AUTHOR=Ghobrial George , Roth Christian TITLE=Deep learning-based automated segmentation and quantification of the dural sac cross-sectional area in lumbar spine MRI JOURNAL=Frontiers in Radiology VOLUME=Volume 5 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/radiology/articles/10.3389/fradi.2025.1503625 DOI=10.3389/fradi.2025.1503625 ISSN=2673-8740 ABSTRACT=IntroductionLumbar spine magnetic resonance imaging (MRI) plays a critical role in diagnosing and planning treatment for spinal conditions such as degenerative disc disease, spinal canal stenosis, and disc herniation. Measuring the cross-sectional area of the dural sac (DSCA) is a key factor in evaluating the severity of spinal canal narrowing. Traditionally, radiologists perform this measurement manually, which is both time-consuming and susceptible to errors. Advances in deep learning, particularly convolutional neural networks (CNNs) like the U-Net architecture, have demonstrated significant potential in the analysis of medical images. This study evaluates the efficacy of deep learning models for automating DSCA measurements in lumbar spine MRIs to enhance diagnostic precision and alleviate the workload of radiologists.MethodsFor algorithm development and assessment, we utilized two extensive, anonymized online datasets: the “Lumbar Spine MRI Dataset” and the SPIDER-MRI dataset. The combined dataset comprised 683 lumbar spine MRI scans for training and testing, with an additional 50 scans reserved for external validation. We implemented and assessed three deep learning models—U-Net, Attention U-Net, and MultiResUNet—using 5-fold cross-validation. The models were trained on T1-weighted axial MRI images and evaluated on metrics such as accuracy, precision, recall, F1-score, and mean absolute error (MAE).ResultsAll models exhibited a high correlation between predicted and actual DSCA values. The MultiResUNet model achieved superior results, with a Pearson correlation coefficient of 0.9917 and an MAE of 23.7032 mm2 on the primary dataset. This high precision and reliability were consistent in external validation, where the MultiResUNet model attained an accuracy of 99.95%, a recall of 0.9989, and an F1-score of 0.9393. Bland-Altman analysis revealed that most discrepancies between predicted and actual DSCA values fell within the limits of agreement, further affirming the robustness of these models.DiscussionThis study demonstrates that deep learning models, particularly MultiResUNet, offer high accuracy and reliability in the automated segmentation and calculation of DSCA in lumbar spine MRIs. These models hold significant potential for improving diagnostic accuracy and reducing the workload of radiologists. Despite some limitations, such as the restricted dataset size and reliance on T1-weighted images, this study provides valuable insights into the application of deep learning in medical imaging. Future research should include larger, more diverse datasets and additional image weightings to further validate and enhance the generalizability and clinical utility of these models.