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Nowadays, the genetic and biomolecular profile of neoplasms—related with their
biological behaviour—have become a key issue in oncology, as they influence
many aspects of both diagnosis and treatment. In the neuro-oncology field,
neuroradiological research has recently explored the potential of non-invasively
predicting the molecular phenotype of primary brain neoplasms, particularly
gliomas, based on magnetic resonance imaging (MRI), using both conventional
and advanced imaging techniques. Among these, diffusion-weighted imaging
(DWI), perfusion-weighted imaging (PWI), MR spectroscopy (MRS) and
susceptibility-weighted imaging (SWI) and have been used to explore various
aspects of glioma biology, including predicting treatment response and
understanding treatment-related changes during follow-up imaging. Recently,
intratumoral susceptibility signals (ITSSs)—visible on SWI—have been recognised
as an important new imaging tool in the evaluation of brain gliomas, as they
offer a fast and simple non-invasive window into their microenvironment. These
intratumoral hypointensities reflect critical pathological features such as
microhemorrhages, calcifications, necrosis and vascularization. Therefore, ITSSs
can provide neuroradiologists with more biological information for glioma
differential diagnosis, grading and subtype differentiation, providing significant
clinical support in prognosis assessment, therapeutic management and
treatment response evaluation. This review summarizes recent advances in ITSS
applications in glioma assessment, emphasizing both its potential and
limitations while referencing key studies in the field.
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1 Introduction

Genetic and biomolecular analyses of neoplasms have become increasingly critical in

the era of precision and personalized medicine, as they reflect biologic behaviour of

tumours. Consequently, biomolecular analyses have increasingly complemented

traditional pathological assessments for both diagnosis and management in oncology.

This principle is equally relevant in neuro-oncology, as reflected in the last editions
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(2016 and 2021) of World Health Organization (WHO)

classification of central nervous system (CNS) tumors, which have

progressively emphasized the role of genetic and biomolecular data

in brain gliomas evaluation. For example, the newest classification

of diffuse gliomas—the most common primary malignant brain

neoplasms—is primary based on specific genetic alterations,

such as isocitrate dehydrogenase (IDH) genes mutations and

1p/19q codeletion (1–3).

Currently, diagnosis and characterization of gliomas require

histopathological analysis of a sample obtained through surgical

biopsy. Therefore, neuroradiologists play a critical role in

identifying imaging features—primarily through magnetic

resonance imaging (MRI) with both conventional and advanced

sequences—that may suggest the underlying nature of a primary

brain tumor before biomolecular and pathological analysis (4, 5).

Over the last decades, Susceptibility-Weighted Imaging (SWI)

has emerged as improved substitute of conventional

T2*-weighted Gradient Echo (GRE) imaging and has become a

standard component of MRI protocols (6, 7). SWI exploits

magnetic susceptibility differences in brain tissues, enabling

visualization of paramagnetic and diamagnetic substances such as

calcium, blood products and iron.

This review explores the role of intratumoral susceptibility signal

(ITSS), an imaging parameter defined as low-signal-intensity

fine-linear or dot-like structures, with or without conglomeration,

visible within tumors on SWI. These ITSSs are variably associated

with intratumoral microhemorrhage, necrosis, vascular proliferation,

and calcifications, providing a unique insight into glioma biology (8).
2 The 2016 and 2021 WHO
classifications of CNS tumors: brief
simplified story of an epochal change

The 2016 and the latter 2021 WHO Classification of CNS tumors

marked a significant shift by integrating molecular profiling into the

characterization of gliomas. This updated framework moves beyond

traditional histopathological evaluation to incorporate genetic and

molecular alterations, providing a more precise and clinically

relevant understanding of gliomas (1–3). Nowadays the most

important molecular markers are isocitrate dehydrogenase (IDH)

mutation status, 1p/19q co-deletion, genetic alterations in the

promoter region of the telomerase reverse transcriptase (TERT)

gene, O6-Methylguanine-DNA Methyltransferase (MGMT)

promoter methylation status, Ki-67 nuclear protein proliferation

index and X-linked alpha thalassaemia intellectual disability

syndrome (ATRX) gene mutations. All these play pivotal roles in

defining glioma subtypes and their prognostic implications.

For example, gliomas are now classified into IDH-mutant or

IDH-wildtype categories, with IDH mutation generally associated

with better outcomes (9–11). Additionally, the identification

of 1p/19q co-deletion distinguishes oligodendrogliomas

from astrocytomas, further refining diagnosis and guiding

therapeutic decisions (12).

TERT promoter mutations are found predominantly in

IDH-wildtype glioblastomas and oligodendrogliomas with 1p/19q
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co-deletion, while they are rare in IDH-mutant astrocytomas,

highlighting their diagnostic relevance in differentiating

glioma subtypes (13–15).

MGMT is a DNA repair enzyme that removes alkyl groups

from the O6 position of guanine, a site commonly damaged by

alkylating chemotherapeutic agents like temozolomide (TMZ) so

gliomas with a methylated MGMT promoter, the reduced repair

capability increases the efficacy of alkylating agents, making

chemotherapy more effective (16–19).

Ki-67 is a nuclear protein assessed through immunohisto-

chemistry that is widely used as a marker of cellular proliferation

in cancer diagnostics, including in brain gliomas (20). It is expres-

sed during active phases of the cell cycle (G1, S, G2, and mitosis)

but is absent in quiescent cells (G0). A high Ki-67 proliferation

index indicates rapid cell division and aggressive tumor behavior,

which is common in high-grade gliomas like glioblastomas while

lower Ki-67 indices are typically associated with less aggressive,

low-grade gliomas (21).

Mutations or loss of ATRX function are commonly observed in

IDH-mutant gliomas and are associated with a specific alternative

lengthening of telomeres (ALT) mechanism. This allows tumor

cells to maintain telomere length independently of telomerase

activation, enabling continued cell division (22–24).
3 Technical consideration for SWI:
understanding the basis of ITSS

SWI, a high-resolution 3D GRE sequence, visualizes brain

tissues on the basis of differences in their magnetic susceptibility.

This susceptibility is an intrinsic magnetic property of substances

and determines their response to an external magnetic field:

substances with negative susceptibility, such as calcium (i.e.,

diamagnetic substances), oppose the applied field, while those with

positive susceptibility, such as blood, iron, and deoxyhemoglobin

(i.e., paramagnetic substances), enhance the field (6, 25).

SWI images are generated by separately acquiring magnitude

and phase images. The magnitude images, combined with a phase

mask derived from phase data, enhance the visibility of both

diamagnetic and paramagnetic substances, appearing as areas of

signal loss. An important consideration is how vendors present

phase information on SWI phase images. In a left-handed system

(i.e., Canon and Siemens) phase increases positively in a clockwise

direction. Conversely, in a right-handed system (i.e., the more

common configuration used on GE Healthcare, Philips and United

Neusoft), phase increases positively in a counterclockwise

direction-aligned with the way the fingers of your right-hand curl

when forming a fist. Thus, choice between left-handed and right-

handed systems affects the appearance of the resulting images. In

clinical practice phase data are particularly useful for differentiating

between calcium and blood: in calcifications, phase images exhibit

low contrast in a left-handed system, while blood products show

low contrast in a right-handed system. However, in routine

practice, distinguishing microbleeds from microcalcifications can

be challenging and sometimes inconclusive, particularly in larger
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or more geometrically complex lesions, which may produce

intricate signal patterns on phase images (6, 25).

In glioma microenvironment (Figure 1), ITSSs correspond to

both microcalcifications and microhemorrhages or necrosis

(visible as dot-like hypointensities), as well as to aberrant

vascular proliferation (visible as fine-linear hypointensities) (8).

High-grade gliomas (HGGs) exhibit more prominent ITSSs

due to their aggressive nature. These tumors invade fragile and

abnormal blood vessels, leading to microbleeds, as well as in

regions of micro- and macro-necrosis (26).

While rare in other glioma subtypes, intratumoral calcifications,

better detected on SWI compared to GRE, are more common in IDH

mutant, 1p/19q codeleted astrocytomas (oligodendrogliomas) (27,

28). In some cases, phase images can help distinguish between

calcifications and microbleeds, offering a valid tool in

differentiation of this subtype of glioma (25). Other potential

causes of intratumoral calcification include products of previous

intratumoral bleeding or treatment-related changes (29).

The first attempt to grade ITSS in gliomas was proposed by

Park et al. which proposed a semi-quantitative approach

consisting of counting ITSSs on the slice where they are most

conspicuous: grade 0, no ITSS; grade 1, 1–5 ITSSs; grade 2, 6–10

ITSSs; and grade 3, ≥11 ITSSs (Table 1) (8).
4 The role of ITSS in differential
diagnosis, grading, and molecular
profiling of brain gliomas

Several studies have highlighted the potential of SWI as an

accurate tool for differentiating solitary expansive brain lesions

(30, 31). Particularly, HGGs exhibit a higher grade of ITSSs

compared to primary CNS lymphoma (PCNSL) (30, 32, 33) and

other non-neoplastic lesions (e.g., brain abscesses or tumefactive

demyelinating lesions). Metastases demonstrate intermediate ITSSs

grades, lower than HGGs but higher than those of PCNSL (34–36).

Focusing on gliomas, the number and patterns of ITSSs vary

according to tumor grade. HGGs exhibit more prominent

vascular structures (fine-linear ITSSs, often with a conglomerated

pattern), microhemorrhages (dot-like structures) and areas of

necrosis, compared to low-grade gliomas (LGGs), reflecting the

more aggressive biological behaviour of these tumors (37–40).

Hori et al. showed that the ratio between total ITSSs volume and

tumor volume differentiates HGGs (grades 3 and 4) from LGGs

(grades 1 and 2) (41). Yang et al. applied this approach to

IDH-mutant astrocytomas, finding a greater number of ITSSs in

grade 4 IDH-mutant astrocytomas compared to grade 2 and/or 3

(42). Bhattacharjee et al. attempt to discriminate between

vascular and micro hemorrhagic components of ITSSs using R2*

values. They found that the ITSS vasculature volume (IVV) could

significantly differentiate not only HGGs from LGGs but also

distinguish between different degrees of malignancy (grades 2 vs.

3, 2 vs. 4, and 3 vs. 4) (43). Thus, in adult patients, the quantity

and heterogeneity of ITSSs increase with tumor grade, allowing

differentiation between LGGs (with minimal dot-like and sparse

linear ITSS) and HGGs (characterized by abundant ITSSs, often
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with a conglomerated pattern). However, this relationship is less

consistent in the pediatric population. Gaudino et al.

demonstrated that the absence of ITSSs often correlated with

low-grade tumors in children. Conversely, the presence of ITSSs

was not always indicative of high-grade tumors due to the

extreme histological heterogeneity of pediatric brain tumors (44).

Kong et al. demonstrated that ITSS levels are significantly higher

in HGGs compared to LGGs. Furthermore, gliomas with IDH1

mutations exhibit lower ITSS grades than their IDH wild-type

counterparts. Additionally, MGMT-methylated gliomas display

lower ITSS grades than MGMT-unmethylated ones. However, no

significant differences in ITSS grade were observed based on

1p/19q co-deletion status in the same study (45). Moreover,

higher ITSS levels correlate with an elevated Ki-67 labeling index

(Ki-67 LI) and ATRX gene wild-type status, both of which are

markers of poorer prognosis in IDH-mutant astrocytomas (46).
4.1 Therapeutic management and follow-up
of brain gliomas: assessing the feasibility
of ITSS

As mentioned earlier, ITSS correlates with several biomolecular

markers, providing a valuable prognostic imaging tool in

glioma evaluation.

Highly vascularised gliomas are more responsive to

antiangiogenic drugs compared to those with less vascularization

or those that are necrotic (47). Thus, high levels of ITSSs—

reflecting tumor aggressiveness and vascularity—may help in

assessing the potential response to chemotherapy or radiotherapy

in gliomas, in combination with other advanced MRI techniques

such as DWI and PWI (48).

Lupo et al. demonstrated that the percentage of hypointense

signals within contrast-enhancing lesions on susceptibility-

weighted imaging can predict response to a treatment regimen

combining anti-angiogenic therapy (enzastaurin), cytotoxic

agents (temozolamide), and radiation therapy in gliomas (49).

Additionally, evaluating ITSS during follow-up imaging may

provide valuable insights into therapeutic effects of chemotherapy

and radiotherapy. A reduction in ITSS can signal a positive

response, while an increase in ITSS may indicate tumor recurrence

or progression, as well as treatment-related changes such as

necrosis and calcifications. Furthermore, ITSS evaluation helps

monitor vascular structural changes in glioblastomas, tracking the

effects of anti-angiogenic therapy, cytotoxic chemotherapy, and

radiation therapy in vivo, making it an effective tool for

neuroradiological follow-up, as indicated by Grabner et al. (50).

However, Martucci et al. reported that, while the angiogenic

profile of primary glioblastomas, measured using perfusion

weighted imaging, may serve as an MRI biomarker for

regorafenib response in recurrent glioblastomas but no significant

correlation was observed between ITSS grade and regorafenib

response was reported (51).

Recently, even neurosurgical research has explored the

potential role of ITSS in planning brain tumor biopsies.

Specifically, a significant correlation has been observed between
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FIGURE 1

Example of patients with brain glioma presenting with different ITSS grades but similar findings on conventional imaging. First column: axial
T2-weighted images; second column: axial T1-weighted images acquired after i.v. injection of gadolinium-based contrast medium; third column:
axial 3D susceptibility-weighted images (SWI); last column: a magnified view of the area of interest on SWI. Row (a) parieto-temporal glioma
infiltrating the left supramarginal and angular gyri in a 47 y.o. right-handed male showing no relevant findings on SWI (ITSS grade 0); row (b) left
frontal glioma infiltrating the anterior cingulate gyrus in a 36 y.o. male with a cluster of (<5) tiny hypointense black dots in SWI (ITSS grade 1); row
(c) right basal ganglia and insular glioma in a 55 y.o. female showing multiple (<10) millimetric intralesional hypointense spots on SWI (ITSS
grade 2); row (d) right parietal glioma glioma in a 72 y.o. male showing diffuse hypointense subcortical deposits on SWI (ITSS grade 3).
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TABLE 1 ITSS grading scale (0–3) according to Park et al. (8).

ITSS
grade

Number of dot-like
and/or fine linear ITSS

Tumor
microenvironnement

0 None

1 1–5

2 6–10

3 ≥11

In the tumor microenvironment column black dots-like elements correspond to both
microcalcifications and microhemorrhages or necrosis while fine black lines to aberrant

vascular proliferation. All tumor microenvironment drawings included in this table were

hand-drawn by Dr. Prof. Cesare Gagliardo.

Cataldi et al. 10.3389/fradi.2025.1546069
high ITSS grades (particularly grade 3) and the risk of significant

hemorrhage following stereotactic biopsy (STB) (52, 53).

Okamoto et al. suggested that ITSS grade (in combination with

tumor volume) influences intraoperative blood loss during the

surgical resection of pediatric posterior-fossa tumors (54). These

findings support the routine use of SWI in pre-biopsy planning to

perform safer biopsy techniques (open or endoscopic) and more

accurate hemostasis in tumors with higher ITSS grades.

Additionally, when multiple candidate biopsy sites are available,

prioritizing areas with lower ITSS grades may offer a safer approach.
4.2 Emerging SWI-based MRI techniques
for ITSS quantification

Nowadays, ITSS has become a well-recognized biomarker in

neuro-oncology, playing a crucial role for glioma evaluation.
Frontiers in Radiology 05
However, several challenges remain in its application in routine

clinical practice, primarily the lack of a standardized

quantification method.

The semi-quantitative approach introduced by Park et al. was

the first attempt to standardize ITSS evaluation. This method

involves manually counting ITSSs on the slice where they are

most conspicuous (8). While this approach is straightforward

and easy to use, it has notable limitations, including a lack of

comprehensive visualization of the tumor and significant

operator dependency, which implicates subjectivity to

the measurements.

To include comprehensive evaluation of the tumor, Hori et al.

proposed a grading system based on the ratio of total SWI

hypointense volume to overall tumor volume (41).

Radbruch et al. aimed to reduce operator dependence by

proposing a percentage-wise quantification method for ITSS

using automated post-processing techniques. This method has

proven particularly valuable in differentiating between specific

types of brain metastases (55, 56).

Moreover, Quantitative Susceptibility Mapping (QSM) has

emerged as a promising tool to overcome the limitations

of semi-quantitative methods. By providing quantitative

measures of magnetic susceptibility, QSM eliminates operator

dependency and can differentiate between distinct sources

of ITSS, such as hemorrhage, calcification, and other

susceptibility effects (25, 55, 57, 58).

As mentioned earlier, Bhattacharjee et al. proposed a

quantitative approach that calculates the ITSS vasculature volume

(IVV) within tumors. This technique leverages R2* values to

filter out hemorrhagic contributions, offering a more precise

evaluation of intratumoral microvasculature (43).

Recently, the fractal dimension (FD), introduced by Di Ieva

et al., represents another innovative parameter derived from

computational fractal-based analyses. Initially developed on a 7 T

MRI scanner, this technique provides detailed reconstructions of

the geometric architecture of SWI hypointensities. The FD offers

an “architectural fingerprint” of gliomas, useful for both

diagnostic and follow-up purposes (59, 60). Indeed, higher FD

values correlate with higher glioma grades, reflecting increased

complexity and vascular density. Furthermore, FD may be used

to assess therapeutic effects, particularly in antiangiogenic

therapies, by indicating favorable effects (such as decreased

intratumoral microvasculature) or unfavorable results (such as

increased microvasculature) (60).
4.3 Limitations, challenges, and future
direction

ITSS patterns in gliomas necessitate careful interpretation, as

the low signal intensity, particularly in dot-shaped lesions, may

be attributable to microhemorrhages or calcifications on

conventional magnitude images.

SWI parameters, including field strength and sequence settings,

directly influence ITSS visibility as magnetic field strength

increases, the number of identified ITSSs consequently rises.
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Therefore, it is recommended to use the same MRI system for

follow-up studies, particularly for the same patients, to ensure

consistency and reliability of results.

Protocol standardization is crucial, and the development of

standardized or automated methods is necessary to improve the

reproducibility of ITSS assessment. In this regard, artificial

intelligence (AI)-based approaches, particularly deep learning

algorithms for image acquisition, are being integrated into nearly

all new MRI systems, helping reduce acquisition times and

improve image quality (61, 62).

Longitudinal multicenter studies conducted with equipment from

different vendors but with homogeneous protocols are essential to

validate ITSS as a biomarker for glioma progression and treatment

response. Advances in imaging technologies, such as ultra-high-field

MRI, may further enhance ITSS detection. Although, on the other

hand, the possibility of identifying ITSS even with scanners

operating at 1.5 T, routinely used in the clinical setting outside of

research and academic scenarios, makes this topic worthy of further

research in differential diagnosis, grading, and molecular profiling

of brain gliomas. Moreover, the implementation of ITSS paves the

way for the possibility of a non-contrast brain tumor imaging

protocol for patients who either have contraindications to contrast

agents or are unable to tolerate bolus injections (8).

Additionally, integrating ITSS analysis with molecular and

genetic profiling will significantly improve personalized

management strategies for glioma patients especially if we

consider modern and emerging new theranostics approaches like

for instance transcranial focused ultrasound that offers non-

invasive way to target tumors and enhancing drug delivery by

modulating the blood-brain barrier (63).

Furthermore, nuclear medicine, combined with the evaluation of

Intra-Tumoral Susceptibility Signals (ITSS), could significantly

advance the diagnosis and treatment of brain gliomas. Nuclear

imaging modalities such as positron emission tomography (PET)

and single-photon emission computed tomography (SPECT) can

provide functional and metabolic insights into tumor behavior,

while ITSS analysis offers detailed structural and vascular

information. Integrating these approaches could enhance tumor

characterization, enabling precise localization, grading, and

differentiation of gliomas. Furthermore, radiotheranostics could

leverage ITSS data to optimize targeted delivery of therapeutic

isotopes, maximizing treatment efficacy and minimizing damage

to healthy tissue. This synergy holds promise for a more

personalized and effective approach to managing brain gliomas (64).

Finally, calling into question a very hot topic in recent years,

radiomics and artificial intelligence (AI) could revolutionize

tumor diagnosis by enhancing the evaluation of Intra-Tumoral

Susceptibility Signals (ITSS). Radiomics extracts quantitative

features from medical images, such as geometrical features,

textures, and intensities, that may not be visible to the human

eye, enabling a deeper analysis of ITSS characteristics like

different vascular abnormalities or iron deposition. Machine

learning as well as deep learning algorithms can process this data

to identify complex patterns, classify tumor subtypes, and predict

aggressiveness or response to treatment with high accuracy.

Together, radiomics and AI offer a powerful, non-invasive
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approach to improve diagnostic precision, facilitate personalized

treatment planning, and advance our understanding of

tumor heterogeneity (65–67).
5 Conclusion

ITSS can be seamlessly integrated into standard MRI protocols

for both pre- and post-treatment evaluation of gliomas, providing a

distinctive insight into tumor biology that correlates with key

pathological features and clinical outcomes. It serves as a

valuable biomarker, complementing findings from conventional

and advanced neuroimaging techniques.

ITSS supports glioma differential diagnosis, grading, subtype

differentiation, and treatment management, thereby contributing

to precision and personalized medicine. Although challenges

remain—particularly related to technical limitations and the lack

of a unified model for ITSSs quantification—ongoing

advancements in imaging technology and computational analysis,

as well as longitudinal studies in this field, are expected to fully

unlock the potential of ITSS in glioma management. Although

the sensitivity in identifying ITSS increases with magnetic field

intensity, the possibility of identifying such findings even with

MRI scanners routinely used in clinical settings operating at

1.5 T, makes this imaging biomarker potentially increasingly

important during neuroradiological evaluations and it is hoped

that future studies on larger samples may further define the role

of ITSS in the differential diagnosis, grading, and molecular

profiling of brain gliomas.
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