
EDITED BY

Maria Evelina Fantacci,

University of Pisa, Italy

REVIEWED BY

Lei Gao,

Wuhan University, China

Moiz Khan Sherwani,

University of Copenhagen, Denmark

*CORRESPONDENCE

Hamza Eren Güzel

hamzaerenguzel@gmail.com

Göktuğ Aşcı
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Objective: This study aimed to determine the diagnostic precision of a deep
learning algorithm for the classificaiton of non-contrast brain CT reports.
Methods: A total of 1,861 non-contrast brain CT reports were randomly selected,
anonymized, and annotated for urgency level by two radiologists, with review by a
senior radiologist. The data, encrypted and stored in Excel format, were securely
maintained on a university cloud system. Using Python 3.8.16, the reports were
classified into four urgency categories: emergency, not emergency but needs
timely attention, clinically non-significant and normal. The dataset was split, with
800 reports used for training and 200 for validation. The DistilBERT model,
featuring six transformer layers and 66 million trainable parameters, was employed
for text classification. Training utilized the Adam optimizer with a learning rate of
2e-5, a batch size of 32, and a dropout rate of 0.1 to prevent overfitting. The
model achieved a mean F1 score of 0.85 through 5-fold cross-validation,
demonstrating strong performance in categorizing radiology reports.
Results: Of the 1,861 scans, 861 cases were identified as fit for study through the
senior radiologist and self-hosted Label Studio interpretations. It was observed
that the algorithm achieved a sensitivity of 91% and a specificity of 90% in the
measurements made on the test data. The F1 score was measured as 0.89 for
the best fold. The algorithm most successfully distinguished emergency results
with positive predictive values that were unexpectedly lower than in previously
reported studies. Beam hardening artifacts and excessive noise, compromising
the quality of CT scan images, were significantly associated with decreased
model performance.
Conclusion: This study revealed decreased diagnostic accuracy of an AI decision
support system (DSS) at our institution. Despite extensive evaluation, we were
unable to identify the source of this discrepancy, raising concerns about the
generalizability of these tools with indeterminate failure modes. These results
further highlight the need for standardized study design to allow for rigorous and
reproducible site-to-site comparison of emerging deep learning technologies.
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Introduction

In contemporary medical practice, diagnostic imaging is crucial

for expeditious and accurate diagnosis, treatment, and monitoring

of diverse diseases. However, the misuse of imaging modalities is

prevalent, which can result in adverse outcomes, including increased

patient exposure to ionizing radiation, elevated healthcare

expenditures, and subsequent cascades of additional imaging

examinations (1, 2). Global utilization of diagnostic imaging

modalities, particularly computed tomography (CT) and magnetic

resonance imaging (MRI), has undergone a substantial surge,

resulting in an upward trend in the incidence of unjustified, low-

value examinations (2, 3). Moreover, it was found that 20%–50% of

CT scans in the U.S. are unnecessary (4). This is concerning since

CT accounts for less than 10% of all procedures, yet it contributes

more than 60% of the total effective dose from imaging

examinations (5). To address the overuse of CT scans, several

approaches are currently available. These include establishing clear

diagnostic imaging guidelines, offering alternative imaging options,

involving specialists, conducting post-imaging reviews, and

providing feedback by comparing each referrer’s ordering habits

with the department’s average (5). Clinical imaging guidelines have

a limited impact on reducing unnecessary scans because of several

challenges. These challenges include financial issues, limited

equipment availability, workplace culture, lack of awareness of

guidelines, fear of missing a diagnosis, self-referrals, patient

demands, and, most importantly, poor implementation of the

guidelines (1, 6, 7). Regular retrospective audits can help monitor

the impact of quality improvement efforts and ensure compliance

with guidelines. However, many institutions struggle to perform

these audits routinely due to limitations in staffing, funding, and

time. Clinical decision support (CDS) systems and more reliable

real-time tools for applying standards during routine clinical care

could help address these challenges (8, 9).

Two studies demonstrated that automated analysis of radiology

referrals is possible by using natural language processing (NLP) to

interpret unstructured clinical information, along with machine

learning (ML) and deep learning (DL) techniques for classifying

referrals as either justified or unjustified. In the first study, this

approach was tested and shown to be effective (10), as researchers

performed a manual retrospective audit of 375 brain CT referrals

using the iGuide system, combining unjustified and potentially

justified referrals because of limited data. In a second study, 1,020

lumbar spine MRI referrals from two clinical sites were analyzed for

justification, with the data labeled based on clinical expertise (11).

A key aspect of our study was creating an AI-based interpreter

for the iGuide system (Quality and Safety in Imaging GmbH,

Vienna, Austria) using real-world data. This was done to help

apply justification standards more effectively in radiology

practice, especially with the increasing use of diagnostic imaging,

the ongoing issue of inappropriate CT scans, and the limitations

of previous research. Thus, we aimed to determine the diagnostic

precision of a selected large language model for the classification

of brain CT reports. Such a model poses an alternative way to

screen the reports and could help alleviate the problem of

unnecessary follow-up CT scans.

Methods and materials

We first introduce how we gathered and maintained the data,

and the labeling process. Next, we discuss the large language

model we used and its features.

Data sourcing and labeling

Randomly selected 1,861 Non-contrast brain CT reports were

anonymized and annotated for urgency level by two radiologists

and reviewed by one senior radiologist. The research ethics

committee at our institution (Ref#161) approved an ethics

exemption for the study. Each participating clinical site assessed

data privacy concerns and granted an exemption from a full

ethical review. The data, which was anonymized, encrypted, and

stored in Excel format, was securely kept on a university cloud

system. Data analysis was performed using Python version 3.8.16.

Results were classified into the following groups:

Class 1: emergency
Results that require the patient to apply to the emergency

department immediately (intracranial bleeding, stroke, shift, skull

fracture, cerebral venous sinus thrombosis, etc.).

Class 2: not emergency but needs timely attention
Reports in which the patient does not need to apply to the

emergency room but requires outpatient clinic service in a health

institution as soon as possible (intracranial space-occupying

lesion, change of lesions during follow-up, metabolic diseases, etc.).

Class 3: clinically Non-significant
Reports in which the patient does not need an outpatient

clinical service as soon as possible; the primary physician can

read the report anytime (arachnoid cyst, age-related changes,

calcifications, variations, etc.).

Class 4: normal
Completely normal findings.

Brain CT images between November 1, 2023, and June 1, 2024

were anonymized and transmitted to three tertiary referral

hospitals: two public and one private. The patient’s age, gender,

comorbidites and other sociodemographic findings were among

the electronically gathered referral data. We noticed 139 reports

included mixed cases other than those relevant to brain CTs.

Such cases are not in the scope of this study and, therefore, have

been excluded from the dataset, leaving us 1,722 reports.

Referrals that were incomplete or duplicated. Two radiologists

with 2.5 years of experience classified and annotated the cases

and all cases were reviewed by a board-certified radiologist with

7 years of experience. To ascertain the quality of our dataset, we

curated pertinent reports under the study’s objectives, thereby

achieving a balanced dataset. We had the assumption that

patients with multiple reports would usually have their first

report as an emergency. To augment the quantity of emergency
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reports, we devised novel attributes for the reports, including the

number of reports per patient, the character count of the report,

and the approximate date. Subsequently, we employed a self-

hosted Label Studio (v1.9.0) platform for collaborative data

annotation by experts. Following this, we meticulously cleaned

and aligned annotations with patient reports, yielding a well-

prepared dataset for subsequent machine learning pipelines. This

refined dataset provides a robust foundation for developing a

precise and clinically significant medical AI model.

In the data ingestion phase, we utilized SQLalchemy (v2.0.33)

to import the patient data into a PostgreSQL database. We

indexed and anonymized sensitive patient data using a Fernet

Key. All subsequent data transformations were executed within

the database via dbt (v1.6.1), an extract-load-Transform (ELT)

tool. Additionally, we leveraged the GPT 3.5 API to facilitate the

translation of reports from Turkish to English. In order to ensure

the precision of the translations, a subset of the reports was

manually revised by 2 bilingual medical professionals fluent in

Turkish and English language. The reviewers assessed the

translations for precision, uniformity, and preservation of clinical

sense. The prompt we utilized for this purpose was: Perform the

following transformation on the report: “Translate into English”.

These steps align with the principles and practices recommended

in the medical AI field, where high-quality data is of paramount

importance for driving breakthroughs and advancing healthcare

and medicine. Using a self-hosted Label Studio platform for

collaborative data annotation is becoming a common practice in

medical AI research and is widely preferred by experts. Therefore,

experts could not only manage their annotation cycle but

also prepare better-quality datasets. Furthermore, leveraging

SQLalchemy and dbt for data ingestion and transformation is a

standard procedure in many companies with large databases.

Model architecture

We are engrossed in categorizing text-based radiology reports

into the four predefined classes. The task includes text classification

of radiology reports rather than direct image classification. To

implement our text classification approach on the prepared

emergency room dataset, we adapted a large language model

DistilBERT, a version of BERT with six transformer layers, 768

concealed units, and twelve attention heads. Researchers often use it

for text organization by adding a fully connected output layer with

soft-max activation to predict the urgency category. It contains

around 66 million trainable parameters, in addition to the

transformer layers and a fully coupled output layer. DistilBERT is

proven to achieve efficiency without sacrificing accuracy (12). This

lightweight model, compared to its counterpart BERT (13), is

trained with a knowledge distillation technique to enable the same

information to be learned with much fewer learnable parameters

(14). Knowledge distillation, also known as the teacher-student

framework incorporating two models, student network and teacher

network, respectively. As shown in Figure 3, in knowledge

distillation, DistilBERT is the student network that learns

information from BERT as the teacher and becomes a smaller

model (DistilBERT) that repeats the teacher’s behavior (12, 15). The

BERT (teacher) is already pre-trained; then, we train Distil BERT

(student) learning to make predictions in a different context than

the teacher. Moreover, we benefit from this feature, since our inputs

and expected predictions have a medical context. We first tokenize

(i.e., splitting the text into substrings containing multiple words)

the text data by using the Distil BERT tokenizer with sequences

amplified to a maximum length of up to 512 tokens. Next, we train

a text classifier model with the Distil BERT backbone and then

evaluate the classification results. All the data was split into three

and tested with five-fold cross-validation: 689 reports for training,

172 for validation, and 861 reports reserved for testing (i.e., with a

split ratio of 4:1:5). The trained classifier then tested on the

remaining 861 annotation reports.

The full labeling methodology, model training pipeline,

and evaluation metrics are available in our public GitHub

repository (16, 17).

Evaluation and results

We first evaluate the representativeness (i.e., data coverage) of

our prepared dataset. As per sociodemographic data, most of the

participants had age range 19–35 years making 30% of the total

population, with male subjects dominating the percentage (58%).

Majority of the patients (40%) had no comorbidities and were

mostly (80%) of Turkish nationality as tabulated in Table 1.

To train the Distil BERT text classifier, we use the Adam

optimizer with a learning rate of 2e-5 and a batch size of 32

alongside a cross-entropy loss function. A dropout rate of 0.1

was used to avoid overfitting. The training was made for 10

epochs, with early stopping being based on the validation loss.

The training was processed on NVIDIA V-100 GPU, and it took

TABLE 1 Sociodemographic of the participant.

Variable Feature Percentage (%)

Age

Birth-18 years 05

19–35 30

36–50 25

51–65 20

>65 20

Gender

Male 58

Female 42

Comorbidities

None 40

HTN 20

DM 15

CVD 10

Respiratory diseases 10

Others 05

Ethnicity

Turkish 80

Others 20

CVD, cardiovascular disease; DM, diabetes mellitus; HTN, hypertension.
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about 4 h to complete. The model performance was assessed using

accuracy, F1 score, and recall features. We performed five-fold

cross-validation with a split ratio of 4:1:5 for training, validation,

and testing, respectively. The trained classifier attained a mean

F1 score of 0.85 across the entire folds, as shown in Figure 1.

Out of 861 testing samples, 702 were correctly predicted with an

overall accuracy of 81.5%. Class 3 has the highest

misclassification rate. The confusion matrix for different classes

is provided in Figure 2. We observe that the algorithm produced

has a sensitivity of 91% and a specificity of 90% in the

measurements made on the test data. The F1 score was measured

as 0.89 for the best fold residing within well-performing model

F1 scores, i.e., 0.80–0.90. We also highlight that in the worst-case

scenario, the model can predict decently with approximately 0.81

F1 score. The best-performing model across the folds most

successfully distinguished emergency results. However, in medical

FIGURE 2

Confusion matrix of the best model trained across 5 cross-validation folds.

FIGURE 1

Test performance in terms of accuracy and F1-score for the models trained in each fold.
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practice, false-negatives for the emergency class should be strictly

avoided. Therefore, the model with the least false negative

emergency cases should be preferred. The average recall value of

0.89 (moderate recall, 0.70–0.90) indicates that our model is able

to indicate most of the actual positive instances, but a moderate

number of false negatives indicates a better performance of the

model as shown in Figure 1.

Retrospective justification audit

A total of 1,861 referrals were initially collected after the

annotation; all the data was split in two; the first 1,000 (53.7%)

reports were divided, with 800 (42.9%) used for training and 200

(10.7%) used for validation. The DistilBERT model was used for

training. The resulting algorithm was tested on the remaining

861 annotated reports, as given in figure one below.

Prediction of accuracy

Out of 861, 702 were correctly predicted with an overall accuracy

of 81.5%. Class 3 has the highest misclassification rate. The confusion

matrix for the best model is provided in Figure 2 below.

Provided below are the expected vs. predicted plot of class 0

in Table 2:

Itwas observed that the algorithmproduced sensitivity of 91%and

a specificity of 90% in themeasurementsmade on the test data. The F1

score was measured as 0.89 for the best fold. The algorithm most

successfully distinguished emergency results. In order to evaluate

the performance of the model, we performed K-fold cross-

validation, where it was observed that with an average of 0.85 F1

score, residing within well-performing model values, i.e., 0.80–0.90.

The accuracy folds alongwith the F1 scores are given inFigure 3 below:

The average recall value of 0.89 (moderate recall, 0.70–0.90)

indicates that our model is able to indicate most of the actual

positive instances, but a moderate number of false negatives indicate

a better performance of the model, as given in the Table 3 below.

Discussion

At our clinical site, we conducted a retrospective analysis to

evaluate the performance of a deep learning-based decision

support system (DSS) in identifying brain MRIs without contrast.

We assessed the diagnostic accuracy of self-hosted Label Studio

and identified common causes of false-positive results. We found

that the algorithm was able to classify the reports successfully with

high performance, similar to previous studies (18, 19). Our

findings indicate that mostly artifacts in the report are associated

with reduced algorithm performance. Furthermore, we

demonstrate that diagnostic effectiveness is independent of

quantitative variations in image quality when evaluated by CT

textural studies. Our study demonstrates the effectiveness of AI-

based report assessment for predicting clinical reports. With a

sensitivity of 91% and a specificity of 90%, the algorithm yielded

an overall accuracy of 81.5%. The K-fold cross-validation results in

our study indicated that the model performed well across all folds,

with an average F1 score of 0.85 and an average recall value of 0.89.

TABLE 2 Expected vs. Predicted Plot of Class 0.

Class 0 Expected
Predicted 372 (+Ve) 67 (-Ve)

21 (-Ve) 403 (+Ve)

FIGURE 3

Accuracy folds and F1scores.

TABLE 3 Accuracy, recall, and F1 scores of folds.

Folds Accuracy Recall F 1 score
1 0.82 0.85 0.82

2 0.89 0.93 0.89

3 0.85 0.87 0.84

4 0.87 0.90 0.86

5 0.88 0.91 087

Mean of all folds 0.86 0.89 0.85
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With an average of 0.85 F1 score and recall value of 0.89, we have

found a small number of false-positives that are directly attributable to

various apparatuses used for CT scans. These examples, however, do

not entirely explain why postsurgical patients perform worse. We

cannot conclusively determine the mechanisms underlying this

observation because neural networks’ mechanisms are not easily

examined; however, given these changes in diagnostic performance,

we hypothesized that the effectiveness of AI tools may also depend on

the characteristics of images. Future deep learning models for the

classification may complicate or prevent interpretation by

human readers.

We then investigated whether the false-negative results were

due to poor image quality. Poor image quality can impact

reporting, as such images are challenging for radiologists to

interpret. Regardless of image quality, classifying hundreds of

cases by urgency during daily practice can be difficult or even

impossible for human experts. Therefore, we hypothesized that

misclassification could similarly influence the performance of AI

systems. In particular, discrepancies in diagnostic performance

may result from subpar picture quality or from notable

variations in image quality; also, studies that were mistakenly

flagged may have had lower-quality images than studies that

were successfully flagged.

As examples, beam hardening artifacts (20) and excessive noise

(21) change the textural properties of CT data sets and the reports.

Since the reports of these artifacts are vague, their classification can

be difficult for the AI system.

Conclusions

In this study, we investigated the diagnostic precision of a

deep learning algorithm for classifying the non-contrast Brain

CT reports. Our results demonstrate that the proposed

algorithm achieves high accuracy, sensitivity, and specificity in

classifying non-contrast brain CT scan reports. The

algorithm’s performance was evaluated on a dataset of 861 CT

scan reports, which were annotated by expert radiologists to

establish a gold standard.

Our findings highlight the feasibility of automating critical case

identification, which could enhance workflow efficiency and

expedite patient management in high-volume settings. By

accurately distinguishing urgent from non-urgent cases, our

approach may contribute to reducing reporting delays and

optimizing resource allocation. Future studies should explore the

clinical impact of this classification system and its integration

into real-world radiology workflows.
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