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Idiopathic Intracranial hypertension (IIH), also referred to as pseudotumor
cerebri, is a term used to describe increased intracranial pressure in the
absence of a known identifiable secondary cause. Despite advancements of
neuroimaging techniques, imaging of the pathological underpinnings in the
diagnosis of IIH has been limited. Although the causation of IIH has been
ascribed to increased Cerebrospinal Fluid production and disordered drainage
through the dural sinuses, new evidence shows that the glymphatic system
which is an alternate pathway of drainage is likely to play a pivotal role. In this
review, we address the pathophysiological underpinnings in the causation of
IIH and discusses characteristic anatomical imaging findings on conventional
MRI and explore the role of advanced imaging techniques.
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Introduction

Idiopathic Intracranial hypertension (IIH), also referred to as pseudotumor cerebri, is

a term used to describe increased intracranial pressure in the absence of an identifiable

secondary cause. IIH is a rare clinical syndrome with an incidence of 0.28–3.2/100,000

people per year (1). Amongst those at highest risk, namely women of child-bearing age

with a high body mass index, the incidence is 7.9–22/100,000 people per year (1).

Multiple studies have shown a strong association between elevated body mass index,

obstructive sleep apnoea, several endocrine disorders, and Vitamin A and tetracycline

usage. Recent evidence also indicates androgen excess in IIH and, hence, a

neurometabolic angle to the disease causation. In a retrospective case review, the

incidence of IIH was reported as 1.56 per 100,000 in the general population, increasing

to 11.90 per 100,000 in obese young women (2). The most common clinical symptom

is headache, followed by visual deficits due to papilledema. Often, the diagnosis is

established by the Modified Dandy Criteria and Freidman modifications consisting of

an opening pressure at lumbar puncture (performed in lateral decubitus position) of

over 25 cm of water in adults and >28 cm in children, with no definable etiology and

normal cerebrospinal fluid (CSF) constituents (3–5).

In this review, we describe the characteristic structural findings of IIH on MRI and

discuss the advanced imaging techniques to facilitate the understanding of the

pathophysiological basis of IIH.
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Pathogenesis

Although the pathophysiology is largely unknown, there are

indications that the pathological underpinnings for IIH appear to

be at the level of dysregulated CSF production, incomplete

drainage of the solutes, and neurovascular glial unit dysfunction (1).

CSF FLOW production and drainage

CSF is produced from the blood ultrafiltrate, generated by

Aquaporin-1 (AQP-1) channels in the choroid plexus and

circulates through the ventricular system and cisternal spaces and

enters either spinal subarachnoid space or the interstitial space of

the brain and gets reabsorbed through lymphatic and venous

channels. CSF serves several essential functions, such as

homeostasis in the blood-CSF barrier, temperature maintenance,

provision of nutrients, and regulation of the osmotic pressure (1, 6).

The movement of CSF is likely due to hydrostatic gradients

initially from the production in the ventricles to the interstitial

space. However, the subsequent egress of the CSF into the

venous sinuses is a dynamic process facilitated by aquaporin-4

(AQP4) protein channels. This a brain-wide pathway for fluid

transport, which includes the para-arterial influx of subarachnoid

CSF into the brain interstitium, followed by the clearance of

interstitial fluid (ISF) along large-calibre draining veins. This

model assumes three main components: A: periarterial inflow of

fluid from the subarachnoid spaces at the brain surface to the

parenchymal interstitium, in part via the water-selective membrane

channel AQP4; B: intraparenchymal flow of fluid through the

brain interstitium; and C: clearance of fluid from the interstitium

into perivenous, perineural and dural lymphatic spaces, again in

part facilitated via AQP4 (6).

Glymphatic system

The glymphatic system is an alternate pathway of the scavenger

system in the brain, and studies indicate that it predates the

development of the dural sinus drainage pathway. It facilitates

the exchange of the metabolites between the perivascular space

CSF and the brain. CSF movement is driven initially by the

passive pressure gradients and subsequently by the dynamic

exchange with the help of AQP4 channels, which are distributed

across the brain (6–9).

Venous drainage of the CSF

Arachnoid granulations (AG), extensions of the arachnoid

matter, drain the CSF into the dural venous sinuses. However,

alternate drainage pathway systems exist other than dural sinuses,

including the perineural CSF drainage through the skull base

into the cervical lymph nodes. Factors like arterial pulsations,

sleep, and body position enhance this movement. Evidence

suggests an alternate pathway for CSF drainage through the

cribriform plate, along cranial nerves, into the nasal mucosa, and

ultimately into nasal lymphatics (6–9).

Characterizing the pathophysiology of IIH poses a significant

challenge in distinguishing primary causes from secondary

effects. The pivotal role of increased intracranial pressure in IIH

suggests that the primary event is a fluid imbalance and could

potentially be secondary to physiological factors. The ensuing

cascade of heightened pressure, coupled with changes in the

enclosed space, appear to evolve into a self-perpetuating,

relentless downhill progression. Furthermore, exploring

epidemiological risk factors, notably obesity, and female sex, may

offer valuable mechanistic insights into the development of IIH

(1, 7). Explanations for the mechanisms underlying IIH have

attempted to elucidate the pathological underpinnings by

attributing them to one or all of the following: overproduction of

CSF; impaired resorption of CSF; dysautoregulation of cerebral

blood flow; dysregulation of fluid homeostasis leading to subtle

white matter edema; dysregulation of AQP1 and AQP4 receptors;

and proinflammatory states caused by mitochondrial

dysregulation or circulating signalling leptins (1).

One of the common observations in the pathogenesis of IIH is

a strong association with abnormalities in the venous outflow, and

stenosis of the transverse sinus was seen in up to 93% of patients

with IIH in one study (10); however, the cause-and-effect

relationship has not been conclusively proven, and it has been

shown in some studies that there is the reversibility of the sinus

narrowing with effective medical therapy, and it is, therefore,

possible that the venous stenosis maybe a result rather than the

cause for the same (10). Conflicting evidence of persisting venous

sinus stenosis despite the normalization of Intracranial Pressure

(ICP) suggests that there is more than one mechanism at play.

To resolve these contradictions, two postulations were put forth.

(1) Non-Venogenic: An extrinsic compression of the dural

venous sinus contributing to raised ICP and on venography this

compression usually shows as a long tapering stenosis. This form

of stenosis is usually reversible with normalized ICP and is likely

associated with abnormal CSF production/absorption. (2)

Venogenic: This is likely associated with intrinsic venous disease

and associated stenosis and may be driven by underlying venous

inflammation or anatomical variations. This Venogenic IIH may

become symptomatic with precipitating causes such as venous

stenosis or change in CSF dynamics. This venogenic IIH is likely

less responsive to changes in the ICP (11).

MR imaging and imaging correlates

Typical imaging observations in IIH are those of increased

pressure in an enclosed space (Monro-Kelly Hypothesis) (12).

The intracranial structures accommodate to compensate for the

increased pressure by distributing the pressure with imaging

manifestations such as empty sella, optic nerve protrusion and

flattening of the posterior globe, distended optic nerve sheath,

optic nerve tortuosity, and slit-like ventricles, which are all

believed to be compensatory mechanisms to overcome the
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increased pressure. As alluded to above, transverse sinus stenosis is

probably a secondary sign initially but potentially leads and

participates in the cascade of downhill spiral of increased pressures.

Empty sella

The term “empty sella” (Figure 1) refers to a neuroimaging

finding in which the sella turcica, the skull base structure that

houses the pituitary gland, is either partially (partial empty sella)

or fully filled with CSF (13). In the absence of the other causes

that can result in the secondary empty sella (SES), primary

empty sella (PES) is considered one of the most sensitive

imaging findings associated with IIH. The postulated causes for

the PES include dilated CSF spaces due to transmitted pressures

from the IIH, resulting in dilated suprasellar cisterns and

herniation of these cisterns into the sella, thus leading to PES.

It was also theorized that the bony enlargement of the sella

turcica was caused by chronic increased ICP, resulting in a larger

and, therefore, proportionally more “empty” sella (13).

The typical measurements of sella turcica are between 4 and

12 mm in height and 5–16 mm in width. In IIH, sella was 38%

greater in people than those without, with only a slight reduction

in the pituitary gland size (14, 15). Patterson et al. observed that

an MRI-measured pituitary-to-sella turcica ratio of <0.5 increased

the likelihood of increased ICP1 (16). Partial empty sella has

been found to be a highly specific finding of IIH (95.3%,

p < 0.0001), but the absence of this finding does not rule out the

diagnosis (17). The finding of the empty (or partially empty)

sella is known to be reversible if there is an early intervention.

FIGURE 1

Empty sella. Sagittal T-1 TSE demonstrating Empty sella (Thick Arrow), Tonsillar herniation (Triangle), and concave Straight sinus (Black thin arow).
(Tonsillar herniation can be associated with IIH, though rare).
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Changes in the optic nerve

The optic nerve can show sheath distension, tortuosity over

time, and, more specifically, disc protrusion. This triad of

observations is thought to be linked directly to transmitted

pressure from the IIH into the optic nerve sheath.

Protruded optic nerve and swelling of the optic nerve head

(Figure 2) are considered the clinical correlates of papilledema

(18). Agid et al. found optic nerve protrusion to be present in

3.3% of people with IIH and 0% of controls (17).The protruded

optic nerve head is associated with enhancement on the post-

contrast T1w MR sequence and is a useful observation to

identify disc edema. It is often restrictive (low signal) on

diffusion-weighted imaging. This finding may appear earlier

than the positive optical coherence tomography (OCT) and

could serve as a biomarker for the papilledema risk in IIH

(R = 0.74, P = .01) (19).

Tortuosity of the optic nerve (Figure 3) occurs due to the

fixation of the nerve at proximal and distal points, and increased

CSF pressures in the nerve make it tortuous. Detection of

tortuosity depends on the MRI slice thickness and orientation,

with vertical tortuosity being more specific for increased ICP

than horizontal tortuosity. Vertical tortuosity of the ON is often

accompanied by a “smear sign,” in which the midportion of the

ON appears obscured by a “smear” of orbital fat on T1-weighted

image (20). A meta-analysis of MRI signs in IIH by Kwee et al,

has shown that tortuosity of the optic nerve is an observation

with low sensitivity (40%) but high specificity (88.4%) (21).

Distended optic nerve sheath diameter (ONSD): Distension

of the optic nerve sheath is one of the reliable signs of IIH (19,

21). The ONSD is measured approximately 3 mm posterior to

the globe, where the sheath is at its most compliant and usually

most dilated (22). The cross-sectional diameter of the optic nerve

sheath in normal individuals is considered to be up to 4.5 mm

(Figure 4). A study by Hoffman showed that a diameter between

5.5–5.6 mm has been associated with 72% sensitivity and 80%

specificity (23). Agid et al. demonstrated this finding in up to

68% of patients with IIH (17). Caglayan et al. have shown

improvement in the diameter (reduction) after therapeutic

intervention, but it is still higher than normal controls (24).

Cross-sectional diameter of subarachnoid space thickness is also

used as a measure of dilatation of the ONSD, and, when it is

more than 2 mm, it is considered abnormal.

Changes in the globe: posterior globe
flattening

The typical posterior convexity contour change of the globe is

likely attributable to increased cerebrospinal fluid (CSF) pressure

transmitted through the optic nerve sheath (ONS) to the eyeball.

This transmitted pressure is also implicated in the flattening of

the optic disc and the inward protrusion and enhancement of

the optic nerve papilla. Posterior globe flattening (Figure 2) refers

to the straightening out of the curvature of the posterior sclera in

the region where the sclera attaches to the optic nerve (17). This

FIGURE 2

Protruded optic nerve and optic disc enhancement. T-1 Weighted fat saturated post contrast axial sequence through orbits: Enhancing optic discs
with intraocular protrusion in the vitreous chamber of the globe (blue arrows).
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FIGURE 3

Changes in the globe: posterior globe flattening and tortuosity of the optic nerves. T-2 weighted fat saturated axial sequence through orbits
demonstrating posterior globe flattening and tortuous intra-orbital segments of the optic nerves. Also note protruding optic nerve head
(arrowhead). T-1 weighted spin echo axial of the orbits demonstrating “smeared fat sign” (blue arrow).

FIGURE 4

Distended optic nerve sheath diameter (ONSD). T-2 FAT SAT Axial Orbits: Dilated optic sheath >5.6 mm is considered abnormal (Specificity increases
when the diameter is above 6 mm).
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sign is shown to be present in roughly 50% of people with IIH,

often a subjective assessment (13). However, a quantitative

method developed by Alperin et al. showed that this observation

has a very high sensitivity [control and IIH groups (0.93 ± 0.020

vs. 0.91 ± 0.022 (P = .003) (19) (Figure 2).

Changes in ventricular size: slit-like
lateral ventricles

Narrowing and collapse of the ventricles, referred to as slit

ventricles, was described as a sign of IIH and was described in

the past when CT was the primary imaging modality of choice

and was linked to the increased parenchymal edema and had a

low sensitivity as a maker of IIH (13, 25).

Meningoceles

Meningoceles at the petrous apex and prominent Meckel’s

caves are specific signs of IIH, but less sensitive (23, 26).

Expansion of the CSF spaces can be found around the

neural exit foramen, such as surrounding the oculomotor

nerve as it courses through the parasellar space, the

abducens nerve as it courses through Dorello’s canal, the

facial nerve at the geniculate fossa, and the hypoglossal

nerve at the hypoglossal canal are noticeable with markedly

elevated intracranial pressures (22, 27, 28) (Figure 5).

Transverse venous Sinus stenosis

Bilateral transverse sinus stenosis is shown to be associated

with IIH in 90% of the subjects (Figures 6A–C). Using

gadolinium bolused MRV sequence, bilateral transverse sinus

(TS) stenosis of >50% degree is seen in 93% of patients with

IIH, suggesting that this is the most sensitive imaging to identify

as well as grade the stenosis (29). In another study that has

looked at the role of CE MRV in a stenting cohort, Boddu SR

et al. reported 100% sensitivity and 100% negative predictive

value for the detection of recurrent dural venous sinus stenosis

(29). Measurement of the transverse sinus stenosis using non-

FIGURE 5

Pseudomeningocele. T-2 weighted axial sequence through orbits demonstrating pseudo arachnoid diverticula commonly noted at Meckel’s cave
(black line) but can be visualized at multiple levels at the basal foramen.
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contrast 2D TOF MRV has several pitfalls, such as in-plane signal

dephasing and inability to detect and differentiate slow flow from

absent flow, and perhaps to be avoided (30). Recent studies have

shown contrast-enhanced 3D volume T-1 sequences and

reconstruction aid in characterizing the percentage of venous

sinus stenosis in addition to morphological changes such as

exaggerated concavity in the dural sinuses (27, 31). Phase

contrast MRV does not suffer from the inflow artefacts like in

2DT0F and has superior contrast resolution (32). However, the

disadvantages include higher time to acquire (usually over three

minutes) and aliasing if the velocity encoding steps are not

properly tailored (Figures 6A,B).

Vessel wall Imaging: There is limited information on vessel

wall imaging applications in the assessment of dural venous

sinuses. Intracranial vessel wall imaging has been shown to be

effective in identifying arterial vasculopathy. Quan et al, showed

that contrast-enhanced IVW is more accurate compared with

PC-MRV in assessing stenosis degree in IIH patients in 62

patients with suspected IIH (33). Yang et al. compared imaging

characteristics of thrombus on non-contrast 3D T 1-weighted

IVW between patients with early subacute and late subacute

cerebral venous thrombus. IVW accurately identified 113/116

segments having venous thrombus (sensitivity 97.4%) and

accurately depicted thrombus volume (34). Intradural sinus webs

are possibly best resolved using dark blood studies (35).

Advanced imaging techniques

Although several models have been formed to explain the

drainage pathways of the CSF, the most commonly used model

for neurofluid circulation is the Glymphatic system, which will

be briefly discussed to explain the pathophysiological

underpinnings of the IIH (Figure 7).

The concept of perivascular space serving as a conduit that drains

the CSF into the interstitial space of the brain parenchyma and

subsequently collects the waste products back into the perivascular

space around the veins before being drained out of the brain was

first introduced by Iliff et al. in 2012 (36). This pathway which

combines the role of glial and lymphatics to clear the waste products

of the interstitial space, was termed a glymphatic system (37).

While the initial forces that guide the CSF into the perivascular

space of this conduit include arterial pulsation and convective bulk

flow of ISF, subsequently, CSF entry into the interstitium is

through more dynamic forces facilitated by the AQP4 water

channels distributed in the foot processes of astrocytes that

constitute the outer wall of the perivascular space (6).

The glymphatic system is a whole-brain perivascular network,

which promotes CSF/interstitial fluid exchange. Imaging the

abnormalities leading to abnormal drainage by the glymphatic

system was explored at several levels. Advanced MRI methods

such as perivascular space volume fraction, fractional volume of

free water in white matter (i.e., brain interstitial fluid) from a bi-

tensor diffusion tensor imaging model and index of diffusivity

along the perivascular space (ALPS index) are being explored to

measure the myelin water fraction and interstitial fluid volume

(38, 39). Multi-shell diffusion tensor imaging, Intravoxel

incoherent motion (40), and multi-echo ASL (41) (blood-brain

interface water permeability by calculating the exchange time of

magnetically labeled intravascular water across the blood-brain

interface.) are few other techniques that are likely to be used to

measure the extracellular water and blood brain barrier

disruption without the necessity of intravenous gadolinium.

Existing evidence indicates that that the neuroinflammation is

present in the patients with IIH (42). The defining response of the

brain to neuroinflammation is increased capillary permeability and

disruption of the blood brain barrier. In IIH, there is both increased

production and decreased absorption of the neurofluids and both

leading to increased perivascular space fluid volume (43). Taken

together these two important pathophysiological events may have

cause and response interlink and advanced imaging algorithms

can be tailored to address these pathophysiological pivots.

FIGURE 6

(A–C): transverse venous sinus stenosis. (A,B): 2D time of flight (TOF) MRV with MIP reconstructions in the frontal and oblique rotations demonstrating
stenosis of the transverse sinuses bilaterally possibly from hypertrophied arachnoid granulations on the right side and likely inflammatory narrowing on
the left side (focal irregular narrowing) (Arrows showing area of narrowing). (C): DSA venography of the different patient showing similar narrowing of
the left transverse sinus and arachnoid granulations on the right.
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Dynamic Contrast enhanced perfusion metric K trans is a sensitive

technique for measuring blood-brain barrier integrity (44). This

technique has been extensively used in several conditions

associated with abnormal glymphatic pathways and could

potentially play an important role in understanding the role of

the in IIH. Diffusion Tensor Image Analysis ALong the

Perivascular Space, a new method to measure the interstitial fluid

and CSF imbalance is increasingly used by several groups to

understand the pathophysiology of IIH. Application of these

advanced MR imaging algorithms are likely to play a crucial role

particularly in the measurement of treatment response.

Conclusion

The pathophysiological basis of IIH is still unknown. However,

there is potential for gaining clarity in understanding the

pathophysiological underpinnings through advanced MR imaging

techniques. This, combined with robust anatomical imaging, can

assist both in the diagnosis and the decision-making in the

management and follow-up.
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