

of a PET image from a sinogram. Using this framework, we

produced PET images of higher quality than those obtained

using OSEM and FBP. We showed the network to be robust to

noise and motion by reconstructing low dose images close in

quality to their high dose counterparts, while the

reconstruction of motion-corrupted sinograms also improved

with the use of modular GAN. The training of the network

using synthetic data and the high quality of image

reconstruction that was achieved highlights the future potential

for machine learning in medical image reconstruction and

synthesis, when domain specific data is limited.
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