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Purpose: Brain tumor segmentation with MRI is a challenging task, traditionally

relying on manual delineation of regions-of-interest across multiple imaging

sequences. However, this data-intensive approach is time-consuming. We

aimed to optimize the process by using a deep learning (DL) based model

while minimizing the number of MRI sequences required to segment gliomas.

Methods: We trained a 3D U-Net DL model using the annotated 2018 MICCAI

BraTS dataset (training dataset, n= 285), focusing on sub-segmenting

enhancing tumor (ET) and tumor core (TC). We compared the performances of

models trained on four different combinations of MRI sequences: T1C-only,

FLAIR-only, T1C+ FLAIR and T1+ T2+ T1C+ FLAIR to evaluate whether a

smaller MRI data subset could achieve comparable performance. We evaluated

the performance on the four different sequence combinations using 5-fold

cross-validation on the training dataset, then on our test dataset (n= 358)

consisting of samples from a separately held-out 2018 BraTS validation set

(n=66) and 2021 BraTS datasets (n= 292). Dice scores on both cross-validation

and test datasets were assessed to measure model performance.

Results: Dice scores on cross-validation showed that T1C + FLAIR (ET: 0.814, TC:

0.856) matched or outperformed those of T1 + T2 + T1C + FLAIR (ET: 0.785, TC:

0.841), T1C-only (ET: 0.781, TC: 0.852) and FLAIR-only (ET: 0.008, TC: 0.619).

Results on the test dataset also showed that T1C + FLAIR (ET: 0.867, TC:

0.926) matched or outperformed those of T1 + T2 + T1C+ FLAIR (ET: 0.835,

TC: 0.908), T1C-only (ET: 0.726, TC: 0.928), and FLAIR-only (ET: 0.056, TC:

0.543). T1C + FLAIR excelled in both ET and TC, exceeding the performance of

the four-sequence dataset. T1C-only matched T1C+ FLAIR in TC

performance. Similarly, T1C and T1C + FLAIR also outperformed in ET

delineation by sensitivity (0.829) and Hausdorff distance (5.964) on the test

set. Across all configurations, specificity remained high (≥0.958). T1C

performed well in TC delineation (sensitivity: 0.737), but the inclusion of all

sequences led to improvement (0.754). Hausdorff distances clustered in a

narrow range (17.622–33.812) for TC delineation across the configurations.

Conclusions: DL-based brain tumor segmentation can achieve high accuracy

using only two MRI sequences (T1C + FLAIR). Reduction of multiple sequence

dependency may enhance DL generalizability and dissemination in both

clinical and research contexts. Our findings may ultimately help mitigate

human labor intensity of a complex task integral to medical imaging analysis.
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1 Introduction

In managing brain tumors, differentiating viable tumor from

necrosis or peritumoral edema and accurately delineating tumor

margins are crucial for staging, treatment planning, monitoring

tumor growth, assessing treatment response, and informing

clinical outcomes, such as survival. Accurate tumor segmentation

discriminates the pathologic lesion from the surrounding tissue,

and extraction of tumor-specific features from the segmentation

have had utility in correlating with tumor biomarkers and

predicting clinical outcomes (1). However, manual tumor

segmentation is time-intensive and subject to inter-operator

variability (2, 3). To facilitate the implementation of

segmentation tasks in the clinical setting, artificial intelligence

(AI)-based computational models, such as deep learning (DL)

algorithms are increasingly being applied in research settings

(3–7). Developing accurate tumor segmentation algorithms is a

complex problem due to substantial spatial and structural

variability among brain tumors, along with the challenges of

segmenting diffusely infiltrating tumors, such as gliomas (8). In

addition, building an algorithm that can successfully segment

both high- and low-grade gliomas (HGGs and LGGs) is

challenging (8, 9). Furthermore, the requirement for large

datasets in training DL algorithms can be burdensome.

The requirement for large datasets is typified in the Brain Tumor

Segmentation (BraTS) Challenges (10) which represent some of the

highest standards for evaluating and benchmarking evolving DL

methods for brain tumor segmentation tasks. To examine different

methodologic approaches, the combination of four brain magnetic

resonance imaging (MRI) sequences (T1 + T1C + T2 + FLAIR) are

commonly used as an accepted requisite for achieving high

performances (11–13) in DL models. However, the burden of the

full-sequence dataset creates a barrier to technology dissemination

and practical applicability in the real-world. We thus hypothesized

that a reduced sequence dataset could achieve comparable

performance as the full dataset and sought to find the most

informative minimal subset of MRI sequences.

First, rather than exhaustively evaluate all possible

combinations, particularly those that were unlikely to yield

clinically meaningful results (e.g., non-enhanced T1 and T2

without FLAIR), we chose to prioritize T1C and FLAIR as these

sequences have individually demonstrated high tumor delineation

capabilities both in clinical practice (13) and in our own work.

Second, we fixed the methodological algorithm and varied only

the MRI configurations. Convolutional Neural Networks (CNNs)

have represented the state-of-the-art technology for brain tumor

segmentation tasks, and U-Net, a CNN, has long been a standard

in computer vision, excelling in image classification and

segmentation tasks. Indeed, U-Net based architecture, along with

its variants, have dominated as perennial winners of the BraTS

Challenge over the years (14). Vision Transformers, which are

based on the Transformer architecture originally designed for

natural language processing, have become a powerful alternative

for such computer vision tasks (15). However, their

disadvantageous features make them less suitable for our study,

including the requirement for large datasets to perform well, a

tendency to overfit on smaller datasets, and the higher

computational cost compared with the U-Net. In contrast, U-Net

was considered well-suited for our study objective given its high

performance on smaller datasets and computational efficiency –

both features that promote usability in resource-constrained real-

world environments (16).

We chose the 3D U-Net (17), a commonly used DL

architecture and a variation of the Fully Convolutional Network

(18), designed for biomedical image segmentation (19, 20). Using

this architecture, we performed semantic segmentation by

labeling every voxel of tumor region as tumor core (TC) or

enhancing tumor (ET). TC comprised both enhancing and non-

enhancing tumor subregions.

Third, we leveraged the high-quality, annotated brain tumor

segmented datasets provided by BraTS, representing a mixed

population of HGGs and LGGs. For training and validating the

3D U-Net algorithm, we used the 2018 and 2021 datasets from

BraTS (10, 21), which are benchmarked as high-quality,

standardized, neuroradiologist-annotated brain tumor data

approved by the MICCAI Society (4, 22). Each dataset consisted

of four brain MRI sequences (T1, T1C, T2, FLAIR). We tested

four different experimental conditions, or subsets of sequences, to

determine the minimum number of sequence data necessary for

training the 3D U-Net that can achieve high accurate

segmentation on our test dataset. We compared the final

performances of the 3D U-Net (23) trained on the four different

subsets of sequences by reporting their respective performances on

the test dataset. For the 2018 dataset, we the built-in evaluation

portal used by BraTS was available for blinded provision of

performance metrics of our completed tumor segmentations. To

our knowledge, only one other prior work using BraTS dataset

was identified that also endeavored to identify the minimum

dataset for achieving accurate tumor segmentation (13).

In this retrospective study, our aim was to identify the

minimum number of MRI sequences needed for training a DL

algorithm capable of achieving acceptably accurate segmentations

in gliomas. The overarching objective was to enhance practical

applicability, generalizability, and dissemination of an impactful

technology in the real-world setting.

2 Materials and methods

2.1 Dataset

We used multi-sequence MRI data from the MICCAI BraTS

2018 and BraTS 2021 datasets with four sequences available (T1,

T2, FLAIR, T1C). We excluded cases that had missing sequences

in the BraTS 2021 dataset. Our training dataset consisted of 285

Abbreviations

BraTS, brain tumor segmentation challenge; MICCAI, medical image computing

and computer assisted interventions; CBICA, center for biomedical image

computing and analytics; DL, deep learning; T1/T2, T1 and T2 weighted

image; T1C, T1 weighted image with contrast; FLAIR, fluid attenuated

inversion recovery; TC, tumor core; ET, enhancing tumor; LGG/HGG, low

grade glioma/high grade glioma.

Huang et al. 10.3389/fradi.2025.1616293

Frontiers in Radiology 02 frontiersin.org

https://doi.org/10.3389/fradi.2025.1616293
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


glioma cases (210 HGGs and 75 LGGs) from the BraTS 2018

dataset (10). The test dataset consisted of 358 patients, including

66 cases from the BraTS 2018 validation dataset, combined with

292 cases from BraTS 2021. Unlike BraTS 2018, grades and

molecular markers of the tumor were not determined in BraTS

2021 (21). Except for the 66 cases from BraTS 2018, all data

were accompanied by ground-truth segmentations provided by

MICCAI, delineating semantic classifications of tumor core (TC),

enhancing tumor (ET), cystic-necrotic core, non-enhancing solid

tumor core, and edema as shown in Figure 1 (4). Our study

focused on segmenting TC and ET, which were subregions that

could be evaluated by the portal, and treated them as

independent problems by training a separate set of models for each.

2.2 Data processing

BraTS imaging data were partially preprocessed (3) and skull-

stripped to remove non-brain parenchymal structures for enhanced

training efficiency. The resolution of the scans was interpolated to

1mm3 per voxel. Since the individual patient MRI studies were

acquired from different institutions, scanners, and protocols, we

Z-normalized each image to have zero mean and unit variance.

We employed commonly applied data augmentation techniques,

including rotations, translations, image flipping and intensity

scaling. Finally, we applied one-hot encoding to the ground truth.

2.3 Tumor segmentation algorithm

We trained models based on the 3D U-Net (17) which is an

encoder-decoder style architecture with contraction layers that

capture latent information about the MRI scan, followed by

expansion layers which create an output mask. We chose not to

make major modifications to the baseline U-Net architecture (17)

and utilized the standard depth of contraction and expansion

layers of 4. Initialization of model parameters was done through

randomization. Filter size was initially set to 32, doubled at each

contraction layer up to 16×, and halved at each expansion layer.

The kernel size and the stride were set to 3 × 3 × 3 and 2 × 2 × 2,

respectively, and we added BatchNorm and Dropout (with 0.5

probability) after each convolutional layer to combat overfitting.

A final 1 × 1 × 1 convolution with softmax activation and filter

size 2 produced a probability distribution for each voxel in the

scan representing the probability of that voxel being tumor. The

predicted segmentation mask was then obtained by taking the

argmax of these probabilities.

We treated each individual voxel as a binary classification

problem (e.g., ET or not, TC or not) and encoded any tumor-

containing voxel representing the subregion of interest into the

same value. Aligning our segmentation tasks to ET and TC

regions allowed Dice score evaluation on the test dataset using

our ground truth labels on or the CBICA portal for the 66 cases.

For each tumor segmentation task, we trained on four different

experimental configurations, representing four different sets of

input MRI sequences (Figure 2) (17).

2.4 Model training

We conducted patch-based training on our 3D U-Net model

with sampled sub-volumes (patches) of samples on the training

dataset. Each patch had dimensions 80 × 80 × 80, and one epoch

evaluated 3,000 patches. Our patch selection algorithm consisted

FIGURE 1

Manual ground truth annotations in the braTS training dataset showing tumor subregions in image patches (top left) (FLAIR, T2, T1C from (A–C),

respectively) and native images with corresponding sequences bottom left, (A–C). Image patches from left to right; whole tumor consisting of TC

and edema together (yellow) in FLAIR, TC (solid and cystic-necrotic core together) (red) in T2, enhancing tumor (ET) (blue) and necrotic-cystic

core (green) in T1C. Final labels for the whole dataset combined (right) (D) shows ET (blue), cystic-necrotic core (green), non-enhancing solid

core (red) and edema (yellow). © 20XX IEEE. Reprinted with permission from IEEE Transactions on Medical Imaging from “The Multimodal Brain

Tumor Image Segmentation Benchmark (BRATS)” by Menze et al. (4).
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of randomly selecting a single 3D image with replacement from the

training set, followed by randomly sampling with replacement an

80 × 80 × 80 patch from the scan. To guarantee that the model

was not learning from patches that contained only background

voxels, we discarded patches with less than 100 tumor-containing

voxels. We trained with a batch size of 2 patches. Patch and

batch sizes were selected through trial and error to optimize two

parameters: ability to fit within a single NVIDIA GeForce RTX

2080 Ti GPU while achieving sizes that enabled efficient learning

and generalizability with adequate spatial context. Other

hyperparameter-tuning utilized cross-validation. Adam optimizer

with 0.0001 learning rate was used, along with the Dice

coefficient loss function. We trained to 60 epochs, generating

checkpoints after every 5 epochs for evaluation.

2.5 Statistical analysis

We performed 5-fold cross-validation and calculated the

median Dice score across all the samples in each held-out fold at

epoch 60. Dice score, a generally accepted metric for

segmentation tasks (24) that measures the overlap between two

sets X and Y was calculated for each fold using the formula:

Dice Score ¼
2jX > Y j

jXj þ jY j

where X and Y represent our segmentation mask and the ground

truth, respectively. To evaluate the model performance on the

training dataset, we computed the mean of the median Dice

scores across the five folds in cross-validation. We compared

performances across multiple groups using a one-way ANOVA,

alpha = 0.05, assuming unequal variances, on the cross-validation

results. We retrained each model with the full training dataset,

then applied each on the test dataset (n = 358) to assess

performance. Of the test dataset, 292 cases had accompanying

ground truth segmentations by which segmentation performance

accuracy was assessed and Dice scores calculated. The remaining

66 cases were unannotated, and Dice scores were assessed

through the CBICA portal hosted by MICCAI (25). The portal

compares uploaded segmentations with their blinded ground

truths and returns performance metrics for each

sample, including Dice scores. As a secondary set of

comparisons, we also evaluated sensitivity, specificity, and 95%

Hausdorff distance.

3 Results

We visually examined generated tumor masks to evaluate our

models qualitatively. Figure 3 is a rendition of generated tumor

sub-segmentations of a single sample from the BraTS 2018

validation dataset (20), showing raw T2, FLAIR, T1C images of a

glial tumor as well as the tumor segmentation mask with

superimposition of ET and TC.

Dice scores resulting from cross-validation on the training

dataset and from the test datasets on the four sequence subset

combinations are summarized in Table 1. Notably, while

segmentation using T1C-only performed well for TC, matching

the performance of T1C + FLAIR, the best overall performance

was obtained using the T1C + FLAIR combination. This

configuration achieved the highest Dice score for ET

segmentation and slightly improved the TC result compared to

the full four-sequence input.

FIGURE 2

Four different subsets of the four MRI sequences are passed into the 3D U-Net model to generate segmentation masks for ET and TC sub-regions (6).

Flowchart illustrating a U-Net segmentation model for tumor detection. Input imaging data includes T1C and FLAIR MRI scans.
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All models, except single sequence FLAIR, achieved good

performances in both ET and TC segmentation. In ET

segmentation (Table 1 and Figure 4, right panel), no significant

difference was noted among single sequence T1C-only,

T1C + FLAIR (doublet), and T1 + T2 + FLAIR + T1C (quadruplet)

in both cross-validation on the training dataset (Dice scores of

0.781, 0.814, and 0.785, respectively; one-way ANOVA p = 0.33),

and the test dataset (Dice scores 0.726, 0.867, and 0.835,

respectively). In contrast, FLAIR-only achieved low Dice scores

of 0.008 and 0.056, respectively. In TC segmentation (Table 1;

Figure 4, left panel, T1C performance (Dice score 0.852)

paralleled those of the T1C + FLAIR doublet (Dice score 0.856)

and T1C + FLAIR + T1 + T2 quadruplet (Dice score 0.841) in

cross-validation, as well as in the test dataset (Dice scores 0.928,

0.926, and 0.908, respectively). Single sequence FLAIR lagged in

performance in both cross-validation of the training dataset

(Dice score 0.619) and on the test dataset (Dice score 0.543),

although it performed slightly better than in ET.

The T1C + FLAIR doublet was able to perform to the same

level or even higher as any other combination of sequences on

both the ET and the TC at epoch 60. Test data results

paralleled those of cross-validation training data results across

all models. Among the test data results, T1C + FLAIR doublet

was a consistently top performer compared to other models in

both ET and TC segmentation (Table 1). The computational

time required per epoch for a single, doublet, and quadruplet

set of sequences was 7.5 minutes, 9.5 minutes, and

11 minutes, respectively.

FLAIR was the worst performing in both ET and TC

segmentation. The overall poor performance when attempting to

segment the ET on the training data (Dice score 0.008) contrasted

with the high performances of T1C, doublet, and quadruplet

models (one-way ANOVA p = 0.007) (Table 2). Performance on

the test dataset remained poor (Dice score 0.056). We observed no

correlation between the number of epochs and performance in ET

segmentation using FLAIR-only; the model exhibited an inability

to learn from the training data as performance did not improve

with increased time (Figure 4). In TC segmentation, FLAIR

consistently performed poorly compared with the three other

models (Dice score 0.620; one-way ANOVA p = 0.01, Table 2).

Examples of LGG (Figure 5) and HGG (Figure 6) are

demonstrated both with native images, ground truth segmentations

and predicted tumor segmentation masks.

In a secondary set of evaluations, we examined sensitivity,

specificity and 95% Hausdorff distance (Table 3). For EC, the

highest sensitivity (0.828) and lowest Hausdorff distance (5.964)

were observed with T1C and T1C + FLAIR, respectively,

indicating superior boundary agreement and detection

performance with minimal datasets. FLAIR-only subset resulted

in markedly lower sensitivity (0.123) and significantly higher

Hausdorff distance (170.211), suggesting poor delineation

accuracy. The inclusion of all sequences yielded similar to

slightly lower sensitivity (0.716) than with the doublet (0.75), but

FIGURE 3

An example of a tumor segmentation on a right temporal lobe glioma from the braTS 2018 validation dataset. Demonstrated from left to right are

native T2, FLAIR, T1C, and predicted tumor segmentation masks generated for ET (red) and TC (red and pink superimposed). For this case, our

T1C + FLAIR models yielded Dice scores of 0.871 and 0.916 for ET and TC segmentations, respectively.

TABLE 1 Summary of ET (enhancing tumor) and TC (tumor core)
segmentation performances by 5-fold cross-validation on the training
data and on the test dataset.

Segmentation
type

Sequence
subset

Median dice
score on the

training
dataset with
5-fold cross-
validation
(± 95% CI)

Median
dice score
on the test
dataset

Enhancing tumor T1C 0.781 (0.09) 0.726

Enhancing tumor FLAIR 0.008 (0.01) 0.056

Enhancing tumor Doublet 0.814 (0.01) 0.867

Enhancing tumor Quadruplet 0.785 (0.04) 0.835

Tumor core T1C 0.852 (0.03) 0.928

Tumor core FLAIR 0.619 (0.07) 0.543

Tumor core Doublet 0.856 (0.02) 0.926

Tumor core Quadruplet 0.841 (0.03) 0.908

CI, Confidence Interval.

Results are median dice scores at epoch 60 using four experimental imaging configurations

(T1C-only, FLAIR-only, T1C + FLAIR doublet, and T1 + T2 + T1C + FLAIR quadruplet).
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the spatial agreement (Hausdorff distance: 75.420) was better than

for FLAIR. For TC, the highest sensitivity (0.754) was achieved

using the quadruplet, followed closely by T1C (0.737), whereas

FLAIR-only segmentation again showed poor performance

(sensitivity: 0.06). Hausdorff distances in TC exhibited a

narrower range (17.622–33.811) across the sequence

combinations than with ET. Across all configurations, specificity

remained high (≥0.958), indicating strong ability to correctly

identify non-tumoral areas.

Similar to assessment by Dice scores, T1C and T1C + FLAIR

exhibited strong overall performance in ET delineation by

sensitivity, specificity, and Hausdorff distance, indicating

excellent boundary agreement, identification of non-tumoral

areas, and spatial accuracy. These results suggest that integrating

both structural (T1C) and edema-sensitive (FLAIR) information

enhances the model’s ability to accurately detect and delineate

ET regions. By these metrics, T1C also performed well in the

delineation of TC; however, the inclusion of all sequences did

lead to slight improvement. FLAIR by itself consistently

underperformed in these categories except by Hausdorff distance

and specificity in TC delineation, where it was positioned within

range of other configurations.

We further observed that model convergence was achieved

earlier than our pre-designated epoch of 60 for T1C, the doublet,

and the quadruplet sequences. At approximately epoch 15, T1C

and the doublet achieved high performance (Dice score >0.750)

for ET, while the doublet and quadruplet achieved similar high

performance for TC (Figure 4). T1C achieved high performance

in ET segmentation before epoch 10, but with episodic instability

at epochs 40 and 55. In TC segmentation, T1C demonstrated

high performance prior to epoch 10, but convergence was not

achieved until epoch 40. These results suggest that extending the

number of epochs for longer training period is not expected to

improve our findings.

Our study findings suggest that reducing the sequence

dependency to T1C + FLAIR can provide robust segmentation

performance while potentially reducing acquisition time and

computational load.

4 Discussion

Although brain tumor segmentation by AI technology has been

a key topic for the last 10 years with substantial amount of research

focus, findings demonstrated in this study offer a different point

of view by testing whether smaller subsets of MRI sequence data

are sufficient for a DL model to achieve high-performance

segmentation of subregions of glioma on 3D brain MRI images.

Our study, intentionally scoped to balance methodological

rigor with practical applicability, confirmed that a doublet

(T1C + FLAIR) sequence combination could achieve a tumor

segmentation performance comparable to—and, in some cases,

even surpassing – that of the full four-sequence model.

Although highly accurate DL-based models have been tested on

comprehensive MRI sequence sets, to our knowledge, no study has

demonstrated the ability to attenuate such data-intensive

FIGURE 4

Cross-validation results on the training dataset for TC (left) and ET (right) segmentation for each MRI sequence combination by epoch. Performance of

TC and ET segmentation, as measured by the mean of the median Dice scores across the 5 folds, is shown for each MRI sequence combination at an

interval of every 5 epochs.

TABLE 2 Summary of one-way ANOVA (alpha = 0.05, assuming unequal
variances) for across-group comparison of performances in cross-
validation for enhancing tumor (ET) and tumor core (TC)
tumor segmentations.

MRI subset combinations ET (p-value) TC (p-value)

T1C vs. doublet vs. quadruplet 0.33 0.62

FLAIR vs. T1C vs. doublet vs. quadruplet 0.007 0.01

There was no statistically significant difference in performances across T1C, the doublet

(T1C + FLAIR), and the quadruplet combinations (T1 + T2 + T1C + FLAIR), suggesting

their comparability. Adding FLAIR to the comparison led to a statistically significant

difference in both ET and TC segmentations, highlighting its notably different level

of performance.
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FIGURE 5

Native images of a LGG located in the right hemisphere are seen on top row, T1, T2, FLAIR, T1C and ground truth segmentation from left to right.

Bottom row shows predicted segmentation masks from left to right T1C-only, FLAIR-only, doublet (T1C + FLAIR) and quadruplet

(T1 + T2 + FLAIR + T1C). Red focus represents the ET where pink + red together are TC. Dice scores are; ET = 0.403/TC= 0.901 for ‘T1C-only’,

ET = 0/TC = 0.826 for ‘FLAIR-only’, ET = 0.605/TC = 0.864 for doublet and ET = 0.618/TC = 0.802 for quadruplet. T1C + FLAIR and ‘T1C-only’ masks

seem to capture the TC and ET very efficiently compared to the ground truth segmentation. Inability of ‘FLAIR-only’ sequence to detect the ET

is noteworthy.

FIGURE 6

Native images of a HGG located at the right frontobasal region are seen on top row, T1, T2, FLAIR, T1C and ground truth segmentation from left to

right. Bottom row shows predicted segmentation masks from left to right, FLAIR-only, T1C-only, doublet (T1C + FLAIR) and quadruplet

(T1 + T2 + FLAIR + T1C). Red areas represent the ET where pink + red together are TC. Dice scores are; ET = 0.452/TC= 0.872 for ‘FLAIR-only’,

ET = 0.876/TC= 0.943 for ‘T1C-only’, ET = 0.880/TC = 0.946 for doublet and ET = 0.887/TC= 0.946 for quadruplet. T1C + FLAIR mask seems to

capture the TC and ET very efficiently compared to the ground truth segmentation with high Dice score. ‘FLAIR-only’ sequence missed some of

the relatively less enhancing portions of the tumor.
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requirements with the use of a doublet MR sequence, specifically

T1C + FLAIR, for glioma segmentation (15, 26, 27). Moreover,

no previous study has addressed the challenge of minimizing the

data without compromising performance to achieve high

performance brain tumor segmentation from a clinical or

neuroradiological perspective. Dehghani et al. conducted a

similar study comparing different sequence combinations using

the BraTS 2020 challenge dataset and stated that FLAIR sequence

is the best choice for a single sequence while joint segmentation

on the entire four MR sequences would yield higher accuracy

(13). We defined the whole tumor area including enhancing and

non-enhancing parts as ‘tumor core’ unlike the given study

assessing only the enhancing parts with T1C images, which we

believe is the cause of the discrepant results. Additionally, their

study differed from our study in a few notable ways, including

execution of a simpler task that did not include tumor subregion

segmentation (TC and ET). Also, in contrast to our study, it

performed single training on each model to be applied on a

held-out test set, rather than seek model optimization through

cross-validation, then rigorously test the model on an

independent test dataset. Furthermore, our study used the

MICCAI-hosted evaluation portal for assessment of accuracy on

66 cases (18%) of the 2018 BraTS validation dataset to

minimize bias.

The ability to use smaller sequence subsets with adequate

segmentation performance can be leveraged in real-world clinical

and research settings by reducing the data requirement,

enhancing generalizability and promoting dissemination of DL

algorithms in real-world settings, where resources may be limited

and full MRI scans are unavailable. By overcoming a well-known

barrier to DL algorithm use - its dependence on data-rich

training sets - the ability to leverage smaller datasets reduces the

training time and computational burden. It also lowers the

requirement for reduced sequences used for training.

T1C-only was expected to demonstrate lower performance in

LGGs due to lack of contrast enhancement. Indeed, Dice scores

were lower in delineating ET-specific regions in LGGs compared

to HGGs. However, the global performances of ET and TC

segmentations were high regardless of tumor enhancement. Even

non-enhancing tumor parts were successfully depicted by T1C

alone. This performance may be attributable to high training

data quality owing to meticulous ground truth annotation by

experts and data diversity inclusive of a spectrum of

representative cases (16). Relatively lower Dice scores in LGGs

may be due to the challenge of the model in differentiating

peritumoral edema and non-enhancing tumor from each other

while still adequate to show accurate performance for

segmentation of the whole tumor (13). T1C + FLAIR overcame

the lower capacity of T1C in the detection of LGGs making it

the best sequence combination for the accurate segmentation of

both LGGs and HGGs.

FLAIR-only is ineffective for ET and TC segmentation and

inferior to other sequences as the signals captured do not

accurately represent the subregions of interest, likely due to the

expected decreased contrast-to-noise ratio (24). The BraTS

dataset consisted of 74% (n = 210) HGGs and 26% (n = 75) LGGs

where the former were historically defined by contrast

enhancement, and the latter typically poorly visualized with

contrast, while better captured by FLAIR. Nevertheless, LGGs did

not emerge as failure cases in these experiments, and there were

no cases where FLAIR consistently outperformed T1C. In TC

segmentation, however, FLAIR-only was at the higher end within

a range of other configurations by Hausdorff distance and

specificity. It is still possible that the superior performance of

T1C containing subsets may not persist with a higher

composition of LGGs, a hypothesis that warrants future

investigation using a dataset with a lower proportion of HGGs.

However, we also do not have verification that high and low-

grade labels provided by BraTS were defined based on the degree

to which tumors do or do not enhance with contrast.

Performance of the quadruplet model in ET segmentation was

erratic, performing worse than both T1C and doublet until epoch

60. It is possible that the quadruplet model did not converge at

60 epochs and running to higher epochs would have yielded

better results, although it would incur greater computational

burden compared to other models.

A possible limitation of this study is related to the anatomical

distribution of the tumor cases included. All the cases analyzed

were sourced from the BraTS Challenge datasets 2018 and 2021,

which exclusively feature supratentorial gliomas (4, 21).

Consequently, the segmentation performance of the proposed

approach has not been assessed for tumors located in more

complex regions such as the posterior fossa or brainstem. Future

studies including infratentorial tumor cases are warranted to

TABLE 3 Additional evaluation metrics on the test dataset across all four sequence subsets of interest in both ET (enhancing tumor) and TC (tumor
core) segmentation.

Segmentation Type Sequence subset Sensitivity Specificity Hausdorff distance (95%)

Enhancing tumor T1C 0.82889 0.99579 6.34384

Enhancing tumor FLAIR 0.1235 0.9983 170.2105

Enhancing tumor Doublet 0.74958 0.99653 5.96402

Enhancing tumor Quadruplet 0.71641 0.95821 75.41999

Tumor core T1C 0.73736 0.99797 26.84868

Tumor core FLAIR 0.06061 1 17.62156

Tumor core Doublet 0.6719 0.99724 33.81173

Tumor core Quadruplet 0.75446 0.99386 22.29662

Doublet represents T1C + FLAIR, and quadruplet represents all four sequences (T1 + T2 + T1C + FLAIR). The values for sensitivity, specificity and 95% Hausdorff distance were obtained from

the CBICA portal.
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assess the generalizability and robustness of the method across a

wider anatomical spectrum.

5 Conclusion

Limited brain MRI sequences, such as T1C + FLAIR can

achieve consistently high-performance tumor segmentation,

comparable to—and more efficiently than—comprehensive

quadruplet sequences. Our findings overcome both the barriers

of data-intensive requirements of DL algorithms and data

availability in community or resource-constrained real-world

clinical and research settings, where the acquisition of multiple-

sequence MRI scans for each patient can be cost-prohibitive and

time-consuming. With our key finding that T1C + FLAIR doublet

can achieve comparable performance to larger number of

sequences, we provide a practicable means by which automated

tumor segmentation can be disseminated and become a globally

accessible tool, including in environments facing reduced

resource availability. Ultimately, demonstration of feasibility and

practicability, as we have sought in our study, can critically

impact the adoption of artificial intelligence to meet health

care needs.
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