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Background: Previous studies have reported that quantum noise inherently

present in CT images hinders the generation of CT-based ventilation image

(CTVI), while quantum noise reduction approaches that do not affect CTVI

have not yet been reported.

Aims: The purpose of this study was to evaluate the impact of noise reduction

preprocessing on the accuracy and robustness of CTVI in relation to quantum

noise present in CT images.

Methods and material: To reproduce the quantum noise, Gaussian noise (SD:

30, 80, 150 HU) was added to each inhalation and exhalation CT image.

CTVIref and CTVInoise was generated from CTref and CTnoise. A median filter

and the noise reduction by the CNN were also applied to the CT image,

which contained the quantum noise, and CTVImed and CTVIcnn was created in

the same manner as CTVIref. We evaluated whether the regions classified as

high, middle, or low in CTVIref were accurately represented as high, middle, or

low in CTVInoise, CTVImed and CTVIcnn. Additionally, to evaluate the ventilation

function of each voxel, we compared two-dimensional histograms of CTVIref,

CTVInoise, CTVImed and CTVIcnn.

Statistical analysis used: Cohen’s kappa coefficient and Spearman’s correlation

were used to assess the agreement between CTVIref and each of the following:

CTVInoise, CTVImed, and CTVIcnn.

Results: CTVIcnn significantly improved categorical consistency and voxel-level

correlation of CTVI, particularly under high-noise conditions (150 HU),

outperforming both CTVInoise and CTVImed.

Conclusions: CNN-based denoising effectively improved the accuracy and

robustness of CTVI under quantum noise.
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1 Introduction

A variety of imaging modalities exist to assess pulmonary

ventilation. Examples include computed tomography (CT), dual-

energy CT, magnetic resonance imaging, single-photon emission

computed tomography (SPECT), and positron emission

tomography (PET). These techniques can accurately assess the

three-dimensional (3D) distribution of ventilatory function in a

patient’s lungs (1–3). In radiation therapy, treatment plans that

utilize routine CT imaging and deformable image registration

(DIR) to generate CT-based ventilation images (CTVIs) have

demonstrated the ability to avoid areas of high ventilatory

function within the lungs (4). The approach aims to reduce the

dose administered to regions with elevated ventilatory function,

creating a more targeted and personalized treatment strategy. This

approach not only enhances the accuracy of predicting adverse

lung events but also contributes to a more effective reduction in

the occurrence of such events during treatment (5, 6). CT scans

are used as part of routine radiation treatment procedures for

most lung cancer patients and can provide additional functional

information about the patient without requiring additional

functional imaging equipment or methods. Treatment planning

with CTVI is a practical, high-resolution, cost-effective, and time-

saving approach that can be performed based on four-dimensional

(4D) or expiratory and inspiratory CT images (4–9).

Studies are currently underway to validate the accuracy of

CTVI. Radionuclide imaging is widely used to assess pulmonary

function and is considered the standard of choice for assessing

other functional imaging modalities (7, 8). Recent studies have

demonstrated that CT-based and SPECT ventilatory function

imaging have good spatial measurement accuracy and correlation

(9, 10). In addition, clinical trials demonstrate that radiotherapy

using CTVI significantly reduces dose to ventilated lung regions

(NCT02528942, NCT02308709, NCT02843568) (11).

Accurate assessment of pulmonary ventilation function is

crucial for using CTVI in treatment planning. Small changes in

DIR parameters have been reported to cause large relative

changes in the CTVI (12). The study noted that DIR-based

images may not show accurate ventilatory function even when

the spatial accuracy of the deformations is acceptable using target

registration error (TRE). The quantum noise in CT images does

not significantly affect the accuracy of DIR but may hinder the

generation of accurate CTVI (13). A nonrigid alveoli phantom

was developed to evaluate the CTVI, based on the assumption

that an accuracy validation phantom is required to investigate

the causes of these obstacles and improve CTVI accuracy (14).

However, various problems related to CTVI methods have not

yet been solved. It has been demonstrated that there is a

significant difference in the CTVI produced via DIR when

different DIR parameters are used, even after meeting the

tolerance for DIR accuracy with this phantom (15).

CT images inevitably contain quantum noise, owing to the

nature of x-ray images. It is desirable to use high-resolution CT

images to create the CTVI. CTVI is used for both treatment

planning and tracking pulmonary ventilation function using

cone-beam CT acquired during treatment. Therefore, the

accuracy of the CTVI must be independent of the CT image

quality. To achieve this, the image quality must be improved

using noise reduction and image correction techniques.

Consequently, it could improve the accuracy of treatment

planning and patient outcomes. Therefore, CTVI plays a crucial

role in radiotherapy treatment planning, and it is desirable to

improve its reliability and robustness through various methods.

In recent years, in addition to conventional filtering techniques

such as median and Gaussian filters (16), image denoising methods

using artificial intelligence (AI) have also been increasingly utilized in

the field of medical imaging. In particular, deep learning methods

based on convolutional neural networks (CNNs) have attracted

attention as they can suppress noise while preserving structural

details (17–19). Such AI-based preprocessing techniques are being

explored as potential means to enhance the robustness and

reproducibility of CT-based functional imaging, including CTVI.

In this study, we used a nonrigid alveoli phantom with

ventilation functionality, which we developed as the world’s first

quality control tool for CTVI. We investigated the effect of

preprocessing using both a conventional median filter and a deep

learning-based denoising model on the accuracy and robustness

of CTVIs. The purpose of this study is to evaluate how

preprocessing methods, including AI-based denoising, affect the

quality of CTVI, and to clarify their potential to improve

robustness and accuracy in clinical applications.

2 Subjects and methods

2.1 CT datasets

The expiratory and inspiratory CT images were acquired using a

16-row detector CT scanner (Aquilion LB, Toshiba Medical Systems,

Otawara, Japan). Image resolution was set to 0.78 × 0.78 × 3 mm, and

a helical scan protocol was used. The scan parameters were set to

120 kVp, 300 mA, rotation time of 0.5 s, and slice thickness of

3.0 mm. The nonrigid alveoli phantom comprised an acrylic cylinder

filled with polyurethane foam simulating alveoli, a polyurethane

membrane simulating the diaphragm, a metal rod with piston

function simulating respiratory muscles, and a polyurethane tube

simulating the airway (14). Various motion patterns can be

programmed to simulate breathing patterns of various frequencies.

Additionally, airflow can be controlled by pressure changes in the

vessel owing to diaphragm movement. The phantom was placed

horizontally and adjusted to align with the longitudinal axis of the

CT system. The respiratory cycle of the phantom was set to 10 s. The

normal respiratory cycle is approximately 4 s; however, to focus only

on quantum noise, the respiratory cycle of the phantom was set at

which the motion artifact was as small as possible.

2.2 Simulation of quantum noise and noise
reduction by the median filter

Additional noise was applied to the CT images to simulate

the quantum noise in a simplified manner. The amplitude of
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quantum noise can be mathematically approximated by a

Gaussian distribution (20). In this study, a Python script was

developed to add noise with varying standard deviation [0–150

Hounsfield units (HU)] based on a normal distribution.

Quantum noise was added using this script to a set of three

pairs of expiratory and inspiratory images (30, 80, and

150 HU) to simulate the quantum noise in the CT images, as

shown in Figure 1. We developed a script to calculate

the median filter for the CT images with simulated quantum

noise and fit it to all simulated noise. The filter used a kernel

size of 3 × 3.

2.3 Noise reduction by the deep learning-
based denoising model

We constructed a denoising model based on a two-dimensional

U-Net architecture (24) (Figure 2), with a network depth of 3 and

an initial number of filters set to 32. The input to the model was a

noisy image, and the output was the corresponding denoised

image. To enable fair comparison with conventional filtering

methods, no normalization was applied to the pixel values. Each

image had a resolution of 512 × 512 pixels, and 131 slices were

used per subject. For training, 14 types of Gaussian noise with

standard deviations of 10, 20, 50, 60, 70, 100, 110, 120, 130, 140,

170, 180, 190, and 200 HU were added to clean images. For

validation, noise levels of 40, 90, and 160 HU were used, and for

testing, levels of 30, 80, and 150 HU were selected. The model

was trained using the Adam optimizer with a batch size of 8

for up to 500 epochs. The L1 norm loss is defined as shown

in Equation 1:

l(x, y) ¼
1

N

X

N

n¼1

jxn � ynj, (1)

where xn and yn denote the predicted and ground-truth pixel

values, respectively, and N is the total number of pixels. For the

validation dataset, the clean images were used as the ground

truth, and the model yielding the lowest loss between the output

and the clean images was selected for final testing. All training

and evaluation were performed on a workstation equipped with

an Intel Core i9-9920X 3.5 GHz twelve-core processor, 32 GB

RAM, and an NVIDIA GeForce RTX 2080 Ti GPU running

Ubuntu 22.04.4 LTS with NVIDIA Driver 535.183.01, CUDA

12.1, and cuDNN 8.9.7.29-1.

FIGURE 1

Comparison of exhale CT images simulating different noise levels.

FIGURE 2

The denoising model based on a two-dimensional U-Net architecture.
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2.4 Deformable image registration

In this study, the inhalation image was deformed to match the

reference expiration image. Deformations were performed on a set

of ten pairs of expiratory and inspiratory images: the reference

image CTref without additional noise, CTnoise with noise (30, 80,

and 150 HU), and CTmed and CTcnn, which are denoised versions

of CTnoise using a median filter and the CNN model, respectively.

Deformable image registration was performed using NiftyReg

(version 1.4.2), a free and open-source software package for non-

rigid image registration. NiftyReg uses a B-spline-based free-form

deformation algorithm, which estimates the transformation

between moving and reference images by optimizing a normalized

mutual information while applying smoothness constraints. The

DIR parameters used for these deformations were the optimal

parameters reported in a previous study (15): “bending-energy

penalty term,” introduced in the cost function to smooth

deformations; “max number of iterations,” which affects the

computation time; “number of levels to perform,” which refers to

the number of optimization calculations; and “Jacobian-based

penalty term,” which penalizes large local volume changes and

prevents folding (21). The deformation was performed in four

steps, following the deformation strategy previously reported as

optimal in earlier studies (15). Each step was visually checked, and

if the deformation was over-deformed, the deformation step was

omitted. The deformation vector field was obtained at each step. It

was input at the next step and integrated for each deformation.

The CT scans in this study were performed in one imaging

session and the phantom outline was not moving; therefore, no

rigid registration was performed before the deformation process.

2.5 CT-based ventilation imaging

The sum of the deformation vector field acquired for each of

the seven paired sets was converted to a Jacobian determinant to

obtain the respective CTVIref, CTVInoise (30, 80, and 150 HU),

and CTVImed (30, 80, and 150 HU), and CTVIcnn (30, 80, and

150 HU). The DIR-based Jacobian metric was developed by

Reinhardt et al. and is a measure of spatial volume change; it

ensures that local volume changes do not alter the signal

throughout the volume (22). The Jacobian determinant was

calculated for each voxel in the phantom using (Equation 2).

Jacobian determinant(x, y, z)

¼

1þ
@ux(x, y, z)

@x

@ux(x, y, z)

@y

@ux(x, y, z)

@z

@uy(x, y, z)

@x
1þ

@uy(x, y, z)

@y

@uy(x, y, z)

@z

@uz(x, y, z)

@x
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(2)

where ux, uy, and uz are the x, y, and z components of u,

respectively. Jacobian determinant measures the expansion and

contraction at position (x, y, z) in the image. When Jacobian

determinant is greater than one, local tissue expansion is present,

and when Jacobian determinant is less than one, local tissue

contraction is present. Jacobian determinant is a relative measure

of ventilatory functionality on a voxel-by-voxel basis within

the lung.

2.6 Evaluation of spatial deformation
accuracy by DIR

Twenty-five landmarks were manually placed by an

experienced medical physicist in a volume near the pulmonary

vessels and bronchi in a nonrigid alveoli phantom (Figure 3).

The target displacement error, that is, the displacement of a

landmark due to respiratory motion, was measured as the

Euclidean distance between the exhalation and inhalation images.

The Euclidean distance was calculated using the formula shown

in Equation 3:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(xr � xt)
2 þ (yr � yt)

2 þ (zr � zt)
2

q

, (3)

where (xr, yr, zr) and (xt, yt, zt) are the landmark coordinates of

the reference and target images, respectively. To evaluate the spatial

accuracy of DIR with added noise, we used the Euclidean distance

between the corresponding landmarks defined in the expiratory

and deformed inspiratory images to calculate the Euclidean

FIGURE 3

Twenty-five landmark setups placed in a volume near the pulmonary

vessels and bronchi in a nonrigid alveoli phantom.
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distance, which is denoted as TRE. TRE represents the spatial 3D

distance discrepancy. When the deformed image perfectly

matches the reference expiratory image (Euclidean distance = 0),

TRE is equal to zero. Relative spatial accuracy was evaluated and

compared with the spatial accuracy of the reference noiseless DIR.

2.7 Global consistency analysis using kappa
statistics

To evaluate the clinical consistency of CTVI for treatment

planning, each voxel in the CTVI was categorized into three

regions—high, middle, and low ventilation—by evenly dividing the

range of ventilation values in CTVIref. This categorization reflects

a typical clinical scenario where high-ventilation regions are

avoided during irradiation. The same classification thresholds were

applied to all other CTVIs, including CTVInoise (30, 80, and

150 HU), CTVImed (30, 80, and 150 HU), and CTVIcnn (30,

80, and 150 HU). Although the absolute ventilation values

may differ, consistency was defined as the regions categorized

as high, middle, or low in CTVIref being similarly categorized

in the compared CTVIs. To quantify consistency, the

proportion of voxels in each test CTVI that retained the same

categorical label (high, middle, or low) as in CTVIref was

calculated. The degree of agreement was assessed using

Cohen’s kappa coefficient.

2.8 Voxel-based local evaluation using 2D
histograms and spearman correlation

To evaluate the consistency of local ventilation function in

each voxel, a two-dimensional (2D) histogram was constructed

by plotting the Jacobian determinant value of each voxel in

CTVIref against the corresponding value in CTVInoise (30, 80,

and 150 HU). Similarly, 2D histograms were created for

CTVImed (30, 80, and 150 HU) and CTVIcnn (30, 80, and

150 HU), which were generated by denoising CTnoise using a

median filter and the CNN model, respectively. All histograms

were generated based on voxel-wise spatial correspondence

with CTVIref, enabling direct comparison of local ventilation

values. Spearman’s rank correlation coefficients were

calculated from the 2D histograms to evaluate the consistency

between each CTVI and the reference.

3 Results

3.1 Evaluation of DIR spatial deformation
accuracy

Figure 4 presents a comparison of TRE values, indicating the

spatial accuracy of DIR between CT images containing noise and

CT image pairs with noise removed using the median filter and

CNN-based denoising. The average displacement between the

expiratory and inspiratory CT images was 14.59 ± 6.42 mm. The

mean TRE values of the 25 landmarks were 1.39 ± 0.89 mm

(maximum 2.95 mm) for CTref. The mean TRE values of the 25

landmarks were 1.22 ± 0.65 mm (maximum 2.54 mm),

0.71 ± 0.45 mm (maximum 1.89 mm), and 1.10 ± 0.83 mm

(maximum 2.71 mm) for CTnoise (30, 80, and 150 HU). The

mean TRE values for CTmed were 1.78 ± 0.71 mm (maximum

2.93 mm), 1.77 ± 0.78 mm (maximum 2.94 mm), and

1.42 ± 0.65 mm (maximum 2.80 mm) at 30, 80, and 150 HU,

respectively. The mean TRE values for CTcnn were

1.34 ± 0.00 mm (maximum 2.55 mm), 1.28 ± 0.00 mm (maximum

2.82 mm), and 1.22 ± 0.00 mm (maximum 2.45 mm) at 30, 80,

and 150 HU, respectively. TREs for all conditions, including

noisy and denoised images, remained within 3 mm. When

comparing mean TRE values between CTnoise and denoised

FIGURE 4

Comparison of TRE values was performed for cTnoise, cTmed, cTcnn, and cTref at different noise levels (30, 80, and 150 HU), where cTref represents the

DIR results based on CT images without added quantum noise. In this context, movement indicates the displacement caused by respiratory motion

between the expiratory and inspiratory phases.
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images at each noise level, TREs were higher in CTmed, while CTcnn

yielded values similar to or slightly higher than CTnoise.

3.2 Evaluation of CTVIs

3.2.1 Visual assessment of CTVIs
Figure 5 shows a visual comparison of CTVIs, including

CTVIref, CTVInoise, CTVImed, and CTVIcnn at different noise

levels. The visual assessment reveals that, compared to

CTVIref, the location of high-functioning regions near the

diaphragm remains consistent. However, additional high-

functioning regions not observed in CTVIref are present, and

the resolution of ventilatory function distribution is reduced.

The visual assessment indicates that CTVImed (30 HU) is

closer to CTVIref than the corresponding CTVInoise shown in

Figure 5, suggesting that noise reduction improves the visual

accuracy of CTVI under lower noise conditions. CTVIcnn

appear visually closer to CTVIref than CTVInoise at all noise

levels, indicating that noise reduction improves the visual

accuracy of CTVI. Among the three noise levels, CTVIcnn at

150 HU shows a particularly notable improvement over

CTVInoise, suggesting that CNN-based denoising enhances the

visualization of ventilation distribution under high

noise conditions.

3.2.2 Global consistency analysis using kappa

statistics
To evaluate the clinical utility of CTVI for treatment planning,

ventilation values in CTVIref were evenly divided into three regions:

high, middle, and low ventilation. The same categorization was

applied to CTVInoise, CTVImed and CTVIcnn at each noise level.

Consistency was defined as regions categorized as high, middle, or

low in CTVIref being similarly categorized in CTVInoise, CTVImed

and CTVIcnn, regardless of absolute ventilation values. If the

categorizations were perfectly consistent, the percentage of voxels

correctly matching high, middle, and low regions would be 33.3%

for each category. Figure 6 summarizes the percentage of voxels

that correctly matched high, middle, and low regions between

CTVIref and CTVInoise. For example, at 30 HU noise, only 11.32%,

12.64%, and 12.22% of voxels in the high, middle, and low regions

of CTVIref were correctly identified in CTVInoise, respectively, with

notable mismatches such as 14.36% of voxels categorized as low in

FIGURE 5

CTVInoise, CTVImed and CTVIcnn at different noise levels. High-functioning regions are shown in red, while regions with decreased lung ventilation are

displayed in blue.
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CTVIref being misclassified as high in CTVInoise. In contrast,

CTVImed at 30 HU showed substantially improved agreement,

with 21.26%, 22.81%, and 23.18% correctly matching the high,

middle, and low regions of CTVIref, respectively. Additionally, at

80 HU noise, CTVImed also demonstrated an improvement in

consistency compared to CTVInoise. The percentages of voxels

correctly categorized as high, middle, and low in CTVImed were

21.24%, 20.02%, and 22.34%, respectively, indicating a better

agreement with CTVIref compared to CTVInoise, where the

corresponding percentages were only 12.15%, 12.89%, and 12.07%.

This result highlights that the noise reduction processing improved

clinical consistency not only at 30 HU but also at 80 HU noise

levels. In addition, CTVIcnn showed consistent improvement across

all noise levels. Notably, at 150 HU, the consistency between

CTVIcnn and CTVIref was significantly higher than that of

CTVInoise. The percentage of correctly matched voxels was 26.23%,

28.91%, and 26.85% for high, middle, and low ventilation regions,

respectively, compared to only 12.03%, 13.25%, and 12.67% for

CTVInoise. These results highlight that CNN-based denoising

particularly improves clinical consistency under high-noise

conditions. Cohen’s kappa coefficients further quantified the

agreement between CTVIref and both CTVInoise and CTVImed.

Table 1 presents these results, showing that kappa values for

CTVInoise were 0.043, 0.057, and 0.069 at noise levels of 30 HU,

80 HU, and 150 HU, respectively. For CTVImed, the kappa values

were significantly higher at lower noise levels (0.51 at 30 HU and

FIGURE 6

Proportion of categorized voxels across high, middle, and low ventilation regions for CTVInoise, CTVImed and CTVIcnn compared to CTVIref. The

horizontal axis represents CTVIref, while the vertical axis shows the three ventilation categories (high, middle, and low) for CTVInoise, CTVImed and

CTVIcnn. Darker colors indicate higher agreement in classification.

TABLE 1 Cohen’s kappa coefficients of CTVIs for CTVIref.

CTVI
methods

30 HU
(P value)

80 HU
(P value)

150 HU
(P value)

CTVInoise 0.043 (<.0001) 0.057 (<.0001) 0.069 (<.0001)

CTVImed 0.51 (<.0001) 0.45 (<.0001) 0.083 (<.0001)

CTVIcnn 0.60(<.0001) 0.51 (<.0001) 0.73 (<.0001)
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0.45 at 80 HU), but the consistency diminished at 150 HU (0.083).

CTVIcnn exhibited consistently high kappa values across all noise

levels, with 0.60 at 30 HU, 0.51 at 80 HU, and 0.73 at 150 HU,

indicating superior categorical agreement with CTVIref compared to

both CTVInoise and CTVImed. These results support the

effectiveness of CNN-based denoising in preserving clinically

relevant ventilation patterns, even under high noise conditions.

3.2.3 Voxel-based local evaluation using 2D
histograms and spearman correlation

To assess the consistency of local ventilation function, a voxel-by-

voxel comparison between CTVIref and both CTVInoise, CTVImed and

CTVIcnn was conducted using 2D histograms (Figure 7). These

histograms demonstrate that the distribution improves as it

approaches y = x, indicating greater consistency with CTVIref. At a

noise level of 30 HU, the histogram of CTVImed shows a marked

improvement in consistency compared to CTVInoise, as the

distribution is more concentrated along y = x. However, at noise

levels of 80 and 150 HU, no significant improvement was observed.

In contrast, CTVIcnn demonstrated a different trend: while there was

no notable improvement in the 2D histograms at 30 and 80 HU, the

histogram at 150 HU showed greater alignment with the y = x line,

suggesting improved voxel-level consistency. Table 2 presents the

Spearman correlation coefficients for these comparisons. The results

show that CTVImed exhibits better correlation with CTVIref than

CTVInoise at lower noise levels, but the correlation decreases as the

FIGURE 7

Two-dimensional histograms of CTVInoise, CTVImed and CTVIcnn at different noise levels with respect to CTVIref. The horizontal axis represents CTVIref,

while the vertical axis shows the voxel-based lung ventilation of CTVInoise, CTVImed and CTVIcnn. Perfect agreement is indicated by the histogram

distribution along y = x.

TABLE 2 Spearman correlation coefficients of CTVIs for CTVIref.

CTVI
methods

30 HU
(P value)

80 HU
(P value)

150 HU
(P value)

CTVInoise 0.61 (<.0001) 0.59 (<.0001) 0.33 (<.0001)

CTVImed 0.87 (<.0001) 0.70 (<.0001) 0.61 (<.0001)

CTVIcnn 0.59 (<.0001) 0.65 (<.0001) 0.83 (<.0001)
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noise level increases. Despite this, a statistically significant trend toward

improvement is observed (<.0001). The Spearman correlation

coefficients for CTVIcnn were 0.59, 0.65, and 0.83 at 30, 80, and

150 HU, respectively. This indicates that although CTVIcnn did not

improve correlation at lower noise levels, it showed a substantial

improvement at 150 HU (<.0001).

4 Discussion

Despite the extensive body of research on CTVI (4–10),

few studies have employed phantoms capable of replicating

human-like ventilation in the context of clinical applications.

While it is well known that noise significantly affects CT

image analysis, the impact of noise reduction preprocessing on

the accuracy and consistency of CTVI remains insufficiently

explored. In this study, quantum noise was simulated in CT

images using a nonrigid alveoli phantom designed to mimic

lung motion.

In this study, the spatial accuracy of the DIR was evaluated by

simulating noise levels from 0 to 150 HU. For all CTref, CTnoise,

CTmed and CTcnn, the deformation accuracy was within 3 mm of

the tolerances given in TG-132 (23), regardless of the noise level.

Although previous studies have investigated noise levels of

200 HU (13), in the initial experiments of this study, the noise

level of 200 HU resulted in over-deformation due to DIR for the

same deformation parameters, and an accurate CTVI could not

be established. This result suggests that noise levels above

200 HU significantly affect the deformation accuracy of the DIR.

High noise levels may lead to errors in the DIR algorithm.

Therefore, the results of this study suggest that the DIR

technique has sufficient accuracy for generating CTVI at

quantum noise levels up to 150 HU. Although all TRE values

were within the TG-132 tolerance of 3 mm, CTmed and CTcnn

exhibited slightly higher TREs compared to CTnoise. One possible

explanation is that the denoising process may have smoothed out

anatomical features critical for deformable registration, resulting

in slightly reduced precision. Alternatively, mild quantum noise

may have enhanced local contrast in CTnoise, unintentionally

aiding DIR alignment. However, these differences remained

within the clinically acceptable margin and are unlikely to affect

the final CTVI outcome.

Table 1; Figure 6 illustrate the impact of quantum noise and the

application of preprocessing filters on the consistency of CTVI

from a clinical perspective. When using CTVI for treatment

planning, lung ventilation is categorized into three levels—high,

middle, and low—and treatment plans are designed to avoid

high-function regions. In CTVIref, approximately 33% of the lung

ventilation is classified into each category. Ideally, in cases of

accurate classification, the relationships between CTVIref,

CTVInoise, CTVImed and CTVIcnn should result in high-high,

middle-middle, and low-low matches approaching 33%. Focusing

on CTVInoise, the maximum agreement across all noise levels was

only 13.25%, indicating significant misclassification of lung

ventilation when quantum noise is present. In contrast, CTVImed

achieved over 20% agreement in all ventilation categories at noise

levels below 80 HU. A particularly important observation is the

proportion of regions classified as high in CTVIref but

misclassified as low. This proportion was kept below 4.3% at its

maximum. In addition, CNN-based denoising further improved

the consistency of CTVI at all noise levels. Notably, CTVIcnn

achieved the highest agreement with CTVIref, particularly

under high-noise conditions. At 150 HU, CNN showed the

greatest improvement in both categorical agreement and voxel-

wise correlation (κ = 0.73, Spearman ρ = 0.83), outperforming

both CTVInoise and CTVImed. These results indicate that

CNN-based denoising has strong potential to enhance the

robustness of CTVI, even under clinically challenging

noise conditions.

Table 2; Figure 7 focus on the voxel-level accuracy of CTVI,

demonstrating the local effects of quantum noise and the

application of preprocessing filters on CTVI accuracy using two-

dimensional histograms and Spearman correlation. The results of

this study confirmed that as noise levels increase, the accuracy of

CTVI decreases, proving that quantum noise is a significant

factor that hinders the accuracy of CTVI. However, CNN-based

denoising yielded stronger improvements in correlation,

especially at 150 HU, suggesting it is a more robust solution in

high-noise environments.

Interestingly, while Cohen’s kappa coefficients and

Spearman correlation coefficients generally showed consistent

trends, some discrepancies were noted. For example, at

150 HU, CTVImed yielded a relatively high Spearman

correlation (ρ = 0.61) but a low kappa value (κ = 0.083),

suggesting that voxel-wise rankings were preserved even

though many values crossed categorical thresholds.

Conversely, at 30 HU, CTVIcnn showed a high kappa (κ = 0.60)

despite having a lower Spearman correlation (ρ = 0.59),

indicating that category-level agreement was strong, while

voxel value variations limited rank correlation. These findings

emphasize that categorical and continuous metrics capture

different aspects of agreement, and highlight the need for

using both to comprehensively evaluate CTVI accuracy.

Limitations of this study include the lack of comparison with

vendor-provided denoising techniques and the absence of hybrid

preprocessing strategies. Future work should explore combining

CNN-based and conventional filtering approaches and testing

these methods in patient datasets.

5 Conclusion

This study quantitatively evaluated the effect of preprocessing

on the accuracy and robustness of the CTVI using a nonrigid

alveoli phantom with ventilation functionality, developed as the

world’s first quality control tool for CTVI. We demonstrated that

quantum noise significantly impairs the accuracy and consistency

of CTVI. While median filtering was shown to be a simple and

effective method for mitigating this effect, CNN-based denoising

provided superior performance, particularly under high-noise

conditions. These findings suggest that both conventional and

AI-based preprocessing approaches contribute to improving the
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quality of CTVI, with deep learning methods offering strong

potential to enhance robustness and accuracy in

clinical applications.
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