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Objective: This study constructs a deep learning-based combined algorithm

named WaveAttention ResNet (WARN) to investigate the classification accuracy

for seven common retinal diseases and the feasibility of AI-assisted diagnosis

in this field.

Methods: First, a deep learning-based classification network is constructed. The

network is built upon ResNet18, integrated with the Convolutional Block

Attention Module (CBAM) and wavelet convolution modules, forming the

WARN method for retinal disease classification. Second, the public OCTDL

dataset is used to train WARN, which contains classification data for seven

retinal disease types: age-related macular degeneration (AMD), diabetic

macular edema (DME), epiretinal membrane (ERM), normal (NO), retinal artery

occlusion (RAO), retinal vein occlusion (RVO), and vitreomacular interface

disease (VID). During this process, ablation experiments and significance tests

are conducted on WARN, and comprehensive analyses of various indicators

for WARN, ResNet-18, ResNet-50, Swin Transformer v2, EfficientNet, and

Vision Transformer (ViT) are performed in retinal disease classification tasks.

Finally, data provided by Shanxi Eye Hospital are used for testing, and

classification results are analyzed.

Results: WARN demonstrates excellent performance on the public OCTDL

dataset. Ablation experiments and significance tests confirm the effectiveness

of WARN, achieving an accuracy of 90.68%, F1-score of 91.29%, AUC of

97.50%, precision of 93.31%, and recall of 90.68% with relatively short training

time. In the dataset from Shanxi Eye Hospital, WARN also performs well, with a

recall of 90.85%, precision of 79.94%, and accuracy of 89.18%.

Conclusion: This study fully confirms that the constructed WARN is efficient and

feasible for classifying seven common retinal diseases. It further highlights the

enormous potential and broad application prospects of AI technology in the

field of auxiliary medical diagnosis.
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1 Introduction

The accelerating global aging process has made retinal diseases

a significant public health issue threatening visual health. Age-

related macular degeneration (AMD) has a global prevalence of

approximately 8.7%, serving as the primary cause of blindness

among individuals over 60 years old in developed countries (1).

Diabetic retinopathy affects about 22.27% of diabetic patients,

emerging as the main factor for visual impairment in working-

age populations (2). Diabetic macular edema (DME), the leading

cause of vision loss in diabetic patients, impacts approximately

5.5% of this population (3). Retinal vein occlusion (RVO) has a

prevalence of about 0.5% in individuals aged 30 and above, with

over 16 million affected people worldwide (4). These diseases are

highly disabling, often leading to irreversible vision damage in

advanced stages and exacerbating socioeconomic burdens (5).

Optical coherence tomography (OCT) is regarded as the “gold

standard” for diagnosing retinal diseases such as AMD (age-related

macular degeneration) (6–8), DME (diabetic macular edema)

(9–12), and ERM (epiretinal membrane) (13–15). In contrast,

fundus photography has certain limitations in diagnosing these

conditions. As a non-invasive imaging technique, OCT has

become an essential tool for retinal disease diagnosis due to its

high resolution, rapid imaging, and good safety. However, the

interpretation of OCT images currently relies mainly on manual

reading, suffering from issues such as long time consumption

and significant subjectivity differences. Additionally, the obvious

imbalance between the number of ophthalmologists and the

growing demand for examinations further causes diagnostic

delays, affecting timely patient treatment. Therefore, developing

artificial intelligence (AI)-based auxiliary diagnostic systems is of

great significance for improving diagnostic efficiency and

consistency and alleviating clinical resource shortages (16).

AI applications in medical image analysis have achieved

remarkable progress. In the field of ophthalmology, AI processes

complex medical images through deep learning techniques,

excavating hidden information to provide comprehensive

diagnostic evidence (17, 18). Early studies, such as Xu et al.,

proposed an improved method for classifying retinal arterioles

and venules, providing tools for early disease diagnosis (19).

Najeeb et al. used a single-layer CNN to achieve region-of-

interest detection in retinal OCT scans (20). With technological

advancements, Gao et al. trained a deep CNN with an 88.72%

accuracy in grading the severity of diabetic retinopathy (21).

Fang et al. proposed a lesion-aware convolutional neural network

(LACNN) that simulates the diagnostic thinking of

ophthalmologists, enhancing classification efficiency (22).

Despite these advancements, existing studies still have the

following limitations:

(1) Most models are based on single-modal data, lacking

integration of multi-modal information;

(2) Insufficient classification capabilities for rare diseases or

images with multiple lesions;

(3) Limited applicability in clinical environments with

constrained computational resources, as model training is

time-consuming and updates are restricted.

This study proposes the WaveAttention-ResNet (WARN) model,

which enhances feature extraction capabilities by integrating the

CBAM attention mechanism and wavelet convolution modules.

The goal is to improve the classification accuracy and training

performance for seven common retinal diseases, providing a new

approach for the widespread clinical application of AI-

assisted diagnosis.

2 Methods

2.1 Network

We have successfully constructed a classification method for

retinal diseases, namely the wavelet-enhanced ResNet

(WaveAttention-ResNet, WARN) based on the Convolutional

Block Attention Module (CBAM).

During the process of building this method, we first selected

ResNet-18 as the basic framework. The reason for this choice is

mainly that ResNet-18 has a concise and efficient structure. This

structure can not only effectively avoid the gradient vanishing

problem that often occurs in deep networks but also is easy to

expand and modify in practical applications, providing great

convenience for subsequent optimization work.

In order to further enhance the discriminative ability of the

model and enable it to more accurately identify features in

the analysis of complex retinal disease images, we skillfully added

the CBAM module after the wavelet convolution. The working

principle of the CBAM module is to perform attention weighting

on the two dimensions of channels and space, enabling the

model to focus more on those important features. In this way, it

can effectively reduce the interference of background noise on

the judgment results and significantly improve the accuracy and

reliability of the model analysis.

However, with the increasing complexity of the retinal disease

classification task, we found that traditional convolutional

operations may not be able to fully capture all the detailed

information in the images in some cases. In view of this, we

introduced a wavelet convolution module after the CBAM

module. The purpose of introducing this module is to make full

use of the unique advantages of wavelet transform to further

enhance the feature extraction process. Specifically, wavelet

transform allows us to conduct a detailed analysis of the images

at different scales, so as to better capture the local details and

global structures in the images, enabling the model to have a

more comprehensive and in-depth understanding of the

image information.

As shown in Figure 1, the network we constructed is a deep

learning model of wavelet-enhanced ResNet based on CBAM.

This model significantly improves the feature extraction ability

and the utilization efficiency of spatial-channel information by

organically combining the CBAM attention mechanism and the

wavelet transform convolution (WTConv2d) module. From the

perspective of the overall architecture, this network is composed

of multiple ResNet modules, CBAM modules, and WTConv2d

modules. Its design concept is to achieve the classification task of
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retinal disease images efficiently through multi-level feature

extraction and enhancement, providing powerful technical

support for the accurate diagnosis of retinal diseases.

2.1.1 ResNet-18

ResNet-18, as a classic deep convolutional neural network, was

first proposed in 2015 (23). During the training of deep networks,

the problems of gradient vanishing and degradation are common

and urgent challenges to be solved. ResNet-18 successfully overcame

this problem by introducing the Residual Learning mechanism.

The core highlight of ResNet-18 lies in its unique skip

connection design. This ingenious design allows the information

in the network to be directly transferred from one layer to

another without being interfered by non-linear transformations

at all. It is precisely because of this design that the network can

effectively learn the identity mapping, enabling the successful

implementation of deeper networks.

In terms of the overall architecture, ResNet-18 is mainly

composed of five parts. Firstly, there is the input layer, which

contains a 7 × 7 convolutional layer with a stride of 2. The main

function of this convolutional layer is to extract the basic features

of the image, and it further reduces the size of the feature map

through a max pooling layer.

Following the input layer are four core stages (Stage), each of

which is composed of multiple residual blocks, and these residual

blocks are exactly the key components of ResNet-18. Inside each

residual block, the input data will be processed through two

paths respectively. The main path contains two 3 × 3

convolutional layers, and each convolutional layer is followed by

a Batch Normalization (BN) operation and a ReLU activation

function; the auxiliary path, that is, the skip connection, serves to

directly add the input to the output. When the dimensions of the

input and output are the same, this operation is very

straightforward; however, if the dimensions are different, a 1 × 1

convolution is required to adjust the input dimension to match

the output dimension. As the network layers go deeper, the

spatial resolution of the feature map gradually decreases, while

the number of channels gradually increases. Such changes are

conducive to capturing more complex patterns.

After the last convolutional stage is completed, the Global

Average Pooling (GAP) layer comes into play, which compresses

each feature map into a scalar value. Through this operation, the

number of parameters is significantly reduced, and the risk of

overfitting is also decreased accordingly. Finally, the Fully

Connected Layer maps these processed features into the specific

category space, thus completing the entire classification task.

Considering the simplicity of the ResNet-18 structure, the

convenience in its actual implementation, its relatively short

training time, and its certain feature extraction ability, among

other factors, we finally decided to choose ResNet-18 as the basic

network architecture.

2.1.2 CBAM

CBAM (Convolutional Block Attention Module) (24), as a

unique attention mechanism, was originally designed to

significantly enhance the feature representation ability in

convolutional neural networks (CNNs).

The inspiration for the attention mechanism actually comes

from the unique characteristics of the human visual system. As

we know, when the human eye observes an image, it does not

process the entire image uniformly and indifferently. Instead,

according to specific task requirements, it selectively focuses on

certain specific regions or features in the image. In the field of

deep learning, ingeniously introducing the attention mechanism

FIGURE 1

WARN architecture.

Guo et al. 10.3389/fradi.2025.1608052

Frontiers in Radiology 03 frontiersin.org

https://doi.org/10.3389/fradi.2025.1608052
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


enables the model to be more sensitive and focused on the truly

important parts of the input data, thereby effectively improving

the overall performance of the model.

Looking at the working principle of CBAM in detail (as shown in

Figure 2), it mainly consists of two key steps: first, Channel Attention,

and second, Spatial Attention. The channel attention mechanism

focuses on analyzing and weighting different channels of the

feature map. By comprehensively considering the importance of

the information contained in each channel, it assigns

corresponding weights to different channels, enabling the model to

highlight those channels that contain key information and thus

enhancing the ability to capture important features. The spatial

attention mechanism mainly focuses on the spatial dimension of

the feature map. It analyzes each position of the feature map to

determine which spatial positions contain information that is more

crucial for the current task, and then assigns higher weights to

these positions, enabling the model to more accurately focus on the

important spatial regions in the image and further improving the

understanding and expression ability of the image features. These

two steps cooperate with each other and complement each other,

jointly acting on the convolutional neural network, enabling the

network to more efficiently extract and utilize key feature

information when processing image data.

In the Channel Attention stage, as shown in Figure 3, the feature

maps of each channel are adjusted by calculating the importance of

each channel. First, it calculates the results of the max pooling and

the average pooling for each channel respectively. Then, a shared

Multi-Layer Perceptron (MLP) network is used to calculate the

weight of each channel. These weights reflect the importance of

each channel. Finally, a Sigmoid function is used to transform

these weights into values between 0 and 1, which are then

multiplied by the original feature map to enhance or suppress the

information of certain channels. The channel attention mechanism

is used to highlight the most important channel information in the

feature map and suppress the unimportant channels. Specifically,

given the input feature map X [ RC�H�W , we first generate two

descriptors Fgap(X) and Fgmp(X) through the operations of Global

Average Pooling (GAP) and Global Max Pooling (GMP). Both of

these two descriptors are C-dimensional vectors. Then, we input

these two descriptors into a Multilayer Perceptron (MLP), which

consists of a hidden layer and a linear layer. Assuming that the

dimension of the hidden layer is C/r (where r is the

dimensionality reduction ratio), the output of the MLP can be

expressed as:

Mc(X) ¼ s(MLP([Fgap(X); Fgmp(X)]))

where the symbol σ represents the Sigmoid activation function.

Finally, the channel attention weights Mc(X) are applied to the

input feature map X through element-wise multiplication:

X0
¼ X �Mc(X)

In the Spatial Attention stage, as shown in Figure 3, CBAM

further calculates the importance of each spatial position. It

performs max pooling and average pooling operations on the

feature map output by the channel attention module, and then

combines these two results through a convolutional layer to

finally obtain a spatial attention map. This attention map is also

transformed by a Sigmoid function and then applied to the

original feature map to strengthen or weaken the features at

different spatial positions. The spatial attention mechanism

focuses on highlighting the most important spatial regions in the

image. Given the feature map X’ processed by the channel

attention, we first perform max pooling and average pooling

operations on each channel to generate two H �W feature maps

Fmax(X
0) and Favg(X

0). Then, we concatenate these two feature

maps together, and generate the spatial attention weights through

a 7 × 7 convolutional layer and a Sigmoid activation function.

Ms(X
0) ¼ s(Conv7([Fmax(X

0); Favg(X
0)]))

The final spatially attention-weighted feature map X’’ can be

expressed as:

X ¼ X0
�Ms(X

0)

FIGURE 2

CBAM.
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This combination method enables the model to pay more attention

to the important regions in the image, while suppressing the

background noise and other irrelevant details. When dealing with

OCT images, CBAM enhances the model’s ability to capture key

features by emphasizing them. Specifically, CBAM first evaluates

the importance of each feature channel through the channel

attention mechanism and assigns higher weights to the more

important channels, thereby highlighting the information that is

crucial for diagnosis. Secondly, the spatial attention mechanism

focuses on identifying which regions in the image are most critical

for diagnosis and strengthens the information in these regions,

enabling the algorithm to more accurately locate the lesion positions.

2.1.3 Wavelet convolution module

As shown in Figure 4, the core of the wavelet convolution

module (25) lies in using wavelet transform to decompose the

input feature map into low-frequency (LL) and high-frequency

(LH, HL, HH) sub-bands, which respectively represent the main

structural information and edge or detail information of the

image. This ability of multi-resolution analysis is difficult to

achieve by traditional convolutional layers. For the decomposed

sub-bands, we adopt the depth convolution operation with small

kernels (3 × 3). This can not only effectively reduce the number

of parameters but also maintain or even enhance the accuracy of

feature extraction. Finally, these processed sub-bands are

recombined into a complete output feature map through the

inverse wavelet transform (IWT). This method not only reduces

the computational cost but also improves the adaptability of the

model to features at different scales.

The Wavelet Transform (WT) is a powerful signal processing tool

that can decompose an input signal into different frequency

components. For a two-dimensional image, we can use the Haar

wavelet transform to decompose it into four parts: the low-

frequency component XLL, the horizontal high-frequency

component XLH, the vertical high-frequency component XHL, and

the diagonal high-frequency component XHH. These components

respectively correspond to different features of the input signal. The

low-frequency component XLL represents the main structural

information of the signal, usually containing the overall shape and

low-frequency trend of the image. The horizontal high-frequency

component XLH captures the edge or texture information in the

horizontal direction, the vertical high-frequency component XHL

captures the edge or texture information in the vertical direction,

and the diagonal high-frequency component XHH captures the

detail or noise information in the diagonal direction. By applying

different types of filters (low-pass and high-pass), we can

decompose the image into different frequency bands, thus

achieving different hierarchical expressions of the image

information. The specific formulas are as follows:

fLL ¼
1

2

1 1
1 1

� �

, fLH ¼
1

2

1 �1
1 �1

� �

, fLL ¼
1

2

1 1
�1 �1

� �

, fLL

¼
1

2

1 �1
�1 1

� �

By performing a convolution operation on the input feature map X"

through the above filters and combining it with a downsampling

operation with a stride of 2, we can obtain four subband feature maps:

[XLL, XLH, XHL, XHH] ¼ Conv([ fLL, fLH, fHL, fHH], X00)

FIGURE 3

Channel attention and spatial attention.
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As shown in the figure above. Next, a small convolutional kernel

(3 × 3) is applied to each subband feature map for feature

extraction. Assuming that the weight tensor of the convolutional

kernel is W, the convolution operation can be expressed as:

YLL, YLH, YHL, YHH ¼ Conv(W, [XLL, XLH, XHL, XHH])

Finally, these feature maps are reconstructed into a feature map of the

original resolution through the Inverse Wavelet Transform (IWT):

Y ¼ IWT(YLL, YLH, YHL, YHH)

This design not only expands the receptive field of the model but also

enables it to capture richer frequency information while maintaining

a relatively low number of parameters, which helps to improve the

classification accuracy.

This method transforms the input image into the wavelet

domain, performs convolution operations on different frequency

components, and reconstructs the output image using the inverse

wavelet transform. Specifically, first apply the Haar wavelet

transform to the input imageX, decomposing it into a low-

frequency component XLL and three high-frequency components

XLH,XHL, and XHH. Subsequently, lightweight deep convolution

operations with small kernels are applied to each frequency

component. Then, the inverse wavelet transform (IWT) is used

to fuse all convolved components to generate an intermediate

output feature map. To preserve the structural information in the

original image, the final output is obtained by adding the feature

map after inverse wavelet transform to the convolved original

input image. This process can be recursively applied to the low-

frequency component XLL to achieve multi-level wavelet

decomposition, effectively expanding the receptive field without

significantly increasing the number of parameters, while retaining

image details and structural information.

2.2 Datasets

The newly released OCTDL (26) dataset was selected for this

study, featuring remarkable characteristics. It comprehensively

covers seven distinct retinal diseases, providing invaluable

resources for the diagnosis and in-depth research of

ophthalmic disorders.

Images in the dataset were sourced from multiple institutions,

including Ural Federal University, Professor Plus Eye Surgery

Clinic, and Ural State Medical University. This multi-institutional

collaboration ensures the dataset’s diversity and representativeness.

All images were acquired using an Optovue Avanti RTVue XR

device, which utilizes advanced scanning parameters (e.g., dynamic

scanning length and high-resolution imaging) to guarantee the

quality and detail richness of the collected data.

The annotation process was rigorous and multi-staged: first,

seven medical students performed initial annotations;

subsequently, two experienced clinical experts independently

reviewed the annotations to minimize errors; finally, the clinic

director confirmed the annotations to ensure accuracy

and consistency.

Comprising 2,064 images from 821 patients (age range: 20–93

years, male-to-female ratio 3:2, mean age 63 years), the dataset

FIGURE 4

Wavelet convolution module.
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covers seven fundus disease types: age-related macular

degeneration (AMD), diabetic macular edema (DME), epiretinal

membrane (ERM), normal (NO), retinal artery occlusion (RAO),

retinal vein occlusion (RVO), and vitreomacular interface disease

(VID). Figure 5 illustrates the dataset distribution.

Additionally, Shanxi Eye Hospital provided a pathological

image dataset with OCT data acquired by two devices

(Heideiberg; VG 200D, Intalight Ltd., China). The dataset

includes AMD, DME, ERM, NO, RAO, RVO, and VID

(encompassing macular holes and vitreomacular traction

syndrome), matching the lesion types in the OCTDL dataset to

facilitate comparative analysis.

Annotation was conducted by three experts with over five years

of clinical experience in retina, with discrepancies resolved by a

senior expert with 20+ years of experience. The 942 annotated

images serve as valuable resources, and their distribution is

shown in Figure 5.

2.3 Ethical approval

This study was approved by the Ethics Committee of Shanxi

Eye Hospital (Approval No.: SXYYLL-KSSC021) and strictly

adheres to the principles outlined in the Declaration of Helsinki.

Given the retrospective nature of data collection and the use of

de-identified images, informed consent was not required.

2.4 Experimental setup

In this experiment, all models were trained with uniform

parameters: 100 epochs, batch size of 128, Adam optimizer,

learning rate of 0.0001, weight decay of 0.0005, cosine annealing

learning rate scheduler, and cross-entropy loss function. The

experimental environment comprised an NVIDIA GeForce RTX

4060 GPU, 12th Gen Intel(R) Core(TM) i7-127000 2.10 GHz

CPU, Python 3.12, and PyTorch 2.6.0.

2.5 Data processing

The OCTDL dataset was randomly split into training,

validation, and test sets at a patient-level ratio of 60:10:30,

ensuring that images from each patient belonged to only one

subset. This approach prevented data cross-contamination,

safeguarded the independence and fairness of model training,

validation, and testing, and enhanced generalization to new

patient data. To mitigate overfitting and improve model

generalization, data augmentation was applied to the training set,

including random cropping, horizontal/vertical flipping, color

distortion, rotation, translation, and Gaussian blur. Each

augmentation method was controlled by application probabilities

with rational parameter ranges to avoid excessive distortion.

Additionally, addressing the class imbalance issue, a class-

balanced sampling strategy was adopted with a sampling weight

decay rate of 0.9. This enabled the model to prioritize minority

classes in the early training phase and gradually align with the

overall distribution in later stages, thereby enhancing overall

classification performance.

2.6 Comparative experiment

To evaluate and compare the performance of different deep

learning models in the classification of Optical Coherence

Tomography (OCT) images, a series of experiments were

FIGURE 5

Dataset distribution.
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designed for comparison, including the networks of ResNet-18,

ResNet-50 (23), Swin Transformer v2 (27), EfficientNet (28), and

Vision Transformer (ViT) (29).

ResNet-18 and ResNet-50 are based on the residual network

architecture. The skip connections are used to overcome the

problem of vanishing gradients in deep neural networks. ResNet-

18 has only 18 layers, with a simple design and high

computational efficiency. It performs excellently in resource-

constrained environments or lightweight applications. Liu Y et al.

utilized it to develop an Infant Retinal Intelligent Diagnosis

System (IRIDS) in combination with a convolutional neural

network and a transformer structure. When identifying infant

fundus diseases, it outperformed ophthalmologists in several key

indicators (30). In the study by Nabrdalik K et al., its backbone

model showed excellent accuracy in the binary classification of

cardiac autonomic neuropathy (CAN) in diabetic patients (47).

S V A et al. used an extended depthwise separable convolutional

ResNet (DDSC-RN) with a Support Vector Machine (SVM)

classifier to identify retinal biomarkers, achieving a relatively high

overall accuracy (31). In contrast, ResNet-50 has 50 layers and

adopts a bottleneck structure to reduce the number of

parameters while maintaining high accuracy. Although S V A

et al. did not directly compare it in the same kind of complex

task study, when dealing with tasks that require processing

complex patterns, high-resolution images, and a high level of

detail, due to this structure, it has a higher accuracy than simple

models. Goh JHL et al. developed a model using ResNet50 when

detecting referable diabetic retinopathy (DR), providing an

important reference for the overall study (32).

Swin Transformer v2 is specifically designed for computer

vision. With its hierarchical feature representation and shifted

window mechanism, it can efficiently capture information at

different scales and has obvious advantages in processing high-

resolution images, achieving remarkable results in multiple visual

tasks. Li Z et al. constructed a deep learning model with it,

achieving a very high average accuracy in the classification of

multiple fundus diseases on two independent public datasets

(33). Huang C et al. developed a Swin-MCSFNet classifier based

on Swin-Transformer for retinal image quality assessment, which

performed well (34).

The models of the EfficientNet series use a compound scaling

method to balance the network depth, width, and input resolution,

improving the performance and computational efficiency. The

HDR-EfficientNet method proposed by Abbas Q et al. uses the

EfficientNet-V2 network for end-to-end training to identify eye-

related diseases. When evaluated on a large enhanced dataset of

retinal fundus images, the average area under the curve (AUC) is

outstanding (35).

Vision Transformer (ViT) introduced the Transformer

architecture from natural language processing into computer

vision. It divides an image into patches and operates on them

just like processing text sequences. In the study by Goh JHL

et al., among the four ViT models for detecting referable DR, the

SWIN transformer showed significantly better AUC performance

than Convolutional Neural Network (CNN) models in the tests

on multiple datasets (32).

Therefore, the reason for choosing ResNet-18, ResNet-50, Swin

Transformer v2, EfficientNet, and Vision Transformer (ViT) for

comparison is that they each have their own characteristics in

terms of network architecture, computational efficiency, feature

extraction ability, and the processing of information at different

scales. They can comprehensively and multi-dimensionally

evaluate the performance of different types of models in the task

of OCT image classification.

2.7 Evaluation metrics

To comprehensively assess model performance, multiple key

metrics were employed for integrated analysis. First, Balanced

Accuracy serves as the core criterion for measuring a model’s

overall classification capability in imbalanced scenarios. By

calculating the average recall across all classes, it eliminates the

dominance of majority classes in evaluations, fairly reflecting the

model’s balanced performance across categories. Second,

Precision focuses on the proportion of truly positive instances

among all positive predictions, a critical metric for reducing false

alarm rates. Concurrently, Recall evaluates the model’s ability to

identify all positive samples, emphasizing its capacity to

minimize missed detections. The F1-score, a harmonic mean of

Precision and Recall, is specifically designed for imbalanced

datasets, while AUC (Area Under the ROC Curve) measures a

binary classifier’s discriminative power. The ROC curve plots

True Positive Rate (TPR/Recall) against False Positive Rate

(FPR), and the confusion matrix provides a detailed breakdown

of classification results, listing the counts of True Positives (TP),

False Positives (FP), False Negatives (FN), and True Negatives

(TN). This matrix enables in-depth analysis of model strengths

and weaknesses across categories, guiding further optimization.

Integrating multi-dimensional metrics (accuracy, precision, recall,

F1-score, AUC, and confusion matrix) ensures a comprehensive and

meticulous performance analysis. This approach guarantees that

developed models excel not only in overall performance but also

demonstrate efficiency and reliability in handling specific classes.

Such a multi-level evaluation framework lays a solid foundation for

enhancing model performance.

3 Result

3.1 Ablation experiments

To validate the effectiveness of the proposed method,

systematic ablation experiments were conducted to analyze

classification performance under various model structure

combinations. All models used identical random initialization

seeds and data augmentation strategies to ensure result reliability

and comparability. Using the original ResNet as the baseline

model, each experimental group explored the impact of adding

different layers of wavelet modules, CBAM modules, and their

mixed configurations on model performance. The experimental

results are shown in Table 1.
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As shown in Table 1, the standalone addition of wavelet

modules yielded insignificant performance improvements,

whereas incorporating CBAM modules led to a gradual

performance enhancement with increasing module layers. In the

mixed-configuration group, the “ResNet + three-layer wavelet +

three-layer CBAM” combination achieved optimal results in

accuracy, F1-score, and precision, demonstrating its significant

enhancement of model classification performance and validating

the effectiveness of the proposed method.

3.2 Statistical significance tests

Paired t-tests were conducted between the ResNet18 baseline

model and the WARN model to systematically evaluate

differences in five key classification performance metrics. Data

from three independent experiments are shown in Table 2, with

each experiment recording the performance of ResNet18 and

WARN in accuracy (Acc), F1-score, AUC, precision, and recall.

The mean differences, T-statistics, and p-values for each metric

are presented in Table 3.

The WARN model demonstrated statistically significant

improvements in accuracy, F1-score, and recall. Specifically,

accuracy increased by an average of 1.86% (p = 0.041), F1-score

by 1.30% (p = 0.0083), and recall by 1.86% (p = 0.041), indicating

that the wavelet feature extraction and CBAM attention

mechanism effectively enhanced the model’s ability to identify

positive samples and improved overall classification performance.

However, the AUC metric showed a minor 0.85% decrease

(p = 0.0498), a statistically significant change suggesting potential

reductions in discriminant stability across different classification

thresholds. Although precision increased by 0.35%, the p-value of

0.512 did not reach statistical significance, indicating unclear

effectiveness in reducing false positives.

Pooling data from three experiments, WARN consistently

outperformed the ResNet18 baseline model, particularly in

identification capability and overall accuracy. While the

enhancement strategy positively impacted key performance metrics,

the decrease in AUC highlights a need to monitor discriminant

stability in practical applications, which could be addressed through

further optimization to balance metric performance.

3.3 Experimental results

To systematically assess the classification efficiency of different

network architectures, comprehensive metric tests were conducted

on ResNet-18, ResNet-50, Swin Transformer v2, EfficientNet,

Vision Transformer (ViT), and the WARN model. Table 4

details the runtime, accuracy (Acc), F1-score, AUC, precision,

and recall of each model on the test set, while Figure 6 visually

presents the horizontal comparison trends of core metrics.

The table presents runtime and classification performance

metrics for six deep learning models. In terms of runtime, ResNet-

18 was the fastest (1.711 h), while Vision Transformer (ViT) was

the slowest (11.42 h). Swin Transformer v2 and ViT demonstrated

superior performance across multiple metrics: Swin Transformer

v2 achieved the highest accuracy (90.71%) and F1-score (92.20%),

whereas ViT ranked first in AUC (98.77%). The WARN model

showed a shorter runtime (1.881 h) alongside high accuracy

(90.68%), F1-score (91.29%), and recall (90.68%), demonstrating

an optimal balance between performance and efficiency. ResNet-50

and EfficientNet exhibited relatively lower metrics, with ResNet-50

having the lowest F1-score (88.22%) and EfficientNet showing

slightly lower accuracy (88.75%) compared to other models.

TABLE 1 Ablation study results.

Models ACC F1 AUC Precision Recal

ResNet (Original) 0.8889 0.8984 0.9867 0.9222 0.8889

ResNet + One Wavelet

Convolution Layer

0.8704 0.8900 0.9809 0.9302 0.8704

ResNet + Two Wavelet

Convolution Layers

0.8938 0.8892 0.9784 0.8993 0.8938

ResNet + Three Wavelet

Convolution Layers

0.8933 0.8925 0.9762 0.9041 0.8933

ResNet + Four Wavelet

Convolution Layers

0.8848 0.8869 0.9758 0.9028 0.8848

ResNet + One CBAM Layer 0.8860 0.8978 0.9854 0.9252 0.8860

ResNet + Two CBAM Layers 0.8904 0.8993 0.9840 0.9211 0.8904

ResNet + Three CBAM Layers 0.8973 0.8975 0.9875 0.9101 0.8973

ResNet + Four CBAM Layers 0.9005 0.9002 0.9856 0.9119 0.9005

ResNet + One Wavelet

Convolution Layer + One

CBAM Layer

0.8660 0.8807 0.9826 0.9156 0.8660

ResNet + Two Wavelet

Convolution Layers + Two

CBAM Layers

0.8918 0.8867 0.9750 0.8968 0.8918

ResNet + Three Wavelet

Convolution Layers + Three

CBAM Layers

0.9068 0.9129 0.9750 0.9331 0.9068

ResNet + Four Wavelet

Convolution Layers + Four

CBAM Layers

0.9030 0.9053 0.9795 0.9223 0.9030

ResNet (Original) 0.8889 0.8984 0.9867 0.9222 0.8889

ResNet + One Wavelet

Convolution Layer

0.8704 0.8900 0.9809 0.9302 0.8704

TABLE 2 Comparative experimental results: ResNet18 vs. WARN.

Experiment no. Model type Acc f1 Auc Precision Recall

1 ResNet18 0.888945 0.898404 0.986708 0.922182 0.888945

1 WARN 0.906843 0.912900 0.975025 0.933109 0.906843

2 ResNet18 0.891713 0.906946 0.989607 0.936012 0.891713

2 WARN 0.917391 0.920868 0.984724 0.931775 0.917391

3 ResNet18 0.892343 0.897077 0.989067 0.918552 0.892343

3 WARN 0.904606 0.907744 0.980022 0.922250 0.904606
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Overall, Swin Transformer v2 and ViT excelled in performance,

while WARN stood out for its high performance and fast runtime,

making it an efficient and accurate choice. Furthermore, a detailed

analysis of the confusion matrix in Figure 7 allows for further

identification of specific misclassification patterns by examining the

frequency of predictions across categories.

To assess the classification performance of different vision

models in retinal diseases, three core metrics—Precision, Recall,

and F1-Score—were calculated based on confusion matrices. The

experiment involved six models [ResNet-18, ResNet-50, Swin

Transformer v2, EfficientNet, Vision Transformer (ViT), and

WARN] for classifying seven retinal diseases, including age-

related macular degeneration (AMD) and diabetic macular

edema (DME). The table below presents detailed evaluation

results for each model across disease categories, reflecting their

identification accuracy, positive sample capture capability, and

comprehensive balance performance. Specific findings are shown

in Table 5.

TABLE 3 Statistical analysis of performance differences: mean differences, T-statistics, and p-values.

Metric Average difference (enhanced - baseline) t-statistic p-value Significant change

Accuracy (Acc) +0.0186 −4.7860 0.0410 ✅ Significant improvement

F1 score +0.0130 −10.9276 0.0083 ✅ Significant improvement

AUC −0.0085 4.3130 0.0498 ❌ Significant decrease

Precision +0.0035 −0.7907 0.5120 No significant difference

Recall +0.0186 −4.7860 0.0410 ✅ Significant improvement

TABLE 4 Experimental results of ResNet-18, ResNet-50, Swin Transformer v2, EfficientNet, vision transformer, and WARN.

Models Time (hr) Acc (%) f1 (%) Auc (%) Precision (%) Recall (%)

ResNet-18 1.711 88.89% 89.84% 98.67% 92.22% 88.89%

ResNe-50 5.666 89.09% 88.22% 97.86% 88.02% 89.09%

Swin Transformer v2 7.707 90.71% 92.20% 98.69% 94.55% 90.71%

EfficientNet 4.609 88.75% 88.42% 97.83% 89.28% 88.75%

Vision Transformer 11.42 90.67% 91.84% 98.77% 93.67% 90.67%

WARN 1.881 90.68% 91.29% 97.50% 93.31% 90.68%

FIGURE 6

Experimental results of ResNet-18, ResNet-50, Swin Transformer v2, EfficientNet, Vision Transformer, and WARN.
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After evaluating the classification performance across multiple

retinal disease categories, significant differences in model

performance were observed. Overall, Swin Transformer v2 and

Vision Transformer (ViT) demonstrated superior performance in

Precision, Recall, and F1-Score, particularly in classifying AMD,

DME, and VID. In contrast, ResNet-50 and EfficientNet showed

moderate to weak performance in most tasks, possibly

constrained by model complexity or feature extraction capability.

The proposed WARN method exhibited excellent

comprehensive performance across key metrics. Notably, it

achieved Precision, Recall, and F1-Score of 0.9737 for VID,

highlighting strong discriminative ability. For DME and RAO,

WARN’s Recall approached or reached perfect scores, indicating

exceptional positive sample identification—critical for clinical

scenarios demanding low missed diagnosis rates. In RVO

classification, while WARN’s Recall was relatively low (0.7021),

its perfect Precision (1.0) ensured highly reliable predictions,

making it suitable for tasks intolerant of misdiagnosis. However,

WARN showed notably lower Precision (0.7958) for the normal

(NO) category, revealing a tendency to misclassify abnormal

images as normal. This underscores the need for future

optimization, such as enhancing normal sample learning or

introducing stronger discriminative mechanisms.

In summary, WARN demonstrates robust and competitive

performance across diverse disease classifications, excelling in

Precision and select Recall metrics, which highlights its potential

as an auxiliary diagnostic tool. However, improvements are

needed to balance Recall and Precision and enhance normal

category identification.

3.4 Performance validation — based on
retinal disease data from Shanxi Eye
Hospital

Table 6 presents the model’s performance across different

retinal disease classifications using the dataset provided by the

Shanxi Eye Hospital. Figure 8 illustrates the WARN model’s

performance analysis based on the Shanxi Eye Hospital dataset,

including a confusion matrix, the number of correctly classified

samples, and the accuracy rate for each category.

First, in the age-related macular degeneration (AMD) category,

there were 296 total samples, all of which were correctly identified

as true positives, resulting in a 100% accuracy rate for the WARN

model in this category. Next, the diabetic macular edema (DME)

category included 77 samples, of which 53 were correctly

FIGURE 7

Confusion matrices of ResNet-18, ResNet-50, Swin Transformer v2, EfficientNet, Vision Transformer, and WARN.
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identified as true positives, yielding an accuracy rate of 67.95% for

the WARN model. In the epiretinal membrane (ERM) category,

with 229 total samples, 210 were correctly identified as true

positives, leading to a WARN model accuracy of 91.70%. For the

normal fundus image (NO) category, there were 108 samples, 92

of which were correctly identified, resulting in an 85.19%

accuracy rate for the WARN model. The retinal artery occlusion

(RAO) category had 11 samples, 6 of which were correctly

identified, giving the WARN model an accuracy rate of 54.55%.

The retinal vein occlusion (RVO) category was based on 83

samples, 56 of which were correctly identified, resulting in a

67.47% accuracy rate for the WARN model. Finally, in the

vitreomacular interface disease (VID) category, 128 out of 138

total samples were correctly identified as true positives, yielding a

WARN model accuracy rate of 92.75%. These data

comprehensively detail the WARN model’s performance in

various retinal disease classifications.

3.5 Grad-CAM

To gain a deeper understanding of the model’s decision-

making process and validate its reliability in practical

applications, we employed Grad-CAM (Gradient-weighted Class

Activation Mapping) technique. As an effective visualization

method, Grad-CAM generates heatmaps by calculating the

gradients of the target class with respect to the feature maps

output by the convolutional layers, thereby intuitively

demonstrating the regions of the image that the model focuses

on when making predictions. Specifically in our study, the last

layer of the WARN model was selected as the target layer for

Grad-CAM. By applying the Grad-CAM technique to the images

in the test set, we generated corresponding heatmaps, which are

presented in Figure 9. These heatmaps clearly reveal the model’s

focus on lesions of different types of retinal diseases. We overall

framed the retinal areas with lesions on the images. From the

images, it can be seen that the model pays high attention to the

lesion areas.

4 Discussion

This study integrates the CBAM attention mechanism and

wavelet convolution based on ResNet to construct a network

structure named WARN. Through ablation experiments,

significance tests, and comparative experiments, the effectiveness

and performance advantages of the proposed model are

systematically verified. Compared with previous studies, this

work has the following prominent features: First, it is committed

to achieving single-shot synchronous classification of seven

retinal diseases, significantly improving diagnostic efficiency;

second, it uses the latest public OCT image dataset for training,

TABLE 5 The precision, recall, and F1-score of ResNet-18, ResNet-50,
Swin Transformer v2, EfficientNet, vision transformer, and WARN across
various disease categories.

Models Precision Recall F1-Score

AMD ResNet-18 0.9931 0.9638

ResNet-50 0.9874 0.9450

Swin v2 0.9946 0.9799

EfficientNet 0.9929 0.9409

Vision Transformer 0.9932 0.9785

WARN 0.9902 0.9490

DME ResNet-18 0.8442 1.0000

ResNet-50 0.8205 0.9846

Swin v2 0.8889 0.9846

EfficientNet 0.8533 0.9846

Vision Transformer 0.9155 1.0000

WARN 0.8667 1.0000

ERM ResNet-18 0.9403 0.8750

ResNet-50 0.8889 0.8889

Swin v2 0.9420 0.9028

EfficientNet 0.8667 0.9028

Vision Transformer 0.9014 0.8889

WARN 0.9054 0.9306

NO ResNet-18 0.8361 0.9808

ResNet-50 0.8054 0.9551

Swin v2 0.8757 0.9936

EfficientNet 0.8095 0.9808

Vision Transformer 0.8786 0.9744

WARN 0.7958 0.9744

RAO ResNet-18 1.0000 0.7273

ResNet-50 0.8182 0.8182

Swin v2 1.0000 0.8182

EfficientNet 1.0000 0.7273

Vision Transformer 1.0000 0.8182

WARN 1.0000 0.8182

RVO ResNet-18 0.9167 0.7021

ResNet-50 0.8947 0.7234

Swin v2 0.9444 0.7234

EfficientNet 0.8250 0.7021

Vision Transformer 0.9474 0.7660

WARN 1.0000 0.7021

VID ResNet-18 0.9250 0.9737

ResNet-50 0.9459 0.9211

Swin v2 0.9730 0.9474

EfficientNet 0.9024 0.9737

Vision Transformer 0.9211 0.9211

WARN 0.9737 0.9737

TABLE 6 Analysis of WARN’s performance based on the dataset from Shanxi Eye Hospital: confusion matrix, correct classification counts, and accuracy
rates by category.

Models AMD
accuracy (%)

DME
accuracy (%)

ERM
accuracy (%)

NO
accuracy (%)

RAO
accuracy (%)

RVO
accuracy (%)

VID
accuracy (%)

True Positives 296 53 210 92 6 56 128

Total Samples 296 77 229 108 11 83 138

WARN 100 67.95 91.70% 85.19 54.55 67.47 92.75
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FIGURE 8

Analysis of WARN’s performance based on the dataset from Shanxi Eye Hospital: confusion matrix, correct classification counts, and accuracy rates

by category.

FIGURE 9

Employing Grad-CAM on the OCTDL test Set.
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ensuring the model’s generalization ability and cutting-edge nature;

in addition, it still achieves excellent classification performance

with a short training time, demonstrating good practical value.

Finally, the model was tested and analyzed on a private dataset

provided by the Shanxi Eye Hospital, further verifying its

applicability in actual clinical scenarios.

Compared with previous studies, in terms of the complexity of

the classification task, most existing studies only focus on the

classification of single diseases or up to three to four types of

retinal diseases (21, 36–38), while the WARN model proposed in

this paper is committed to achieving single-shot synchronous

classification of seven common retinal diseases, greatly improving

clinical diagnostic efficiency and practicality. Second, in terms of

network structure design, existing methods mostly adopt

standard convolutional neural network structures, such as VGG,

ResNet, or their lightweight variants (20, 39–41), while this paper

integrates the CBAM attention mechanism and wavelet

convolution module based on ResNet. The introduction of

CBAM enables the model to focus on the lesion area and

enhance key feature expression (42), while wavelet convolution

enhances the multi-scale texture modeling ability of images,

helping to capture subtle pathological changes in OCT images,

thereby improving overall performance without significantly

increasing the number of parameters. Third, in terms of data

usage and generalization ability, this paper uses the latest public

OCT image dataset for training. Compared with the use of

specific datasets in early work (19), it ensures the model’s

cutting-edge nature and generalization ability. In addition, in

terms of model efficiency and practical value, although many

studies have achieved high classification accuracy (43, 44), they

often rely on long training times or complex network structures,

limiting their practical deployment possibilities; while this paper

achieves excellent performance in a short training time and has

good engineering implementation potential. Finally, in terms of

clinical applicability verification, different from most studies that

only evaluate model performance based on public datasets, this

paper further tests and analyzes the model on a private dataset

provided by the Shanxi Eye Hospital, verifying its stability and

reliability in real clinical scenarios. In summary, WARN

performs well in classification granularity, network structure,

training efficiency, and clinical adaptability, providing an efficient

solution for intelligent auxiliary diagnosis of retinal diseases.

4.1 Discussion on ablation experiments

To verify the effectiveness of the proposed method, we

conducted systematic ablation experiments to compare the

classification performance under various model structure

combinations. Using the original ResNet as the baseline model, it

achieved an accuracy (ACC) of 0.8889, an F1 score of 0.8984,

and an AUC value of 0.9867, demonstrating good overall

classification ability. On this basis, wavelet transform modules

and CBAM attention mechanisms were introduced respectively

for comparative experiments. The results show that the wavelet

module improves the model’s ability to capture image detail

features to a certain extent, with the three-layer wavelet structure

performing best (ACC = 0.8933, F1 = 0.8925), but performance

tends to decline as the number of layers increases, possibly due

to redundant information introduction or overfitting. In contrast,

the CBAM module significantly improves model performance,

especially showing more stable gain effects when stacking

multiple layers. The three-layer CBAM structure achieves the

optimal AUC value (0.9875), while the four-layer CBAM

performs best in ACC (0.9005) and F1 (0.9002), indicating that

CBAM can effectively enhance the model’s ability to focus on

key features.

To further explore the synergistic effects between different

modules, we also tested the hybrid structure of wavelet and

CBAM. The results show that the “ResNet + three-layer

wavelet + three-layer CBAM” combination exhibits the strongest

comprehensive performance: accuracy reaches 0.9068, F1 score is

as high as 0.9129, precision is 0.9331, and recall is 0.9068.

Although its AUC value (0.9750) is slightly lower than that of

the pure CBAM model, it outperforms all other configurations in

the remaining core indicators, demonstrating the complementary

advantages of combining wavelet transform and CBAM attention

mechanism in feature extraction and discriminative ability. The

effectiveness of the fusion strategy is verified through systematic

experiments, and the joint structure of “three-layer

wavelet + three-layer CBAM” is confirmed as a promising

improvement scheme, so this fusion strategy is selected in

subsequent experiments.

4.2 Discussion on significance experiments

By performing paired t-tests between the ResNet18 baseline

model and WARN, we systematically evaluated their differences

in five key classification performance indicators. The results show

that the enhanced model exhibits statistically significant

improvements in accuracy (Acc), F1 score, and recall (Recall).

Specifically, the accuracy increased by an average of 1.86%

(p = 0.041), the F1 score by 1.30% (p = 0.0083), and the recall by

1.86% (p = 0.041). These results indicate that the introduced

wavelet feature extraction and CBAM attention mechanism

effectively enhance the model’s ability to recognize positive

samples, thereby improving overall classification performance.

To comprehensively evaluate the performance of WARN in

retinal disease classification, we conducted comparative

experiments with several current mainstream deep learning

models, including ResNet-18, ResNet-50, Swin Transformer v2,

EfficientNet, and Vision Transformer (ViT). Evaluation metrics

cover runtime (training duration), accuracy (acc%), F1 score

(f1%), AUC value (auc%), precision (precision%), and recall

(recall%), with all results validated on the same test set to ensure

fairness and comparability. In terms of operational efficiency,

WARN only requires 1.881 h to complete the training process,

slightly higher than ResNet-18 (1.711 h) but significantly better

than other complex models such as Swin Transformer v2

(7.707 h) and Vision Transformer (11.42 h). This advantage

makes WARN more suitable for practical deployment and
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clinical applications, especially in resource-constrained or fast-

response scenarios.

In terms of classification performance, WARN demonstrates

promising results: accuracy (acc) is 90.68%, second only to Swin

Transformer v2 (90.71%) and superior to ResNet-50 (89.09%),

ResNet-18 (88.89%), and EfficientNet (88.75%); the F1 score is

91.29%, ranking third among all models, slightly lower than Swin

Transformer v2 (92.20%) and Vision Transformer (91.84%),

indicating its capability to balance precision and recall; precision

is 93.31%, second only to Swin Transformer v2 (94.55%),

demonstrating high reliability in predicting positive samples;

recall is 90.68%, on par with Swin Transformer v2 and

significantly better than ResNet-18 (88.89%) and EfficientNet

(88.75%), indicating the model’s effectiveness in identifying more

true positive cases; the AUC value is 97.50%, slightly lower than

Vision Transformer (98.77%), Swin Transformer v2 (98.69%),

and ResNet-18 (98.67%), but still maintaining strong

classification discriminative ability while ensuring efficient

training speed.

Comprehensively, although Swin Transformer v2 has slight

advantages in indicators such as accuracy, F1 score, and AUC, its

high computational cost limits practicality; Vision Transformer,

despite the best AUC performance, requires 11 h of training,

making it difficult to meet real-time or low-latency requirements.

In contrast, WARN achieves high-level performance in all

metrics while maintaining low training overhead, reflecting its

excellent balance between accuracy and efficiency.

Furthermore, by introducing the wavelet transform and CBAM

attention mechanism, WARN can better capture texture details and

lesion boundary information in retinal images, thereby enhancing

the ability to identify early minor lesions. As a deep learning

model integrating wavelet convolution, residual connections, and

attention mechanisms, WARN demonstrates superior

comprehensive performance in retinal disease classification tasks.

It not only outperforms or approaches existing mainstream

models in multiple key evaluation indicators but also has

significant advantages in training efficiency.

4.3 Discussion on confusion matrix

Through the detailed analysis of the confusion matrix in

Figure 7, we can further understand the number of times each

category is predicted into various categories, thereby identifying

specific types of misclassification issues. WARN shows significant

improvements in specific categories (such as ERM and RAO),

reflecting the effectiveness of CBAM and wavelet convolution

modules—CBAM focuses on key areas through spatial and

channel attention, while wavelet convolution expands the

receptive field and enhances the capture of local texture and

global structure (especially in categories with rich lesion details

like ERM and VID). First, in ERM (epiretinal membrane)

detection, recall increased from 87.50% in ResNet-18 to 93.06%,

a 5.56 percentage point improvement, and the F1 score also rose

from 90.68% to 91.78%. This improvement benefits from the

wavelet convolution module’s more effective capture of local

details (such as membranous structures) and the CBAM

attention mechanism’s weighted optimization of feature maps,

reducing confusion with normal samples (NO). Analysis of the

confusion matrix shows a significant reduction in misdiagnosis:

ResNet-18 had 9 false negatives (FN), while WARN only had 5

FN. In the RAO (retinal artery occlusion) task, due to the

scarcity of such samples (only 11 cases), they are easily

misdiagnosed as normal samples. However, WARN enhances the

ability to extract vascular occlusion features by introducing

wavelet convolution, increasing recall from 72.73% to 81.82%,

reaching levels comparable to Swin and ViT, and the F1 score

leaped from 84.21% to 90.00%. Meanwhile, the number of false

negatives decreased from 3 to 2, further verifying the model’s

enhanced sensitivity to minority categories. For VID

(vitreomacular interface disease), although ResNet-18 already had

a high recall (97.37%), WARN maintained the same recall while

increasing the F1 score from 95.95% to 97.37%. This primarily

attributes to the CBAM attention mechanism’s priority

processing of global features (such as macular traction),

effectively reducing the false negative rate. Additionally, while

recall rates for AMD and NO categories slightly decreased

(96.44%→94.90% and 98.08%→97.44%, respectively), F1 scores

remained at high levels (AMD: 97.06%; NO: 86.86%), indicating

that the model pays more attention to minority categories in

resource allocation, and overall classification performance

remains competitive. DME and RVO showed stable performance,

with DME maintaining a 100% recall rate. Overall, compared

with ResNet-18, WARN excels in key disease categories such as

ERM, RAO, and VID, reflecting CBAM’s ability to reasonably

allocate attention weights and wavelet convolution’s advantages

in expanding the receptive field and capturing lesion details. The

improvement in F1 score indicates that the model is more robust

and reliable in clinical practical applications.

4.4 Discussion on hospital
experiment results

Using the constructed WARN to test the dataset provided by

Shanxi Eye Hospital, the test results are shown in Table 6 and

Figure 8, with an accuracy of 89.18%, precision of 79.94%, and

recall of 90.85%. For age-related macular degeneration (AMD),

the model achieved 100% accuracy, with both the number of true

positives (TP) and total samples being 296, indicating the

model’s excellent recognition ability in this category with almost

no false positives. Analysis of misclassification cases in the test

set reveals that some DME images were incorrectly classified as

AMD (age-related macular degeneration) or ERM (epiretinal

membrane), mainly because the lesion features of DME and

AMD are very similar in some cases, especially in macular region

changes, making it difficult for the model to distinguish between

the two diseases. Additionally, some images contain not only

DME lesions but also other types of lesions such as ERM, further

increasing the complexity of classification. Since these images

have multiple lesion features simultaneously, the model may tend

to select more obvious or prominent feature categories for
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classification, leading to errors. For the epiretinal membrane

(ERM) category, the model demonstrated high-level accuracy at

91.70%, with TP = 210 and total samples = 229, indicating

significant effectiveness in handling this category. The

classification accuracy for normal (NO) images was 85.19%, with

TP = 92 and total samples = 108, showing good performance but

still with room for improvement. For the RAO (retinal artery

occlusion) and RVO (retinal vein occlusion) categories, the

model performed relatively poorly, with accuracies of 54.55% and

67.47%, respectively. In-depth analysis concludes that one main

reason is insufficient sample quantity, which is clearly inadequate

for the model to fully learn the features of these diseases. The

small sample size directly limits the model’s learning ability,

causing poor performance when facing new, unseen data.

Additionally, the huge difference in sample quantity between

different categories in the dataset exacerbates the class imbalance

problem, possibly leading the model to pay more attention to

categories with more samples during training while ignoring the

less-sampled RAO and RVO. Finally, in the vitreomacular

interface (VID) category, the model also performed excellently,

with an accuracy of 92.75%, TP = 128, and total samples = 138.

Through this series of test results, we fully verified the

effectiveness and reliability of the constructed network model.

4.5 Limitations and future directions

The application of AI-assisted diagnostic systems in

ophthalmic clinical practice holds immense promise. By

leveraging deep learning to automatically analyze OCT images,

AI can help clinicians rapidly diagnosis for multiple retinal

diseases, thereby improving diagnostic efficiency and reducing

the incidence of misdiagnosis and missed diagnosis. Especially

for dynamic lesions requiring long-term monitoring, such as

different stages of retinal vein occlusion, AI can provide

continuous and consistent assessment results to assist doctors in

formulating treatment plans. Additionally, AI-assisted diagnosis

contributes to scientific basis for personalized treatment

regimens, enhancing patient management and

therapeutic outcomes.

Despite the achievements of this study, several limitations need

to be addressed. First, the dataset size is limited, covering only

seven common retinal diseases, which undoubtedly restricts the

model’s application scope. Second, insufficient data diversity is a

notable issue—for example, uneven ethnic distribution in

samples and single OCT device models—factors that may affect

the model’s universality and accuracy. Meanwhile, inadequate

dataset samples and the presence of multiple lesion types in

single OCT images impose higher requirements on accurate

annotation and model training, potentially leading to incomplete

model learning or bias. These issues highlight the need for

practical improvements in future research to enhance model

robustness and applicability.

To further improve the diagnostic performance of AI models, a

potential direction is integrating multimodal data, such as optical

coherence tomography angiography (OCTA). Notably, OCTA

provides detailed information on retinal microcirculation, which

is crucial for the diagnosis and differentiation of various retinal

diseases. Additionally, constructing multimodal models by

incorporating clinical metadata (e.g., disease stage) can further

enhance classification accuracy (45). By integrating multimodal

data, we can obtain more comprehensive pathological

information to improve diagnostic accuracy. Furthermore,

developing real-time AI systems and seamlessly integrating them

into existing clinical workflows (e.g., PACS systems) represents

an important future direction. Such systems can not only provide

clinicians with immediate diagnostic suggestions but also

optimize medical resource allocation, further promoting the

practical application of AI in ophthalmology. In follow-up

studies, expanding sample sizes through multicenter collaboration

—employing federated learning techniques to allow distributed

parameter updates for joint model training without sharing raw

data—can reduce class imbalance and enhance the model’s

ability to learn features of various diseases (46). Through

continuous technological innovation and interdisciplinary

collaboration, we eagerly anticipate AI playing a more significant

role in the diagnosis and treatment of retinal diseases in the future.

5 Conclusion

This study developed and validated a deep-learning algorithm,

WaveAttention-ResNet (WARN), to enhance the classification

accuracy of seven common retinal diseases in optical coherence

tomography (OCT) images. By integrating wavelet convolution to

expand the model’s receptive field and the CBAM attention

mechanism to precisely allocate attention weights across spatial

and channel dimensions of OCT images, WARN enables

effective capture of both local and global features. Experimental

results demonstrate that in the public OCTDL dataset, ablation

experiments and significance tests confirmed WARN’s

effectiveness: it achieved 90.68% accuracy, 91.29% F1 score,

97.50% AUC, 93.31% precision, and 90.68% recall with relatively

short training time. Additionally, in an independent test dataset

from Shanxi Eye Hospital, the model performed robustly,

yielding 89.18% accuracy, 90.85% recall, and 79.94% precision.

These findings validate WARN’s efficiency and feasibility for

retinal disease classification. More importantly, this research

highlights the non-negligible value and broad prospects of AI

technology in auxiliary medical diagnosis. Future work will

further optimize model performance and explore its applications

in broader medical image analysis tasks to advance

diagnostic efficiency.
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