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Introduction: Neurofibromatosis type 2 related Schwannomatosis (NF2-SWN) is

a genetic disorder characterized by the growth of vestibular schwannomas (VS),

which often leads to progressive hearing loss and vestibular dysfunction.

Accurate volumetric assessment of VS tumors is crucial for effective

monitoring and treatment planning. Since tumor growth dynamics are often

subtle, the resolution of MRI scans plays a critical role in detecting small

volumetric changes that inform clinical decisions. This study evaluates the

impact of MRI voxel resolution on the accuracy of manual and AI-driven

volumetric segmentation of VS in NF2-SWN patients.

Methods: Ten patients with NF2-SWN, totaling 17 tumors, underwent high-

resolution MRI scans with varying voxel sizes on different MRI machines at Yale

New Haven Hospital. Tumors were segmented using both manual and AI-based

methods, and the effect of voxel size on segmentation precision was quantified

through volumemeasurements, Dice similarity coefficients, andHausdorff distances.

Results: Results indicate that larger voxel sizes (1.2 × 0.9 × 4.0 mm) significantly

reduced segmentation accuracy when compared to smaller voxel sizes

(0.5 × 0.5 × 0.8 mm). In addition, AI-based segmentation outperformed manual

methods, particularly at larger voxel sizes.

Discussion: These findings highlight the importance of optimizing voxel resolution

for accurate tumor monitoring and suggest that AI-driven segmentation may

improve consistency and precision in NF2-SWN tumor surveillance.
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neurofibromatosis type 2 related schwannomatosis, voxel size, dice score, Hausdorff
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1 Introduction

Neurofibromatosis type 2 related Schwannomatosis (NF2-SWN) is an autosomal

dominant disorder caused by mutations in the NF2-SWN tumor-suppressor gene on

chromosome 22. This condition is characterized by the development of multiple nervous

system tumors, particularly meningiomas and vestibular schwannomas (VS), often leading

to progressive hearing loss and vestibular dysfunction (1, 2). NF2-SWN management
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primarily relies on serial annual surveillance imaging to track tumor

progression and evaluate risks to adjacent critical structures, given

the limited effectiveness of pharmacologic, radiation, and surgical

treatments. Accurate volumetric assessment is essential for early

intervention and treatment planning, as subtle changes in tumor

size can have significant clinical implications.

Traditionally, VS tumor progression is evaluated using

volumetric analysis based on ellipsoid modeling, as

recommended by the Response Evaluation in Neurofibromatosis

and Schwannomatosis (REiNS) consortium (3). This approach

estimates tumor volume using the length and width of the largest

cross-section, as determined by a neuroradiologist. However,

studies exploring volumetric analysis of VS tumors have found

that ellipsoid approximations overestimate volume (Yamada

et al., 2000). As VS tumors grow, their cross-sectional

morphology often deviates from a simple ellipsoid, particularly

due to the development of extra-canalicular extensions into the

cerebellopontine angle. This results in a characteristic ‘ice cream

cone’ shape, which may contribute to volume overestimation

when using ellipsoid-based models (4).

A more precise alternative is 3D volumetric analysis, which has

been applied to NF2-SWN-associated VS (5). This technique

reconstructs tumor volume by segmenting its area across all MRI

slices, generating a highly accurate 3D representation of the tumor’s

shape and spatial relationships with surrounding structures. This

method provides greater precision in assessing tumor burden and

may help predict the onset of clinical symptoms based on

anatomical involvement. However, manual 3D segmentation

remains time-intensive and prone to interobserver variability, which

can impact the reliability of longitudinal tumor assessments.

Recent advancements in artificial intelligence (AI)-driven auto-

segmentation tools have further improved efficiency and accuracy

(6, 7). By reducing interobserver variability and segmentation time,

AI-based volumetric analysis offers a more consistent and

reproducible approach to tracking tumor growth over time.

While AI-driven segmentation enhances consistency, the

accuracy of any 3D tumor model is ultimately constrained by the

resolution of the source MRI data, which is dictated by voxel

size. Voxel volume is influenced by the field of view, matrix size,

and slice thickness (8):

Voxel Volume ¼

Field of View

Matrix Size
� Slice Thickness

Here, the field of view represents the scanned area, the matrix size

defines the number of voxels per field of view, and the slice

thickness determines the depth of each cross-section. Higher

matrix sizes yield smaller voxel dimensions and improved

resolution, while larger slice thicknesses may reduce accuracy in

volume estimation. Understanding these imaging parameters is

crucial for optimizing tumor segmentation techniques, whether

performed manually or by AI.

This study evaluates the impact of MRI voxel size on the

accuracy of manual and AI-driven volumetric segmentation of

vestibular schwannomas in NF2-SWN. Given that tumor

progression influences clinical decision-making—including the

timing of surgery or radiation therapy—precise volumetric

assessment is essential. However, current methods face limitations:

ellipsoid approximations introduce overestimation errors, while

manual 3D segmentation remains time-consuming and variable.

AI-based tools offer improved efficiency, but their accuracy

depends on underlying MRI resolution, which is dictated by voxel

dimensions (field of view, matrix size, and slice thickness). By

quantifying how voxel size affects segmentation precision, this

work aims to establish empirically supported imaging parameters

that balance accuracy with clinical feasibility. Optimizing

volumetric analysis may enhance early detection of tumor

progression, support more informed treatment decisions, and

contribute to better long-term outcomes for NF2-SWN patients.

2 Methods

2.1 Sampling

Ten randomly selected NF2-SWN patient MRIs from Yale New

Haven Health, all of whom had undergone annual brain MRIs for

vestibular schwannoma surveillance, were included in this study.

The cohort had a mean age of 49.5 years (range: 22–65 years) and

consisted of seven females and three males; two patients identified

as Hispanic. The NF2-SWN mutation was familial in two cases

and mosaic in eight. A total of 17 tumors (seven bilateral and

three unilateral VS) were analyzed. Five patients had no prior

surgical intervention, while the remaining five had undergone a

single surgery each, including two gamma knife radiosurgeries and

three open resections. This retrospective study was approved by

the Yale University Institutional Review Board. Informed consent

was waived due to the use of de-identified data. A formal power

analysis was not conducted due to the exploratory nature of this

pilot study. Future work will involve larger, statistically powered

cohorts to enable robust subgroup analysis.

Inclusion criteria for patients included patients over the age of 18

and patients with a formal diagnosis of NF2-SWN (with either uni-

or bilateral vestibular schwannomas). Exclusion criteria included

patients under the age of 18, patients with an undocumented

history of NF2-SWN, scans without contrast, scans with large

voxel sizes or scan sequences that did not allow for visualization

of the inner auditory canal. Inclusion criteria did not include

treatment status or presence of other tumors such as

meningiomas; therefore, the patient data represented both pre-

and posttreatment scans as well as those with meningiomas.

2.2 Images

All imaging was conducted at Yale New Haven Hospital (New

Haven, CT) using a combination of 1.5T Toshiba (one scan), 3T

Siemens (seven scans), or GE systems (two scans). Volumetric

analysis was performed on high-resolution, thin-slice axial T1

post-contrast MRI scans. The voxel sizes of each scan are

detailed in Table 1.
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2.3 Manual segmentation

Three researchers (M.S., N.J., and S.L.) independently

segmented the 17 original tumors using Simpleware (Synopsys,

Mountain View, CA) “Paint by Threshold” tool. Each tumor

mask was reviewed and corrected by a neuroradiologist (M.H.J.).

The final volume of each segmented tumor was then measured

using the software’s volume measurement tool to establish a

baseline prior to resampling.

2.4 3D model creation

In addition to manual segmentation, each tumor was

segmented using the AI-based auto-segmentation tool in

Simpleware, as previously described and validated by Jester et al.

Our segmentation process utilized the Simpleware platform by

Synopsys, which integrates proprietary AI-powered auto-

segmentation tools. These tools leverage a convolutional neural

network trained on large, domain-specific datasets to accurately

and efficiently segment complex anatomical structures, including

VS tumors. To ensure reliability, we validated Simpleware’s

output against ground truth annotations using metrics such as

the Dice coefficient (7). The volume of each AI-generated tumor

mask was calculated using the same volume measurement tool.

2.5 Resampling

To evaluate the effect of voxel resolution on volumetric

accuracy, the resampling function within the image processing

software was used to lower the resolution of the original MRI

images by resampling them to larger voxel sizes via linear

interpolation between neighboring voxels. Following voxel size

modification, the researchers re-segmented the tumors using both

manual and AI-based methods as described above, and the

resulting tumor volumes were measured.

We resampled each scan to four different voxel sizes

(0.5 × 0.5 × 0.8 mm, 0.8 × 0.8 × 0.9 mm, 0.8 × 0.8 × 1.6 mm, and

1.2 × 0.9 × 4.0 mm) based on their common use in clinical 3T

internal auditory canal MRI protocols (9). This range allows us

to evaluate the trade-off between spatial resolution and

segmentation accuracy in tumor volume estimation.

Segmentation accuracy across different voxel sizes and methods

(AI vs. manual) was evaluated by calculating the percentage change

in volume, Dice similarity coefficient scores, and Hausdorff

distances, using the original tumor mask as the reference.

2.6 Data analysis

Statistical significance was assessed using the Wilcoxon signed-

rank test, comparing resampled tumor volumes across different

voxel sizes. Additionally, we applied this test to evaluate differences

between AI-based and manual segmentation methods in terms of

percentage volume change, Dice similarity coefficients, and

Hausdorff distances. All statistical analyses were performed using R

(R Core Team), and visualization of volume differences, Dice

similarity coefficients, and Hausdorff distances was conducted using

ggplot2 and tidyverse (10, 11) for comparative analysis.

3 Results

3.1 Effect of voxel size on manual
segmentation volume

The analysis of percent change in manual segmentation volume

across different voxel sizes revealed significant differences when

comparing the 1.2 × 0.9 × 4.0 mm voxel size to each of the

smaller voxel sizes (Figure 1). Specifically:

0.5 × 0.5 × 0.8 mm vs. 1.2 × 0.9 × 4.0 mm: p < 0.0001

0.8 × 0.8 × 0.9 mm vs. 1.2 × 0.9 × 4.0 mm: p < 0.0001

0.8 × 0.8 × 1.6 mm vs. 1.2 × 0.9 × 4.0 mm: p < 0.0001

No significant differences were observed between the smaller

voxel sizes (p > 0.05).

3.2 Comparison of AI and manual
segmentation volume changes

For the smaller voxel sizes, no significant differences were

observed in the percentage change in volume between AI and

manual segmentation methods (Figure 2). However, for the

1.2 × 0.9 × 4.0 mm voxel size, a significant difference was

observed, with AI segmentation showing a lower percentage

change in volume compared to manual segmentation.

3.3 Manual segmentation accuracy (dice
score analysis)

Analysis of manual segmentation Dice scores demonstrated

significant differences when comparing the 1.2 × 0.9 × 4.0 mm

voxel size to smaller voxel sizes (Figure 3):

0.5 × 0.5 × 0.8 mm vs. 1.2 × 0.9 × 4.0 mm: p < 0.0001

0.8 × 0.8 × 0.9 mm vs. 1.2 × 0.9 × 4.0 mm: p < 0.0001

0.8 × 0.8 × 1.6 mm vs. 1.2 × 0.9 × 4.0 mm: p < 0.0001

No significant differences were found between smaller voxel

sizes (p > 0.05).

TABLE 1 Voxel sizes of the original scans used.

Voxel size (mm) Number of scans

0.5 × 0.5 × 0.75 1

0.4688 × 0.4688 × 0.9 2

0.3438 × 0.3438 × 1.0 1

0.5078 × 0.5078 × 0.9 2

0.4688 × 0.4688 × 1.2 1

0.4297 × 0.4297 × 0.9 1

0.375 × 0.375 × 1.0 1

0.4683 × 0.4683 × 1.0 1
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3.4 Comparison of AI and manual dice
scores

The AI and manual segmentation Dice scores were compared

across voxel sizes (Figure 4):

0.5 × 0.5 × 0.8 mm: AI significantly outperformed manual (p < 0.05)

0.8 × 0.8 × 0.9 mm: No significant difference (p > 0.05)

0.8 × 0.8 × 1.6 mm: AI significantly outperformed manual (p < 0.01)

1.2 × 0.9 × 4.0 mm: AI significantly outperformed manual (p < 0.05)

3.5 Manual segmentation accuracy
(Hausdorff distance analysis)

The average Hausdorff distance was analyzed to assess

segmentation accuracy (Figure 5):

FIGURE 1

Percent change in manual segmentation volume by voxel size.

FIGURE 2

AI vs. Manual Segmentation: Percent Change in Volume by Voxel Size.
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0.5 × 0.5 × 0.8 mm vs. 1.2 × 0.9 × 4.0 mm: p < 0.0001

0.8 × 0.8 × 0.9 mm vs. 1.2 × 0.9 × 4.0 mm: p < 0.0001

0.8 × 0.8 × 1.6 mm vs. 1.2 × 0.9 × 4.0 mm: p < 0.0001

No significant differences were observed between

0.5 × 0.5 × 0.8 mm and 0.8 × 0.8 × 0.9 mm or 0.8 × 0.8 × 0.9 mm and

0.8 × 0.8 × 1.6 mm (p > 0.05). However, a significant difference was

found between 0.5 × 0.5 × 0.8 mm and 0.8 × 0.8 × 1.6 mm (p < 0.01).

3.6 Comparison of AI and manual hausdorff
distances

Comparing AI and manual segmentation methods revealed

(Figure 6):

0.5 × 0.5 × 0.8 mm: No significant difference (p > 0.05)

0.8 × 0.8 × 0.9 mm: No significant difference (p > 0.05)

FIGURE 3

Manual segmentation dice score by voxel size.

FIGURE 4

AI vs. Manual Segmentation: Dice Score by Voxel Size.
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0.8 × 0.8 × 1.6 mm: AI significantly outperformed manual (p < 0.05)

1.2 × 0.9 × 4.0 mm: AI significantly outperformed manual (p < 0.001)

4 Discussion

This study systematically evaluated how MRI voxel size affects

the accuracy of manual and AI-driven volumetric segmentation of

VS in patients with NF2-SWN, a genetically driven disorder

characterized by bilateral vestibular tumors. Across the dataset, we

observed a clear inverse relationship between voxel size and

segmentation accuracy. Larger voxels (1.2 × 0.9 × 4.0 mm) were

associated with significant degradation in Dice similarity scores

and increased Hausdorff distances, especially in manual

segmentations. Smaller voxel sizes (0.5 × 0.5 × 0.8 mm,

0.8 × 0.8 × 0.9 mm) consistently produced more accurate

tumor delineations.

FIGURE 5

Manual segmentation hausdorff distance by voxel size.

FIGURE 6

AI vs. Manual Segmentation: Hausdorff Distance by Voxel Size.
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The impact of voxel resolution on segmentation accuracy has

been well-documented across various imaging modalities. In MRI,

voxel size directly influences spatial resolution, with smaller voxels

enabling finer anatomical detail capture (12). This is particularly

crucial for delineating small or irregularly shaped tumors, where

boundary precision is essential. Studies have shown that reduced

voxel sizes can enhance the accuracy of tumor segmentation by

minimizing partial volume effects and improving edge definition

[(13, 14); Dan et al., 2019; (15)]. However, high-resolution imaging

comes with trade-offs, including increased data volume and

processing time (16). These longer scan times can be particularly

challenging in clinical settings involving pediatric, elderly, or

otherwise non-compliant patient populations, where motion

artifacts and discomfort may compromise image quality. The

benefits of higher resolution may plateau beyond a certain point,

especially when the tumor size is small or the contrast between

tumor and surrounding tissue is low. In such cases, the

improvement in segmentation accuracy may not justify the

additional computational burden. Therefore, optimizing voxel

resolution requires balancing the need for detail with the practical

constraints of imaging and processing capabilities.

The decline in segmentation performance at lower resolutions

was more pronounced in manual contours (Figure 7), whereas AI-

driven methods demonstrated greater robustness. Notably, AI

segmentations showed reduced variability and maintained

relatively high accuracy even at larger voxel sizes. Dice similarity

scores for AI segmentations also exhibited a significant positive

correlation with tumor volume (Figure 8), consistent with the

observed trend in manual segmentation (Figure 9). This volume-

dependent accuracy underscores that larger tumors are easier to

segment, likely due to their lower surface-area-to-volume ratio,

which reduces the relative influence of partial volume effects and

boundary ambiguity. This volume-dependent accuracy likely

arises because larger tumors have a lower surface-area-to-volume

ratio, which reduces the relative influence of boundary

ambiguities and voxel-level noise.

While both segmentation approaches performed well on large

tumors, smaller lesions posed a greater challenge. For the

smallest tumors in our dataset, Dice scores often fell below 0.80

for manual segmentation and hovered around 0.75–0.85 for AI.

This reduced performance may be partly attributable to the fact

that, in smaller tumors, boundary voxels constitute a larger

proportion of the total volume. As a result, even minor

inaccuracies along the tumor edge disproportionately impact

Dice similarity scores. These findings align with prior

observations that small tumor volumes are more vulnerable to

inter-observer variability and voxel-level segmentation noise,

particularly when spatial resolution is limited (26).

Importantly, these results also highlight the limitations of Dice

similarity as a standalone metric. Because Dice is inherently

volume-weighted, its value is strongly influenced by tumor size.

A modest absolute error may have minimal impact on Dice in

large tumors but can dramatically reduce it in smaller lesions

where boundary voxels dominate. Therefore, we also employed

Hausdorff distance as a complementary measure of segmentation

accuracy. Unlike Dice, the Hausdorff distance captures the

maximum boundary discrepancy between the predicted and

ground truth contours, offering a more precise assessment of

spatial alignment—especially at tumor margins. This metric is

particularly relevant in clinical contexts, such as surgical and

FIGURE 7

Impact of voxel resolution on tumor segmentation. Left: Small-voxel size (0.5× 0.5 × 0.8 mm) axial slice and 3D tumor model. Center: Large-voxel size

(1.2 × 0.9 × 4.0 mm) axial slice and model. Right: Overdays reveal discrepancies between high- and low-resolution segmentations in both 2D and 3D.
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radiotherapy planning, where accurate boundary delineation is

more critical than overall volume overlap. Recent studies have

advocated for hybrid evaluation metrics that combine region-

based and boundary-based assessments to more comprehensively

reflect segmentation performance (17).

5 Limitations

Despite the performance advantages of AI segmentation, several

limitations should be acknowledged. First, manual delineation—used

here as the reference standard—carries inherent subjectivity. Even

among experts, tumor boundaries are variably defined, particularly

in low-contrast regions or for irregular tumor shapes. Studies have

reported inter-rater differences of up to 20%–30% in VS volumes,

highlighting the imprecision of manual ground truth (18, 19).

Additionally, the ground truth itself may be affected by the partial

volume effect, wherein a single voxel contains a mixture of tissues,

leading to boundary ambiguity (20, 25).

AI models are not immune to these challenges. While they

mitigate inter-rater variability, they may inherit biases from their

training labels and are sensitive to input quality. Many deep learning

FIGURE 8

Manual dice score for the greatest voxel size (1.2 × 0.9 × 4.0 mm) vs. Tumor Volume at Original Resolution (p < 0.001).

FIGURE 9

AI dice score for the greatest voxel size (1.2 × 0.9 × 4.0 mm) vs. Tumor Volume at Original Resolution (p < 0.01).
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models—including those tested in similar contexts—are trained on

single-institution datasets, raising concerns about generalizability

across scanner types, sequences, and patient populations (21).

Furthermore, conventional segmentation networks, like U-Net, often

misclassify boundary voxels due to class imbalance, smoothing

artifacts, and the inherently fuzzy nature of MRI tumor margins (17,

22). This is especially problematic when tumors lie adjacent to

critical structures such as the cochlea or brainstem, where small

boundary errors may impact treatment decisions.

Another limitation is the heterogeneity of our dataset in terms

of scanner type, manufacturer, and acquisition protocol. Although

this diversity could, in theory, enhance the generalizability of AI

segmentation tools, our small sample size precludes drawing

robust conclusions about cross-scanner performance. The lack of

harmonization protocols—such as intensity normalization or bias

field correction—may have introduced confounding variability

that affected both manual and AI-based segmentation outcomes.

However, since manual clinical segmenters routinely encounter

these same challenges in real-world settings, the results remain

clinically relevant.

Although the magnet strength (1.5T, 3T) and sequence type

(axial T1 post-contrast) were consistent across scans, echo time

(TE), repetition time (TR), and other acquisition parameters

were not standardized due to differences in scanner vendors and

institutional protocols. Such variability may influence image

contrast and signal-to-noise ratios, potentially affecting

segmentation accuracy and generalizability.

While proprietary software was used for manual delineation,

each voxel was individually painted to define tumor boundaries—a

functionality present in widely available open-source platforms as

well. This approach supports reproducibility, as the segmentation

method can be replicated using common voxel-wise editing tools.

6 Clinical implications

Accurate, reproducible volumetric segmentation is essential in

NF2-SWN management, where treatment is often guided by

serial MRI tracking. Manual segmentation—while familiar—can

be time-consuming and inconsistent, particularly in longitudinal

assessments. AI-based tools offer a solution to this bottleneck,

enabling rapid and standardized tumor volume estimation. This

is particularly valuable in the context of the “wait-and-scan”

strategy, where detecting subtle growth trends is critical. In

clinical practice, a 20% increase in tumor volume is typically

used to define progression, though this threshold is partly

dictated by measurement reproducibility (18). AI tools that

reduce segmentation variability could allow earlier detection of

significant changes, especially in borderline cases, and may help

reduce unnecessary interventions by distinguishing true

progression from segmentation noise.

Moreover, high-precision segmentation is crucial for planning

radiosurgery or microsurgical resection. Misestimating tumor

boundaries can lead to undertreatment or overtreatment,

particularly when critical neurovascular structures are involved.

Incorporating boundary-aware AI models into pre-operative

planning may improve outcomes by ensuring adequate treatment

margins while minimizing collateral damage.

7 Future directions

Several deep learning innovations are emerging to address the

limitations of conventional segmentation approaches. Boundary-

aware loss functions—such as Boundary Loss (23), Distance-

based Loss (17), and Adaptive Edge-Enhanced Dice (24)—have

shown promise in improving contour accuracy by penalizing

boundary errors more directly than region-based losses. These

functions focus learning on thin structures and edge fidelity,

especially beneficial for small or complex tumors.

Complementary architectural solutions are also gaining

traction. Multi-scale CNNs and patch-wise segmentation models,

which process high-resolution crops alongside full-field views,

have improved performance in segmenting tumors with irregular

margins or infiltrative patterns (Sweetline et al., 2024).

Incorporating these designs into AI tools for NF2-related tumor

segmentation may further enhance boundary precision and

support clinical decision-making.

To improve generalizability and robustness, future studies must

expand sample sizes and ensure diversity across institutions, MRI

vendors, and imaging protocols. Our dataset included images

from multiple scanner types (1.5T Toshiba, 3T Siemens, and GE

systems), but the study was not powered to assess their

individual effects. A larger cohort would enable formal subgroup

analyses to quantify how magnetic field strength, vendor-specific

image reconstruction, and pulse sequence parameters impact

segmentation accuracy. Such insights could inform scanner-

specific calibration strategies or lead to the development of

harmonization pipelines to normalize image characteristics

before segmentation.

Standardization and external validation will also be critical as

models move from development into clinical deployment. Most

current studies lack rigorous multi-center testing, and performance

may degrade on out-of-distribution inputs. Future efforts should

prioritize the development of robust, scanner-agnostic models

trained on heterogeneous datasets that reflect real-world variability in

anatomy, imaging quality, and post-surgical alterations. Uncertainty

quantification—such as confidence maps—could further support

clinician oversight in ambiguous cases, fostering a human-in-the-

loop paradigm that balances automation with expert review.

Ultimately, integrating AI segmentation into clinical workflows

could transform care for NF2 patients. Automated delineations

immediately following MRI acquisition, verified and adjusted by

radiologists, would streamline reporting and improve accuracy.

Such tools also open new research avenues, including radiomic

analysis and predictive modeling of tumor behavior.
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