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Comparison of modelled
diffusion-derived electrical
conductivities found using
magnetic resonance imaging
Sasha Hakhu1, Leland S. Hu2, Scott Beeman1 and
Rosalind J. Sadleir1*
1School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ,
United States, 2Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, United States
Introduction: Magnetic resonance-based electrical conductivity imaging offers
a promising new contrast mechanism to enhance disease diagnosis.
Conductivity tensor imaging (CTI) combines data from MR diffusion
microstructure imaging to reconstruct electrodeless low-frequency
conductivity images. However, different microstructure imaging methods rely
on varying diffusion models and parameters, leading to divergent tissue
conductivity estimates. This study investigates the variability in conductivity
predictions across different microstructure models and evaluates their
alignment with experimental observations.
Methods: We used publicly available diffusion databases from neurotypical
adults to extract microstructure parameters for three diffusion-based brain
models: Neurite Orientation Dispersion and Density Imaging (NODDI), Soma
and Neurite Density Imaging (SANDI), and Spherical Mean technique (SMT)
conductivity predictions were calculated for gray matter (GM) and white
matter (WM) tissues using each model. Comparative analyses were performed
to assess the range of predicted conductivities and the consistency between
bilateral tissue conductivities for each method.
Results: Significant variability in conductivity estimates was observed across the
three models. Each method predicted distinct conductivity values for GM and
WM tissues, with notable differences in the range of conductivities observed
for specific tissue examples. Despite the variability, many WM and GM tissues
exhibited symmetric bilateral conductivities within each microstructure model.
SMT yielded conductivity estimates closer to values reported in experimental
studies, while none of the methods aligned with spectroscopic models of
tissue conductivity.
Discussion and conclusion: Our findings highlight substantial discrepancies in
tissue conductivity estimates generated by different diffusion models,
underscoring the challenge of selecting an appropriate model for low-
frequency electrical conductivity imaging. SMT demonstrated better alignment
with experimental results. However other microstructure models may produce
better tissue discrimination.
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1 Introduction

Tissue electrical conductivity properties are closely related to its

composition and architecture. Electrical conductivities of different

tissues vary widely (over a thousandfold) (1–4) and also depend on

temperature and direction. Tissue electrical spectra reflect

characteristics of cellular structure and physiological processes

and are notably different in disease (5–7). Therefore, conductivity

measurements and more importantly, conductivity images, are

potentially a valuable diagnostic indication.

Electrical conductivity of isolated tissues is commonly

measured by applying a fixed current or voltage across samples

via an array of four electrodes (8). The tissue conductivity is then

recovered using the relation in Equation 1:

s ¼ Gk (1)

wheres is the conductivity in S/m,G is themeasured conductance in S,

and k is a shape factor inm�1 relating the apparent conductance to the

conductivity. This shape factormay be determined independently using

the same measurement geometry and a conductivity standard (9).
1.1 EIT, MREIT and DT-MREIT

Electrical conductivity imaging has been widely investigated in the

area of Electrical Impedance Tomography (EIT) (10). EIT involves

application of multiple electrodes to the body surface and obtaining

numerous four-electrode conductance measurements. This is then

transformed to a conductivity distribution via a sensitivity model

connecting apparent conductance to variation of conductivity in each

imaged voxel. As the body shape and surface electrode location is

difficult to determine accurately, and because this inverse problem is

very ill-posed, reconstruction of absolute conductivity distribution is

very difficult. The principal cause of EIT’s ill-posedness is the

restriction to making boundary measurements. However, magnetic

resonance electrical impedance tomography (MREIT) avoids this by

using MR coils to measure the magnetic flux created within the body

by externally applied currents. Currents are applied synchronously

with MRI pulse sequences, images from at least two linearly

independent external currents (11) are needed to uniquely reconstruct

conductivity distributions. Diffusion tensor MREIT (DT-MREIT) is

an extension of MREIT that combines measured magnetic flux data

with a subject-specific diffusion tensor to yield conductivity tensor

information at the frequency of the applied current (12, 13). MREIT

and DT-MREIT have enabled imaging of low-frequency conductivity

distributions in the head and knee (14, 15). However, several barriers

to clinical adoption exist, most notably in the difficulty of applying

external electrodes and the need to adapt sequence timing to

accommodate MREIT current administration protocols.
1.2 Electric properties tomography

Another MR-based method captures electrical conductivity

properties, without electrodes, at the Larmor (resonance) frequency
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of the MR system. This technique, electric properties tomography

(EPT), requires extraction of the phase transmitted by the imaging

coil, as this is affected by tissue conductivity and permittivity (16).

EPT measurements at higher frequencies (for example in a 3 T

MRI system electrical properties are measured at characteristic of

128MHz) are mostly reflective of tissue composition, as structural

information is not apparent in this range. Excellent correspondence

has been found between previously obtained conductivity values

obtained using coaxial probes (3) and EPT images of brain tissues

(17, 18). Intriguing conductivity anomalies have also been observed

in tumor tissues (19, 20). However, it is possible that combining

structural information from diffusion microstructure images with

EPT may improve the specificity of these findings. This approach is

the basis of the method we test here, denoted conductivity tensor

imaging (CTI).
1.3 Conductivity tensor imaging

The recently introduced technique of Conductivity Tensor

Imaging (CTI) (21) leverages observations of Basser et al. (22)

and Tuch et al. (23) that low-frequency conductivity and

diffusion tensors (amongst other physical phenomena) should

share common properties. Alternative techniques therefore

employ MR diffusion-weighted imaging as a basis for relating

diffusion tensors to conductivity tensors.

The relation between conductivity and diffusion tensors is

expressed in Equation 2 as

C ¼ hDe (2)

where C is the conductivity tensor, De is the extracellular diffusion

tensor (measured using a low diffusion weighting ca. 800 or

1000 s=mm2) and h is an isotropic scaling factor relating

conductivity and diffusion properties. In Sajib et al. (21) this

factor is derived as in Equation 3:

h ¼ asH

ade þ b 1� að Þdi : (3)

Here, a is the extracellular fraction, sH is the measured EPT

conductivity distribution, de and di are the extra- and

intracellular diffusivity respectively and b is the ratio of

intracellular and extracellular ionic concentrations.

The effective isotropic low-frequency conductivity may be

calculated using the relation

sL ¼ hde ¼ sHdea
ade þ b(1� a)di

(4)

Alternatives to CTI exist. For example water-based methods

suggested by Michel et al. (24) and Marino et al. (25) relate

tissue water content to low-frequency properties, with well-

defined results reporting average conductivities in gray and white

matter as of 0.55 + 0.01 S/m and 0.3 + 0.01 S/m respectively (25).
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Both water-based (wEPT), CTI and DT-MREIT values have

diverged from model predictions at near DC frequencies (26). In

addition, CTI predictions vary as a result of differences in the

models used to relate diffusion to conductivity (21, 26–28). One

other aspect that has not been explored in CTI or DT-MREIT has

been variability in measured gray or white matter conductivities.

In the section below we discuss interpretation of microstructure

models in terms of conductivity.
1.4 Microstructure diffusion models

As noted in Equation 4 above, low-frequency conductivity

properties depend critically on knowledge of intra- and

extracellular diffusivity. These can be estimated using diffusion

microstructure images, which originally concentrated on

characterizing white matter properties. The Neurite Orientation

Dispersion and Density Imaging (NODDI) technique, first

published in 2012 (29) seeks to highlight white matter

orientation patterns. More recently, interest has been focused on

other aspects of microstructure composition. For example the

Soma and Neurite Density Imaging (SANDI) method (30)

emphasizes gray matter model. While SANDI and NODDI make

several assumptions of composition or tissue diffusivity, the

spherical mean technique (SMT) (31) makes comparatively few

and may provide an unbiased tissue diffusivity assessment that

may produce conductivities closest to actual values.
1.5 Rationale

Depending on the diffusion acquisition used, different CTI

studies have predicted a range of low-frequency conductivities for

white and gray matter and have not performed detailed analyses

of conductivities of specific brain structures. Therefore, the goals

of this study were, first, to demonstrate the range of low-

frequency conductivity white and gray matter properties

predicted using different microstructure models; and second to

determine if there are different predicted conductivities within

selected brain structures using a microstructure to conductivity

transformation. Data from publicly available databases were used.

These included volumes from the Human Connectome Project

WU-MINN (32) and MGH HCP (33) databases. Conductivities

predicted using microstructure information provided by NODDI,

SANDI and Spherical Mean (SMT) methods were assessed. We

chose to use these three methods because they aim to model

white matter, gray matter and general brain tissues respectively

and therefore allow us to best determine the likely range of

reconstructed conductivities.

In this work we elected to assume high-frequency (EPT) brain

tissue conductivities were uniform and individually valued for each

tissue type, thus exploring only the effects of diffusion model

variations. We anticipate that this study will form the basis for

studies to better determine the biophysical basis of LF

conductivity properties in brain tissue, and to explore effects of

Alzheimer’s disease and cancer on conductivity.
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2 Methods

2.1 Microstructure diffusion models

Currently used clinical standard-of-care diffusion acquisition

schemes use a single non-zero diffusion weighting value (for

example a b-value of 800 or 1000 s=mm2) and assess diffusion

along a limited number of diffusion directions (6 or 15)

assuming diffusion has a single relaxation characteristic.

Advanced diffusion imaging protocols use a wider range of

diffusion weightings (more b-values) and directions (b-vectors) to

acquire diffusion data. Advanced diffusion imaging methods

enable fitting of complex biophysical models to the acquired

data. The diffusion imaging models employed here were the

Neurite Orientation Dispersion and Density Imaging (NODDI)

model, Soma and Neurite Density Imaging (SANDI) model, and

the Spherical Mean Technique (SMT). All three biophysical

approximations assume Fick’s second law applies i.e., that the

location expectation , x2 . is proportional to time (34–36).

Each model provides quantitative maps of parameters

characterizing specific neurite microstructure including as intra-

and extra-cellular volumes, and soma and neurite densities and

diffusivities. NODDI models specifically distinguish between the

extra- and intra-neurite cellular microenvironments by

quantifying the diffusion signal obtained from voxels in these

regions and modeling them as either a sphere (representing free

water or extracellular diffusion), a tensor (representing extra-

neurite diffusion) or a stick (representing intra-neurite diffusion).

NODDI models are parameterized with quantities including the

neurite density index (NDI), orientation dispersion index (ODI),

and fractional isotropic volume fraction (fiso). For SANDI, signal

and volume fractions are compartmentalized as a zeppelin

(representing extracellular space), a sphere (representing intra-

soma space) or a stick (representing intra-neurite space). SANDI

model parameters include maps of extracellular (fe), intra-neurite

(fin) and intra-soma (fis) signal fractions and diffusivities. For

SMT, metrics are calculated based on averaged extra- and intra-

neurite diffusivities and relative volumes. Diffusion metrics for

each model were combined to calculate extra- and intracellular

diffusivity metrics used in the low-frequency conductivity

estimation of Equation 4. Specific conversions used for each

method are detailed in the sections below.
2.2 Conductivity tensor imaging

We start from the framework defined by Sajib et al. (21).

Equation 5 defines the normalized signal arising from each

diffusion weighting value b as

Ab ¼ fecm e�bdecm þ fecw e
�bdecw þ fi e

�bdi þ S0 (5)

where fecm and decm are the volume fraction and diffusivity in the

extracellular matrix, fecw and decw relate to extracellular water and

fi and di relate to intracellular spaces respectively. S0 is a signal
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offset. Multiple b-values are sampled in the range of 0 to

4,500 s=mm2 and each b-value is sampled along multiple

directions in order to fit the six parameters decm, decw, di, fecm,

fecw and fi. Further, the definition of extracellular fraction

(Equation 6) is

a ¼ fecm þ fecw
fecm þ fecw þ fi

(6)

and extracellular diffusivity (Equation 7) is

de ¼ fecm
fecm þ fecw

decm þ fecw
fecm þ fecw

decw (7)

It is assumed that decw ¼ 3� 10�3 mm2/s. Fitted or derived

parameters for di, de, and a are then used in combination with the

reconstructed high-frequency conductivity, via Equation 4 to

calculate sL.
2.2.1 NODDI
In the NODDI model (29, 37), the normalized signal is

described by the relation of Equation 8:

A ¼ (1� fiso)(fiAic þ (1� fi)Aec)þ fisoAiso (8)

and multi-b-value diffusion data is fitted to a multicompartment

model composed of sticks, isotropic free water space and an

anisotropic extracellular matrix. The model has parameters fi,

the normalized volume fraction of the intracellular

compartment, dk, the intrinsic diffusivity in sticks, assumed to

be 1:7� 10�3 mm2 s�1, m, the mean stick orientation and k, a

concentration parameter that measures the extent of

orientation dispersion around the mean stick orientation. The

parameters fiso and diso (assumed to be 3:0� 10�3 mm2 s�1)

define the volume fraction and diffusivity of isotropic

space, respectively.

The orientation dispersion index (ODI) is a value that varies

between 0 and 1 and relates to the parameter k using (for

extracellular space)

k ¼ 1
tan (pODI=2)

(9)

In turn, k relates to the parameter t, which varies between 1=3 and

1. This is found using Equation 10:

t ¼ � 1
2k

þ 1
2F(

ffiffiffi

k
p

)
ffiffiffi

k
p (10)

where the function F is defined in Equation 11 as

F(x) ¼ 1
2

ffiffiffiffi

p
p

e�x2 erfi(x): (11)

In this study, NODDI model parameters were translated

to effective transverse and parallel intracellular and
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extracellular matrix diffusivities via the sequence shown in

Equation 12:

dik ¼ nic(1� niso)� 1:7� 10�3 mm2 s�1

di? ¼ 0

di ¼
dik þ 2di?

3
dek ¼ dik � diknic(1� t)

de? ¼ dik � diknic
1þ t

2

decm ¼ dek þ 2de?
3

(12)

Finally, conversion to to CTI parameters and conductivities was

achieved by computing the extracellular fraction a using the

expression of Equation 13 as

a ¼ fiso þ 1� fisoð Þ 1� fið Þ (13)

and the total extracellular diffusivity averaged over all directions

was calculated using Equation 14 as

de ¼ (1� fiso)(1� fic)
fiso þ (1� fi)(1� fiso)

decm

þ fiso
fiso þ (1� fi)(1� fiso)

diso: (14)

2.2.2 SANDI
The SANDI model (30, 38) assumes the extracellular space is

simpler than for the NODDI model, and places more emphasis on

intraneurite (in) and intrasomal (is) spaces. The soma are modelled

as closed impermeable spheres and their normalized signal is

calculated from Gaussian phase distribution approximations.

The direction-averaged signal for each b-value in the SANDI

model is modeled using Equation 15 as

Ab ¼ �(1� fe) finAin,b þ (1� fin)Ais,bð Þ þ feAe,b (15)

where fin is the relative intraneurite fraction (fin þ fis ¼ 1), and Ain,b

and Ais are the normalized signals for restricted diffusion within

neurites and soma respectively. It is assumed that diffusivity in

the soma is Dis ¼ 3mm2=ms. Direction-averaged outputs of the

SANDI fitting process are fe and Dec and we estimated SANDI

measures to CTI contributions via Equations 16–18:

a ¼ fe (16)

di ¼ (1� fe)(finDin þ (1� fin)Dis) (17)

and

de ¼ fecDec (18)

before conversion to conductivity using Equation 4.
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2.2.3 Spherical mean technique
In the spherical mean technique (SMT), (31, 39), diffusion data

gathered using at least two b-values are used to estimate the

direction-averaged mean diffusion-signal using the model

summarized in Equation 19 below as

Ab ¼ fiAi þ 1� fið ÞAe (19)

The relevant variables solved for by the SMT model are intra-

neurite volume fraction (fin), intrinsic diffusivity (Din) and the

extra-neurite microscopic mean diffusivity (De).

To convert to CTI parameters we used the associations shown

in Equation 20

fi ¼ fin
fe ¼ 1� fi
di ¼ fiDin

(20)

followed by calculation of conductivity using Equation 4.
2.3 Modeled high-frequency conductivities

A key factor in Equation 4 is the distribution of high frequency

conductivity sH . Comprehensive tissue conductivity spectra have

been obtained directly using coaxial probes, and empirical

models for brain tissue conductivity spectra created by Gabriel

et al. (3) have agreed well with previous EPT measurements

obtained using MR platforms at 3 and 7 T (17). As the intention

of this study was to explore the effect of diffusivity models on

predicted low-frequency conductivities, we fixed high-frequency

conductivities of white and gray matter and cerebrospinal fluid

(CSF) to be those predicted by Gabriel et al.’s models. Briefly, we

used atlases of grey and white matter structures (Harvard-Oxford

cortical and sub-cortical atlases, and the Johns Hopkins white

matter atlas) to assign high-frequency conductivities at 3 T
FIGURE 1

Sagittal, coronal and axial slices of predicted sH values used in this study, sh
white matter and CSF were calculated using modeled parameters for each
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(128MHz) to each gray matter (GM) and white matter (WM)

compartment used in the study, and to cerebrospinal fluid (CSF).

At 128MHz these modeled conductivities were 0.5864 S/m,

0.3420 S/m, 2.1429 S/m respectively. Cross-sectional images of the

sH distribution in standard MNI space are illustrated in Figure 1.
2.4 Diffusion data sets used

Two data sets were used in the analysis presented in this paper.

Both datasets were obtained using 3 T scanners. NODDI and SMT

methods were tested using the WU-MINN dataset. The WU-Minn

HCP dataset provides diffusion data for 1,200 healthy young

adults with b-values (s=mm2) of 0 (18 directions), 1,000 (90

directions), 2,000 (90 directions) and 3,000 (90 directions). Other

settings were TR/TE 5520/89.5ms; 1.25 mm isotropic voxels.

Volumes from the first 199 subjects in the WU-Minn datatset

were used to calculate parameters for NODDI and SMT

reconstructions. The database used for SANDI fitting was the

MGH HCP dataset, which includes diffusion data for 35 adults

with b-values (s=mm2) = 0 (40 directions), 1,000 (64 directions),

3,000 (64 directions), 5,000 (128 directions) and 10,000 (246

directions) with TR/TE 8800/57ms and 1.5mm isotropic voxels.

We used data from 34 of the 35 subjects in the MGH HCP

dataset to calculate SANDI metrics.
2.5 Region of interest selection

We selected six cortical, five subcortical and six white matter

structures for analysis. WM ROIs were selected from the JHU

DTI-based white-matter atlases (40–42); cortical and subcortical

ROIs were obtained from the Harvard-Oxford cortical and

subcortical structural atlases respectively (43–46). WM ROIs

chosen were those with large contiguous WM volumes and one

compartment in the cerebellum. Subcortical ROIs were chosen to

be those likely to include biomarkers of early disease such as the
own in MNI space. Conductivities predicted at 128MHz (3 T) for gray and
tissue determined by Gabriel et al. (3).
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FIGURE 2

Cortical, subcortical and white matter regions of interest used in the study.
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hippocampus, thalamus, amygdala, pallidum and putamen.

Cortical ROIs were selected from sensorimotor regions. The

cingulate gyrus, and lingual gyri were also assessed. ROIs were

further subdivided into left and right, anterior and posterior or

superior and inferior sections. As the hippocampus is key to

progression of conditions such as Alzheimers and Parkinson’s

diseases, we sub-sampled the hippocampus into left and right

CA1, CA2 and 3 and CA4DG compartments. ROIs used in the

study in each brain region are shown in Figure 2.
2.6 Data processing

Parameters for each of the three diffusion methods were

determined in each subject’s native space, and resulting volumes
Frontiers in Radiology 06
for each parameter were transformed into MNI space using a

reference 1 mm T1-weighted MNI volume.

NODDI (MATLAB 2024a, The Mathworks, Natick MA, USA)

(37) and SMT (39) diffusion models were run on the young adult

HCP dataset while SANDI Python code (38) was run on the adult

diffusion HCP dataset. All diffusion data was pre-processed

incorporating the FSL (FSL fsl.fmrib.ox.ac.uk) eddy function

(47) which significantly removes noise caused by subject motion.

Images underwent brain extraction and further processing using

the FSL bet tool (48) followed by co-registration of each volume to

MNI space using the flirt utility (48). Conductivity measures were

calculated using the synthetic high frequency sH maps and diffusion

microstructure model parameters using MATLAB. Calculation of

region-of-interest (ROI)-specific median and interquartile ranges in

CTI maps was performed using fslstats (49).
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After co-registration of image volume to MNI space we found

that hippocampus or thalamus ROIs of some subjects tended to

include CSF. Therefore hippocampus registrations were manually

adjusted, and each subject’s thalamus ROIs were eroded to

ensure that sample statistics were not contaminated by CSF.
2.7 Analyses performed

Statistical testing was performed using R (50). The normality of

data for each method and ROI was assessed using the built-in

Shapiro-Wilk test (shapiro.test, a , 0:05). We found that

data in the majority of ROIs were not normally distributed.

Therefore non-parametric tests and measures were used to

display overall conductivity results using median and

interquartile range box and whisker plots. We also used non-

parametric tests to determine equivalence of conductivities

predicted in corresponding regions within each ROI, for example,

left and right hippocampus, and corpus and genu of the corpus

callosum. In other instances we compared anterior and posterior

parts of the cingulate gyrus and pre- and postcentral gyrus

conductivities. Additionally, equivalence tests were performed

between each hippocampal subregion. Predicted low frequency

CSF conductivity was not explored in this study.

Equivalence analyses were performed using the R TOSTER

package (51) (version 0.8.3) using the Wilcoxon signed-rank

TOST function wilcox_TOST with a lower equivalence bound

at �0.05 and the upper equivalence bound at 0.05 and a , 0:05.

The wilcox_TOST function calculates the median difference

between groups, the pooled standard deviation, and the standard

error, and determines if this difference falls within equivalence

bounds. It also provides a two-sided test of equivalence,

generating confidence intervals and p-values to evaluate if the

observed differences are statistically significant or fall within the

range of equivalence. This non-parametric test was chosen

because it does not assume normality and is appropriate for

comparing two independent groups.
3 Results

3.1 Overall comparisons

Examples of contributing parameters and low-frequency

conductivities predicted by each method are displayed in

Figure 3 for individual subjects. Also shown in this figure is an

example of parameters and low frequency conductivity found in

vivo by Sajib et al. (26). Note that the data slice and subject

used to determine the example NODDI, SMT and SANDI

parameters was the same slice of MNI space in each case, while

that shown in the Sajib. et al data was estimated over a

different, 5 mm slice. Differences between parameters estimated

by each method were clearly evident, with a values estimated in

both gray and white matter being larger in NODDI and SMT

methods than in SANDI, and di appearing larger in SANDI
Frontiers in Radiology 07
than for other methods. Overall, gray and white matter

conductivities predicted by the NODDI method were larger

than those predicted with SANDI, with SMT predictions sitting

between these two.
3.2 ROI conductivity distributions

Data within each ROI class are summarized in box and whisker

plots showing the median + interquartile ranges in conductivity

within each class of ROI in Figures 4–8. Marker circles indicate

medians of each subject from either 199 subject sampled from

the WU-Minn HCP database (NODDI and SMT) or the 34

subjects used from the MGH HPC database (SANDI).

Specifically, predicted conductivities in genu, body and splenium

segments of the corpus callosum are summarized in Figure 4;

those in other white matter ROIS (cingulate gyrus, cerebellar

peduncle) are shown in Figure 5. Those for key subcortical ROIs

including amygdala, hippocampus, pallidum, putamen and

thalamus are to be found in Figure 6 and cortical ROI results are

shown in Figure 8.
3.3 Equivalence findings

Equivalence findings for comparable pairs of ROIs or ROI

subcompartments are summarized in Figures 9–12. The specified

equivalence bounds of �0.05 and +0.05 S/m are indicated in

each plot as dashed lines.

Conductivities predicted in white matter compartments were

compared between body and genu of corpus callosum, body and

splenium of corpus callosum and inferior and superior cerebellar

peduncle. For each pair of white matter ROIs, comparisons for

each method were statistically different (median difference non-

zero). Predictions for SMT and NODDI models were equivalent

in body and genu of corpus callosum; but SANDI comparisons

were not equivalent between these ROIs. Comparisons for

SANDI and NODDI models were equivalent for body in

splenium of corpus callosum, but not equivalent for SMT. For

left and right superior cerebellar peduncle, predicted SMT and

NODDI conductivities were equivalent, but SANDI predictions

were not equivalent.

Median conductivities between cortical ROIs were all

significantly different. Anterior and posterior cingulate gyrus

conductivities were predicted to be equivalent for each diffusion

model. While pre and postcentral gyrus conductivties were

predicted by equivalent by NODDI models, and marginally by

SMT models, those predicted by SANDI models were

not equivalent.

Conductivities predicted in subcortical ROIs were all different,

with the exception of left and right amygdala, where predicted

conductivities in left and right amygdala were found to be

statistically similar. All predicted conductivities for left and right

pallidum, hippocampus, amygdala and thalamus were equivalent

for each diffusion model. Non-equivalent conductivities were
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FIGURE 3

Comparison of results found in Sajib et al. (26) in a single subject against example a, di and de quantities extracted for individual subjects in NODDI,
SMT and SANDI analyses.
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observed between left and right putamen ROIs for SANDI and

SMT models. Predicted conductivities in left and right putamen

were equivalent for NODDI models only.

Comparisons between left and right hippocampal

structures found statistically similar conductivities predicted in

left and right CA1, CA2/3 and CA4DG ROIs for SANDI

diffusion models. Comparisons for the NODDI and SMT

models were all statistically different, and equivalence was

observed for all methods and ROIS except for the case of CA1,
Frontiers in Radiology 08
where both left and right SMT and NODDI predictions were

not equivalent.
4 Discussion

In the sections below we discuss overall findings and their

implications for further investigations linking conductivity and

diffusion parameters.
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FIGURE 4

CTI conductivities predicted in corpus callosum subcompartments by by NODDI, SMT and SANDI methods. Each filled circle indicates median value of
conductivity in each structure for each method. Box and whisker plots show the median, interquartile range (box), and the range excluding outliers
(whiskers). Identical data (N = 199, WU-MINN) was used for NODDI-CTI and SMT-CTI images. Data for SANDI-CTI reconstructions were obtained
from the MGH-HCP database (N = 34).

FIGURE 5

CTI conductivities predicted in white matter ROIs by NODDI, SMT and SANDI methods. Each filled circle indicates median value of conductivity in each
structure for each method. Box and whisker plots show the median, interquartile range (box), and the range excluding outliers (whiskers). Identical data
(N = 199, WU-MINN) was used for NODDI-CTI and SMT-CTI images. Data for SANDI-CTI reconstructions were obtained from the MGH-HCP
database (N = 34).
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FIGURE 6

CTI conductivities predicted in subcortical ROIs by NODDI, SMT and SANDI methods. Each filled circle indicates median value of conductivity in each
structure for each method. Box and whisker plots show the median, interquartile range (box), and the range excluding outliers (whiskers). Identical data
(N = 199, WU-MINN) was used for NODDI-CTI and SMT-CTI images. Data for SANDI-CTI reconstructions were obtained from the MGH-HCP
database (N = 34).
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4.1 Differences between models

The most prominent observation in the study is the narrow

distributions predicted by NODDI models compared with SMT and

SANDI predictions. As noted above, NODDI models focus on

identification of white matter, and some properties such as the

intrinsic stick diffusivity and diffusivity in isotropic spaces are

assumed. Therefore, we found that overall predicted NODDI

conductivities were dominated by these assumptions, and led to

much narrower predicted conductivity ranges in each ROI. By

contrast, variance in SMT model predictions (derived from the same

data used for NODDI predictions) was much larger, and

conductivities smaller than those found for NODDI models. In

addition, median NODDI conductivity predictions did not differ
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greatly between gray or white matter. Predicted conductivities for

SANDI models were somewhat more variable than for NODDI cases.

SANDI models assume a single parameter (the diffusivity in the

soma). Median predictions for SANDI were also somewhat lower

than those found for NODDI or SMT models, although we note that

SANDI model data were not directly comparable as they were

measured using different subjects and sequences from those analyzed

in NODDI and SMT models.
4.2 Predicted gray and white matter
conductivities

White and gray matter estimations found by low-frequency MRI-

based measurements have consistently been larger than those
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FIGURE 7

CTI conductivities predicted in left and right hippocampus ROIs found by each method. Each filled circle indicates median value of conductivity in
each structure for each method. Box and whisker plots show the median, interquartile range (box), and the range excluding outliers (whiskers).
Identical data (N = 199, WU-MINN) was used for NODDI-CTI and SMT-CTI images. Data for SANDI-CTI reconstructions were obtained from the
MGH-HCP database (N = 34).
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anticipated by Gabriel’s parametric models of <0.1 S/m (3, 26).

Conductivity measurements derived from water-based measurement

(25), CTI (27, 28) or MREIT strategies (14) have found average

white matter conductivities ranging from 0.2 S/m to 0.3 S/m, and

those of gray matter to be average in the range 0.3 S/m–0.5 S/m.

Figure 13 overlays average white and gray matter conductivities

reported by Jahng et al. (27) and Marino et al. (25) over median

NODDI, SMT and SANDI predictions in each ROI category.

Figure 13 overlays a range one standard deviation either side of

the mean gray matter conductivity found by Jahng et al. (27) (in

blue) over (Figure 13a) cortical, (Figure 13c) subcortical and

(Figure 13d) hippocampal subfield ROIs and, similarly, gray

matter conductivities found by Marino et al. (25) are overlaid on

these parts of the figure in pink. Figure 13b overlays white

matter averages found for white matter tissues in these studies

over white matter ROI findings for the study.

For ROIs consisting of only white matter, such as the body, genu

and splenium of the corpus callosum, conductivities predicted by

SMT and SANDI models were between 0.1 S/m and 0.15 S/m

Figure 4, lower than averages found in previous studies (14, 27).

The most direct comparison of our predictions to external work

was of average SMT-derived conductivities found by Jahng et al.

(27). White matter conductivity values found in (27) averaged

around 0.27 S/m, lower than those found in corpus callosum.

However, predicted SMT-derived conductivities in other white
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matter structures (cingulum, cerebellar peduncle) agreed better,

averaging about 0.25 S/m.

In the subcortical and cortical structures, conductivities predicted

by all models were overall higher, as expected. Median NODDI

conductivities varied between 0.45 S/m and 0.59 S/m, while SMT

medians ranged from around 0.2 S/m to about 0.35 S/m. SMT

median conductivities in gray matter were in the range 0.25 S/m to

0.5 S/m. SMT means reported in (27) were about 0.52 S/m, slightly

above the range found here. Overall predicted conductivities of

cortical and subcortical structures tended to lie within with the

range of values found in previous studies with some notable

exceptions in the case of SANDI predictions and some SMT-

derived values including the hippocampus, pallidum and putamen.
4.3 Differences between structures

Comparisons of different white matter structures found that

purely white matter ROIs (subcompartments of the corpus

callosum) had lower conductivities than other white matter

structures, possibly reflecting differences in white matter fiber

density and radius (52), and possibly also cell composition. In

subcortical gray matter compartments we also found varying

conductivity for each compartment, likely related to fractional

volume effects of white matter tracts traversing each structure. For
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FIGURE 8

CTI conductivities predicted in cortical ROIs by NODDI, SMT and SANDI methods. Each filled circle indicates median value of conductivity in each
structure for each method. Box and whisker plots show the median, interquartile range (box), and the range excluding outliers (whiskers). Identical
data (N = 199, WU-MINN) was used for NODDI-CTI and SMT-CTI images. Data for SANDI-CTI reconstructions were obtained from the MGH-HCP
database (N = 34).

FIGURE 9

Equivalence test results evaluating congruence of CTI conductivities
found between comparable white matter ROIs for each
microstructure fitting method. (Top) Body and Genu and (middle)
Body and Splenium of Corpus Callosum, and (bottom) inferior
superior cerebellar peduncle.
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example the conductivity predicted in the pallidum, a structure that

has a large number of white matter tracts was particularly low for

the SMT and SANDI models, which may be a result of white

matter content. Conductivities predicted by both SMT and SANDI

models for the hippocampus, thalamus and left putamen also had

distinctly low values. Within the hippocampal subcompartments,

there were differences noted both in distribution and median

conductivities, between CA1 against CA2-3 and CA4. Mixing gray

and white matter tissue may also be the cause of the lower and

variable conductivities predicted by SMT and SANDI models for

the pre- and post-central gyrus and paracingulate gyrus.
4.4 Bilateral or anterior-posterior
comparisons

We also tested correspondence of conductivities predicted by each

model for the different ROIs, either by comparing left with right,

anterior with posterior or inferior and superior sub-structures. In

most cases there was equivalence found between models for these

symmetry tests. However, notable discrepancies were observed in

the putamen and CA1 subcompartment of the hippocampus.
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FIGURE 10

Equivalence test results evaluating congruence of CTI conductivities
found between comparable cortical ROIs for each fitting method.
(Top) anterior and posterior cingulate gyrus (bottom) pre and
postcentral gyrus.

FIGURE 11

Equivalence test results evaluating congruence of CTI conductivities
found between comparable subcortical ROIs for each fitting
method. (i) Left and right pallidum (ii) left and right hippocampus,
(iii) left and right amygdala, (iv) left and right thalamus and (v) left
and right putamen.

FIGURE 12

Equivalence test results evaluating congruence of CTI conductivities
found between left and right hippocampus subfields. (Top) left and
right CA1, (middle) left and right CA2 and 3, (bottom) left and right
CA4DG.
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4.5 Study limitations

The main limitation of this study was the lack of knowledge of

the high frequency conductivity contribution to predicted

conductivities sH . However, this provides a platform against

which variations in diffusion parameters alone can be evaluated

in conductivity terms.
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A second limitation is that fixed imaging parameters have been

used to determine the diffusion characteristics, and these may not

be the optimal ones to determine conductivity characteristics. In

future studies, it would be advisable to determine the effect of

varying the diffusion b values or diffusion times on

reconstructed parameters.

We also recognize that the NODDI methods employed in this

study do not capture microstructural details related to the soma

(gray matter) or cellular exchange across tissue microenvironments,

both of which are crucial aspects of microstructure. Also, while

NODDI is traditionally associated with white matter, our study

extends its application to gray matter regions, such as the

hippocampus. Although these models may not fully capture the

complexity of gray matter microstructure or cellular exchange, our

findings suggest that they still provide valuable insights into the

microstructural environment of these regions. By carefully

considering the limitations of these models in gray matter, our study

demonstrates the potential of integrating diffusion-based metrics

with conductivity measurements to enhance our understanding of

tissue microstructure in both white and gray matter. This approach

holds promise for future applications in sensitive monitoring of

structural and compositional changes across different brain regions.

The main limitations of NODDI include the lack of direct diffusivity

estimation and the potential bias in its parameters due to fixed

diffusivities (53). Additionally, while NODDI has been shown to

have good repeatability and reproducibility, its application in clinical

studies must account for intra- and inter-subject variability (54).

Another significant limitation is the spatial resolution of diffusion-

weighted imaging, which can be problematic in small or complex

brain regions like the hippocampal subfields, leading to partial

volume effects where signals from different tissue types are mixed,

potentially confounding the results (55).

Raw data was made available to us through the databases and

in already preprocessed form (i.e., corrected for motion and
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FIGURE 13

Comparison of the median WM and GM predictions from each method and ROI with values determined by Jahng et al. (27) and Marino et al. (25). (a)
values for cortical ROIs, (b) white matter ROIs, (c) subcortical ROIs and (d) hippocampal ROIs.
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susceptibility artifact). However due to multiple inherent factors,

some artifacts such as ghosting artifact were still apparent

especially in the case of the SANDI data as scanning at higher b-

values and for exceedingly long scan times can contribute to

patient motion and EPI (echo-planar-imaging) distortions.

Finally, data assessments in this study were made after

transformation of conductivity tensor volumes to MNI space.

Careful efforts were made to ensure that ROIs were not

contaminated by adjacent tissues, but it could be the case that

some observations have been affected by this factor, particularly

in the putamen and hippocampus.
4.6 Future directions

Another issue that might be of interest is that of sex differences,

which have not been explored here. We plan to include this

analysis in a wider exploration of the HCP 1200-subject database.

Differences observed in the hippocampus may also be the basis

for distinguishing disease. Initial predictions using NODDI

metrics and diffusion data collected on carriers of APOE-e4 gene

markers associated with Alzheimer’s disease have indicated that

conductivities predicted in hippocampal sub-compartments are
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statistically different from those observed in age-matched

controls, and this will be a focus of future studies.
4.7 Overall findings

We have elected to keep these preliminary findings qualitative

pending further validation of conductivity tensor imaging methods

against structure and cell morphology, and other imaging methods.

Overall, conductivity predictions in ROIs broadly reflected the mix

of tissue types within each structure, which shows promise that CTI

will find multiple applications in sensitive monitoring of small

variations in tissue structure and composition.

We found that SANDI and NODDI predictions had less

variance than SMT predictions, which is likely the result of

assumptions made in SANDI and NODDI models. While SANDI

and NODDI results may not produce accurate conductivity data,

we speculate the combination of components used to produce

NODDI- or SANDI-CTI values may yield useful and sensitive

biomarkers for tissue state that may improve disease prediction.

As high frequency conductivity data was not used here, we

anticipate that its inclusion could potentially amplify sensitivity

to small tissue changes, particularly in ionic composition.
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However, inclusion of real EPT data could also increase variability

in reconstructed conductivities, obscuring the sensitivity provided

by diffusivity metrics.

This study suggests that low-frequency conductivity imaging

metrics could serve as a sensitive biomarker for tissue structure

and composition. Since many diffusion and conductivity metrics

change with pathology, CTI measures are likely similarly affected

and the method has promise for detection of early stage

neurological diseases or cancers.
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