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Future AI systemsmay need to providemedical professionals with explanations of AI

predictions and decisions. While current XAI methods match these requirements in

principle, they are too inflexible and not sufficiently geared toward clinicians’ needs

to fulfill this role. This paper offers a conceptual roadmap for how XAI may be

integrated into future medical practice. We identify three desiderata of increasing

difficulty: First, explanations need to be provided in a context- and user-

dependent manner. Second, explanations need to be created through a genuine

dialogue between AI and human users. Third, AI systems need genuine social

capabilities. We use an imaginary stroke treatment scenario as a foundation for our

roadmap to explore how the three challenges emerge at different stages of clinical

practice. We provide definitions of key concepts such as genuine dialogue and

social capability, we discuss why these capabilities are desirable, and we identify

major roadblocks. Our goal is to help practitioners and researchers in developing

future XAI that is capable of operating as a participant in complex medical

environments. We employ an interdisciplinary methodology that integrates

medical XAI, medical practice, and philosophy.
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1 Introduction

Currently, AI in medicine is a tool among many, akin to an imaging or measuring

device. The black-box nature of AI has motivated research in explainable AI (XAI), a

subfield of AI. XAI deals with the problem of providing insights as to how an AI

system uses information to solve a given task (1, 2). In this paradigm, incorporating

human-in-the-loop aspects in AI-based systems is an important development (3). In the

future, medical AI may take a more active role, interactions between AI systems and

medical professionals may become more complex, and AI may become a full

participant in the medical workspace. To do so, future AI systems will need to provide

medical professionals with insight into their reasoning process, explaining and justifying

their contributions. In principle, XAI methods match these requirements, because XAI

is designed to provide insight into predictions and decisions by AI systems. However,

current XAI methods are too inflexible and not sufficiently geared toward clinicians’

needs to fit the bill for future AI (4). The present paper discusses how this integration

of AI via XAI may be achieved. We identify three desiderata of increasing difficulty that

must be met before AI is fully integrated into medical practice through XAI. First,

explanations need to be provided in a context- and user-dependent manner. Second,

explanations need to be created through a genuine dialogue between AI and human

users; we provide three criteria for genuine dialogue. Third, AI systems need genuine
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social capabilities, to be explicitly defined below; see Figure 1 for an

overview of the three desiderata. We discuss why these abilities

would be desirable and we identify major roadblocks. We employ

an interdisciplinary methodology, integrating expertise from

medical XAI, medical practice, and philosophy. The first two

provide a firm footing in the practice of XAI and medicine,

while the philosophical perspective highlights the potential and

the challenges of XAI. Based on current literature, the paper

offers a philosophically grounded conceptual roadmap to the

future of XAI in medical practice.

We first provide background and discuss related work from

medical XAI and philosophy (Section 2). We then present a use

case, an imaginary stroke scenario outlining a standard medical

treatment cycle. The scenario serves as the backdrop for our

discussion of the future of XAI in medical practice (Section 3).

Then we turn to the discussion of how XAI may be integrated

into the different phases of the use case, grouped into the three

challenges of context- and user dependence, human-AI dialogue,

and social capabilities (Section 4).

2 Background, related work

The current state of the art in Explainable AI (XAI) for medicine

mainly revolves around methodologies originally developed in the

fields of computer vision and related domains, which have since

been adopted and/or adapted to clinical information, such as

imaging, text- and tabular-based patient clinical information.

Beyond methodological adaptations, a growing number of

experimental studies in radiology and medical image analysis have

begun to apply XAI techniques in practice and assess their

interpretability with medical experts. For instance, some studies

combine saliency-based heatmaps or feature attributions with

clinical decision tasks, and validate their plausibility through

qualitative feedback from radiologists or domain specialists. These

investigations remain largely at the research or prototyping stage,

but they demonstrate the feasibility and relevance of XAI in

imaging workflows, and provide valuable insights into how

clinicians interact with and assess such tools (1, 2, 5–10).

Explainable Artificial Intelligence (XAI) has emerged as a

critical research area, addressing the growing need for

transparency in deep learning models across various domains.

Recent surveys categorize XAI methods into post-hoc

interpretability techniques, such as saliency maps, attention

mechanisms, and feature-attribution models, and intrinsically

interpretable architectures that incorporate explainability directly

into model design (1, 2). Among these, saliency-based methods,

such as Grad-CAM, Layer-wise Relevance Propagation (LRP),

and Integrated Gradients are widely used to visualize the features

most influential to a model’s prediction.

Beyond post-hoc visualization, recent work has explored how

XAI can actively guide model training, ensuring that models

learn meaningful patterns rather than spurious correlations.

Mahapatra et al. (11) introduced an interpretability-guided

inductive bias that enforces spatial coherence in saliency maps

and encourages class-distinctiveness during training. By

integrating interpretability constraints into the learning process,

their approach improves both predictive performance and the

reliability of generated explanations.

A key challenge in deploying XAI across different fields is

shortcut learning (12), where models exploit spurious

correlations in the data rather than genuinely informative

features. Saliency-based methods have been instrumental in

uncovering such issues. For example, attention-based saliency

maps have been used to reveal cases where models relied on

unintended artifacts in the data, leading to incorrect predictions

FIGURE 1

Graphical abstract and summary of contents. Over time, technical developments will likely enable XAI systems to complete increasingly complex tasks.

While context- and user dependence might be addressed in the near future, human-AI dialogue and social capabilities might only arise in a more

distant future.

Räz et al. 10.3389/fradi.2025.1627169

Frontiers in Radiology 02 frontiersin.org

https://doi.org/10.3389/fradi.2025.1627169
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


(13). These findings highlight how XAI techniques can expose and

help mitigate hidden biases in model behavior.

Even as XAI methods enhance transparency, their real-world

utility remains an open question. Ihongbe et al. (14) conducted a

user-centered study evaluating interpretability methods such as

Grad-CAM and LIME. While participants found Grad-CAM

generally more intuitive and reliable, the study revealed a broader

issue: limited awareness among practitioners regarding the

practical value of explainability tools. This underlines the need

for structured evaluation frameworks to assess whether XAI

genuinely improves decision-making processes rather than simply

producing visually plausible outputs.

XAI has also played a vital role in detecting hidden biases.

Gichoya et al. (15) demonstrated that deep learning models

could infer sensitive attributes, such as patient race, from

imaging data, even when such information was not explicitly

provided. Using saliency maps and ablation studies, they showed

how models leveraged subtle features correlated with race, raising

important ethical and operational concerns regarding AI

deployment in sensitive contexts.

Multiple XAI toolboxes with different functionalities have been

developed, such as Captum (16), Quantus (17), and Alibi Explain

(18). While some of these toolboxes can handle diverse data

types, many current XAI implementations remain mono-modal,

focusing on a single data modality. This is a significant

limitation, as real-world decision-making often involves

integrating multimodal information–such as combining visual,

textual, and tabular data. Recent surveys, such as (19), outline a

diverse range of multimodal XAI approaches, especially in non-

medical domains like multimedia reasoning and robotics, where

explanatory outputs may combine visual, textual, and symbolic

content. In contrast, most clinical XAI systems remain mono-

explanatory: even when built on multimodal inputs (e.g.,

imaging, labs, and clinical text), explanations are typically

produced per modality in isolation. A notable conceptual

contribution comes from (20), who propose a framework for

multimodal explainability for medical imaging that uses different

types of XAI outputs (e.g, saliency-based visual outputs with

structured clinical data explanations) to enable contrastive,

context-aware explanations. While their work does not

implement a full system, it highlights the need for XAI designs

in which the explanation itself, not just the model input, is truly

multimodal. This remains a key open direction in clinical AI.

Furthermore, most current XAI systems are designed with a

developer-centric perspective rather than being tailored to the

needs and workflows of domain experts and end-users (21, 22).

Additionally, the vast majority of studies still focus on isolated

time points, while many real-world scenarios depend on

longitudinal information. The limitations of current XAI

methods are well recognized (23), and there is ongoing debate

about whether XAI techniques or inherently interpretable models

may offer more robust solutions to overcoming AI opacity (24, 25).

Conceptual requirements of explanations for XAI have been

discussed in philosophy (26–28) as well as in the technical

literature mentioned above. Explanations of AI output are

constrained by two desiderata. First, an explanation should

provide accurate and relevant information about how the output

came about. If explanatory information is not accurate or

relevant, it does not achieve its goal. Second, the explanatory

information has to be provided in an understandable manner.

From a practical implementation point of view, these criteria can

be translated into concrete design goals. Accuracy requires that

explanations reflect the model’s actual reasoning process, not

post-hoc rationalizations. Relevance implies tailoring content to

the user’s clinical role and context, prioritizing what matters

most for decision-making. Understandability calls for presenting

explanations in familiar formats (e.g., visual overlays or

structured text) and at an appropriate level of detail, ideally

adjustable based on user preference or task demands.

Even accurate and relevant information fails to explain if it

cannot be grasped (29). Due to the time constraints in clinical

settings, XAI must be precise and concise. One of the main

challenges of developing XAI is that these two desiderata are in

tension and must be weighed against each other. Whether

explanatory information can be grasped depends on several factors

(30). First, context determines the purpose of an explanation,

which in turn influences whether an explanation is adequate. For

example, understanding possible causes of symptoms looks

different in an emergency and in a research situation (31). Second,

to be understandable, explanations may need to be customized for

different users. For example, a research physician has different

explanatory needs than a nurse in an ICU (32). Below, we will

expand on context- and user-dependence.

3 Use case: stroke scenario

In this section we provide a simplified example of interactions

between an increasing number of professionals in the medical

workspace. The use case is divided into four distinct phases, which

in reality might overlap and blend into each other. Below we will

use this scenario to anchor our discussion of how XAI may

transform the medical workspace. Our focus is on different groups

of healthcare professionals as users of XAI systems. See Figure 2

for key aspects of this scenario with respect to explanations.

3.1 Mr. Smith has a stroke

While having breakfast at 07:20 am, Mr. Smith (73 years old)

drops his spoon because of a sudden weakness of the right arm.

He is very surprised but can’t articulate properly what happened.

His wife is worried and calls an ambulance, and Mr. Smith

arrives at the emergency department of a tertiary care center at

08:40 am. Mr. Smith is known to be treated with anticoagulatory

medication for atrial fibrillation.

• Phase 1: Single-person decision. The resident neurologist is the

first physician to see Mr. Smith. He speaks to the patient and

carries out a physical examination. He finds that Mr. Smith’s

speech is impaired and that he has weakness of the right body

side, scoring a total of 10/42 points on the NIH Stroke Scale
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(NIHSS) (33). The NIHSS is a tool used by healthcare

professionals to objectively quantify the impairment caused by a

stroke. A high NIHSS score typically indicates a more severe

stroke, which may necessitate more aggressive treatment options

and often correlates with a poorer prognosis. In the present case,

the NIHSS total results from points for severe aphasia (2),

partial facial paralysis (2), and no effort against gravity in right

arm (3) and leg (3). The neurology resident wants to order

imaging of the brain and calls the neuroradiology resident.

• Phase 2: Two-person interaction. The neuroradiology resident

decides to conduct an emergency CT with CT angiography

(CTA). Pre-contrast head CT shows no signs of intracranial

hemorrhage and only a small area of weak hypodensity in the

left parietal lobe. CTA shows proximal occlusion of the left

middle cerebral artery (M1 occlusion). After seeing the large

vessel occlusion, the neuroradiology resident adds CT perfusion

to the scan, which shows a large area of potentially salvageable

brain tissue (penumbra) with a small infarct core. Therefore,

the neurology resident now calls the attending neurologist and

the interventional neuroradiologist for discussion.

• Phase 3: Multi-person discussion. The doctors gather and

recap their findings. Based on the information available, they

agree that mechanical thrombectomy is the treatment of

choice: The patient suffers from a large vessel occlusion that

causes significant morbidity. Since there is still salvageable

brain tissue, it is expected that Mr. Smith would profit from

interventional therapy. The team also discuss thrombolysis,

but decide against it due to prior anticoagulatory treatment—

although it has been shown that patients treated with direct

oral anticoagulants do not necessarily have more bleeding

complications, in clinical practice, risks and benefits as well as

alternative treatment should be considered (34). Mr. Smith is

prepared to go into the catheter lab at 09:15 am (35).

• Phase 4: Large collective of healthcare workers. Mr. Smith

undergoes thrombectomy, which seems to be successful as he

later wakes up in the stroke unit with improved production of

speech and motor function of the right body side. In the post-

acute phase, many people contribute to optimal care (36). While

the neurology resident conducts regular neurological exams, the

nurses administer medication and monitor vitals, the physical

therapist comes in for early mobilization, the cardiologists are

consulted for the stroke work-up, and social services contact Mr.

Smith’s wife. They share their findings in a daily report.

Eventually, Mr. Smith is discharged and goes back to the care of

his general practitioner, who chooses optimal tertiary prevention.

3.2 XAI aiding in the stroke scenario

Current AI/XAI systems aiding in stroke diagnosis focus on

specific sub-tasks like the detection of intracranial hemorrhage or

large vessel occlusion (LVO) in the anterior circulation. Their

competence ends with the highlighting of the affected brain

FIGURE 2

Schematic illustration of different clinical and interpersonal aspects influencing the explanations given by AI, see Section 4. Note that the desired detail

of explanations, displayed in the last panel, is an average that may vary between different users.
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region. An optimal XAI system would contribute to the above

scenario with more versatility:

• Phase 1: If an XAI starts collecting patient information such as

NIHSS already during the initial exam, preprocess it and share it

with other soon to be involved healthcare providers, the neurology

resident could save the time of reporting his findings many times.

• Phase 2: While very high performance on LVO detection in the

anterior circulation of the brain provides a quick first overview,

effectively it does not save any time for the neuroradiologist, as

she still needs to check all smaller vessel branches as well as the

posterior circulation. Otherwise, a large number of ischemic

strokes are missed.

• Phase 3: The XAI tool could engage in the multi-person

discussion e.g., by highlighting patient information that has

not yet been considered or by conducting a real-time search

for new evidence-based treatment guidelines.

• Phase 4: It could be helpful for the large collective of healthcare

workers contributing to Mr. Smith’s rehabilitation and

prevention to have a joint tool which coordinates

appointments. This prevents frustrating trips to an empty

patient bed. Additionally, results from daily assessments could

be collected, analyzed and visualized in an XAI dashboard,

helping to keep track of improvements or deterioration in

different aspects of Mr. Smith’s health.

To achieve such an optimal XAI system, current technology may be

adapted so that it fulfills key requirements, including adaptivity to

new data types, hierarchical presentation of information (brief

summary first, more information on request) as well as auto-

updating of the pre-training medical knowledge base. Further

requirements for possible adaptation are found in (20).

4 The future of XAI in medicine

4.1 Context- and user dependence of
explanations

Context- and user-dependence is a key requirement for

explanations of AI predictions and decisions. To see why,

consider our scenario. When Mr. Smith arrives at the emergency

room, his health record may be available in electronic form.

A detailed health record helps practitioners to understand

current symptoms, for example to gauge the possibility that the

right-sided weakness is not new but due to a past stroke.

However, large electronic health records also create challenges.

For example, the neurologist does not have time to go through

vast amounts of data, doing so would create cognitive overload

(37, 38). Cognitive overload is avoidable to some extent, because

not all data is relevant to the diagnostic situation. Also, even

relevant information is not useful if the neurologist does not

understand it, cf. Section 2.

Future XAI systems could help with these issues. Once the

symptoms, and possibly an initial diagnosis, have been

determined and fed into the AI system, the system would filter

out and structure currently relevant data. Further in the future, a

system may not need manual entry of symptoms and diagnosis,

it would automatically generate an initial diagnosis based on

symptoms, which are themselves obtained through sensors

(cameras, microphones) from the anamnesis and the examination

carried out by the physician. The explanation of the diagnosis

would be presented to the resident neurologist in an

understandable and user-dependent manner, for example by

considering the resident’s level of experience and specialization.

What kind of explanation an XAI should generate depends on

context; see Figure 1 for key contextual factors. While an

explanation of the initial diagnosis is crucial in the emergency

room, this information may be less relevant in an ICU, where

background information about the patient is assumed to be

known (22). Similarly, explanations suitable for research and care

contexts may differ considerably (31). In phases 1 and 2 of our

scenario, the focus is on care, and a short phrase may be

adequate as an explanation, because a longer explanation may

delay treatment too much. Explanations in these contexts should

also be conservative by only using clinically verified information.

For the work-up in phase 4, explanations may be more complete

and complex, and it could be highlighted whether information is

clinically founded, such that unfounded information can be

explored further in research (31).

Building XAI systems that are context- and user dependent

creates big challenges. An important design choice is whether

different contexts and users are provided to the system as external

parameters, or if the system has to infer these parameters. If

external parameters are used, parameters have to be set by hand

by practitioners each time the context and/or users change, which

adds to practitioners’ cognitive load. Also, one may have to create

different XAI systems for different parameter settings. This may be

feasible if the number of different contexts and users (groups) is

limited, but if many fine-grained distinctions between user groups

are made, and these distinctions are intersected with fine-grained

context distinctions, one ends up with an intractable number of

combinations. Alternatively, the XAI system could infer context

and user parameters. This would decrease the cognitive burden of

practitioners. However, such a system would have to be able to

correctly identify users and contexts to provide explanations. In

particular, the system would need to reliably distinguish different

clinical contexts and situations. But what exactly constitutes a

clinical situation? Users and contexts do not carry their

requirements on their sleeve, and clinical situations can change

quickly. For example, an unconscious patient who was initially

thought to have a basilary thrombosis might suddenly become

unstable - making other diagnoses, e.g., (covered) aortic rupture,

more likely and the situation more urgent. Currently, systems with

such abilities do not exist. Creating systems that are fully

embedded in a social context is very challenging, as will be argued

in more detail below.

It can be questioned whether a customization of explanations

for clinical situations and users is necessary. In many clinics,

there is an institutional separation between different settings. For

example, an XAI system in a post-acute care unit as in phase 4

of the use case will not be confronted with the same kinds of

situations as an emergency room in phase 1. This would speak

in favor of building different specialized systems for different
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settings. This points to an important issue for building XAI

systems: they are built on the background of existing institutions

and need to take these institutions and their inherent logistical

challenges into account (39). Building different, walled-off XAI

systems for different settings also creates problems. In general,

walled-off systems prevent a desirable flow of information

between different sites, as witnessed by the benefits of so-called

hospital “command centers” (40). Also, walled-off systems may

lead to an undesirable reinforcement of institutional structures.

We recommend that the challenge of context- and user

dependence should be addressed as follows. First, a design choice

must be made, viz., whether the system is supposed to

automatically recognize different contexts, such as clinical

situations and people. If a system is supposed to do this

automatically, it is necessary to have a reliable classification of

clinical contexts and people that the system can detect. This

classification can be used to build the system, possibly via data

labeled by clinical situation, which can also be used to test the

system’s capabilities. Such a fully automated system is presumably

too challenging to build now. We therefore recommend the more

feasible approach of building XAI systems for a particular clinical

setting first by introducing a limited set of customizations for

different contexts, e.g., different explanations for a limited set of

situations and people. The detail and kind of explanation need to

be adjustable, depending on the situation and the user. Thus, it

will be important to build the system so that it is easy and

intuitive to switch between contexts and users.

There are existing and promising lines of research that can be

considered to address this challenge. Recent developments in large

language models (LLMs) offer promising pathways to address the

challenge of tailoring explanations to specific contexts and user

groups. One important approach is to augment LLMs with

retrieval mechanisms for knowledge-intensive tasks (41, 42).

Rather than requiring practitioners to sift through voluminous

health records, such retrieval-augmented generation (RAG)

methods automatically filter and structure large datasets, retrieving

only contextually relevant information. This functionality can

reduce cognitive overload by focusing on information that truly

matters for the current diagnostic situation, for instance, evidence

of past neurological events in a patient’s electronic record.

A key requirement for context- and user-dependent explanations

is a sufficiently large “memory” window that allows the AI system to

maintain a running record of prior information, thus making

explanations consistent over time. Newer transformer-based models

and extended-context LLMs enable a more dynamic exchange with

users by preserving details of the patient’s condition and the user’s

role (e.g., junior resident, attending physician). The ability to adjust

the level of detail in explanations based on the user’s experience is

enhanced through either fine-tuning or instruction tuning, where

the model is specifically optimized to handle domain-specific

prompts (43). Furthermore, reinforcement learning from human

feedback (RLHF) can be employed to refine these context-aware

explanations, ensuring that they remain clinically accurate and

appropriately detailed (44).

Technically, this can be realized via a retrieval-augmented

multimodal encoder, e.g., Clinical-BERT for notes, a vision

transformer for scans, and a tabular net for labs, that fuses

modality-specific embeddings into a joint patient representation.

Hierarchical XAI then produces saliency overlays on images and

Shapley-value rankings on lab features, automatically switching

between concise (“emergency”) and detailed (“post-acute”)

explanation modes based on context flags.

While these approaches do not yet solve all underlying issues—

such as the need to automatically recognize rapidly changing

clinical situations—they provide a scalable foundation. Manually

specifying parameters for context and user groups remains labor-

intensive, but integrating RLHF pipelines allows practitioners to

provide feedback on whether an explanation was too long, too

technical, or potentially misleading. Over time, systems can learn

and adapt to the specific needs of different user groups (e.g.,

radiologists, neurologists, technicians), reducing the requirement

for continuous manual parameter updates.

4.2 Human-AI dialogue

So far, we have considered the case of singular explanations:

one contextually appropriate explanation is given for an AI

output. However, real-life explanations are more dynamical than

that. To see why, consider the second phase of our use case, in

which an exchange between the radiologist and an imaging

system (MRI scan) takes place. The perfusion map shows the

infarct core and the penumbra, the areas of which are associated

with uncertainty. An XAI system may quantify this uncertainty

automatically (45), and visualize it with uncertainty margins that

can be thought of as a confidence interval. Further in the future,

this process of understanding the result of an imaging procedure

may be more dynamical: The radiologist could enter a genuine

dialogue with the system to better understand, say, the penumbra

image, asking questions and challenging the system’s diagnosis:

Why is uncertainty quantified in this way? Is the one-sided

weakness really due to a stroke, or rather to a “stroke mimic”,

that is, consistent with a stroke but due to a different cause?

How can this be determined? and so on.

Is a true human-AI dialogue possible? There are AI systems

that show dialogical behavior: One can have “natural” exchanges

with large language models (LLMs) such as ChatGPT (46). These

models pass medical exams, write grammatically correct and

largely coherent answers, modify style based on prompts, and so

on. LLMs also face challenges, notably lack of safety

(hallucinations), lack of reliance on trusted sources (unreliable

citations), and a lack of integration with established knowledge

(47). As of now, they also underperform in comparison with

more traditional tools in diagnostic contexts (48). The current

abilities and limitations of LLMs like ChatGPT are a useful

starting point to consider what is needed to create XAI systems

for the clinical workspace that can serve as dialogue partners for

practitioners like the radiologist.

From a conceptual perspective, we can distinguish the ability to

have a genuine dialogue from merely showing dialogical behavior.

The former is a capability of humans, while the latter is what

LLMs are currently capable of. We propose three properties that
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can help us to distinguish mere dialogical behavior and genuine

dialogue. We use these three properties as a definition of genuine

dialogue: They must be satisfied for something to be a genuine

dialogue as opposed to mere dialogical behavior. First, having a

genuine dialogue requires that the dialogue partners have a

representation of the other dialogue participants, and can adapt

their contribution to the dialogue to accommodate their dialogue

partner, e.g., to make sure one’s contribution is understood, to

anticipate what the dialogue partner is likely to know to avoid

redundancy, or even to communicate based on empathy with the

dialogue partner (49). Currently, LLMs do not have this ability,

because they do not form an explicit representation of their

dialogue partner. A second requirement for genuine dialogue is

the ability to plan and have goals. Usually, one enters a dialogue

to achieve a certain communicative goal, to which the dialogue is

adapted. For example, while a teacher may provide information

freely during normal teaching, they may hold back information

during a quiz. Currently, plans are not explicitly represented by

LLMs. While they appear to pursue planning in text generation,

they do not have the ability to store intermediate results and adapt

on this basis (47). A third important aspect of genuine dialogue is

that it is self-referential, in that later parts of a dialogue refer to

earlier parts, e.g., to get clarification on points raised earlier. This

can be observed in LLMs to some extent. Prompts can be used to

challenge a model to explain or give a reason for a particular

earlier output. Prompting ChatGPT to give reasons for output can

improve predictive performance (50). However, it is also known

that prompting is fragile, that is, the response to a prompt

strongly depends on its exact form (47). Providing an LLM with

access to medical records and knowledge databases through

retrieval-augmented generation may lead to more personalized

treatment (51). It is granted that the three abilities for genuine

dialogue may emerge without explicitly building them into the

models—LLMs have demonstrated emergent abilities such as

constructing implicit world representations from data for

predictive purposes (52). But the dialogical abilities are likely to be

more stable if they are built into the models.

An XAI system capable of genuine dialogue may

fundamentally transform the exchange between the radiologist

and the imaging system in the use case. First, if the model has a

representation of the dialogue partner, the system can respond in

a personalized way to questions, say, about the diffusion image.

If the system knows that the radiologist is not very experienced,

it responds in a more “didactical” manner, taking into account

that junior clinicians may be overly reliant on predictions (53). If

the system then detects that its explanation has not been

understood from the radiologist’s reaction, it elaborates

automatically, or pauses the exchange if it detects fatigue.

Second, these considerations would be overridden depending on

the goal of the dialogue. If the exchange takes place in an

emergency context, the goal of the dialogue changes from

didactical to a quick response time, such that the dialogue is

more clipped, see the discussion of context. Third, the system

would have long-term memory, remembering which students are

quicker and which are slower, which colleagues require more

detail and which ones just want the gist of the story;

explanations that have been given before would be repeated in

abbreviated form or skipped altogether.

We recommend that future XAI systems integrate the three

properties of genuine dialogue we have identified. The way in

which this is implemented is not as important as to have a

system with the corresponding functionality. First, the XAI

system needs access to information about dialogue partners, and

it needs to be able to adapt dialogue behavior to that

information. Second, it needs the ability to have plans and goals.

Third, it needs the ability to reliably store what it has learned

from dialogue partners, and about dialogue partners.

Recent developments in LLMs, already mentioned in the

previous section, may offer pathways to address the challenges of

creating dialogical AI incrementally. One approach is to augment

LLMs with retrieval mechanisms for knowledge-intensive tasks

(41, 42). Retrieval mechanisms could be used to tailor the dialogue

to specific dialogue partners in a clinical setting if the model has

access to information about these dialogue partners. Also, a

“memory” window would allow the AI system to maintain a

running record of dialogue partners, thus personalizing the

exchange. Transformer-based models and extended-context LLMs

may enable a more dynamic exchange with users by preserving

details of the user’s role (e.g., junior resident, attending physician).

Adjusting the level of detail in the explanations based on the

user’s properties and abilities could be achieved by fine-tuning or

instruction tuning, where the model is optimized with domain-

specific prompts (43). Finally, integrating RLHF pipelines could

allow practitioners to provide feedback on whether an explanation

was adequate for that practitioner, such that the systems can learn

and adapt to the specific needs of different user groups. To

operationalize genuine dialogue, the XAI pipeline can be wrapped

in an LLM-driven QA loop using chain-of-thought prompting and

RLHF. On each query, the system emits a one-line rationale (e.g.,

“perfusion mismatch ! penumbra”), logs clinician follow-ups to

update a per-user profile, and refines subsequent responses in real

time—thereby aligning explanation depth and terminology with

individual needs. These suggestions do not address all challenges

of dialogical abilities – in particular the requirement of having

goals – but provide a first path to address them to some extent.

4.3 Social capabilities for XAI

Ultimately, the construction of explanations in the medical

workspace relies on non-verbal cues and social facts that are not

usually made explicit in conversation. To see why, we turn,

again, to our use case. In the third phase, a multi-person

decision process takes place. The goal of the process is to reach a

decision that maximally benefits the patient, and decision

support should be geared towards this goal. This decision process

is a collective social endeavor. Collective decision making in

medicine may benefit patients in comparison to single decisions

(54), but measuring these benefits is challenging (55). Social

hierarchy and specialty determine, at least partially, who gets to

make the final call; the urgency of a situation may necessitate

decision making under considerable uncertainty; and so on. To

Räz et al. 10.3389/fradi.2025.1627169

Frontiers in Radiology 07 frontiersin.org

https://doi.org/10.3389/fradi.2025.1627169
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


provide optimal decision support, an XAI system needs social

capabilities to “read the medical room.” By social capabilities, we

mean the ability to recognize and take into account social aspects

of decision making, such as an appropriate interpretation of non-

verbal cues and other social facts. The need to add social

considerations to obtain an adequate account of medical decision

making has been noted in the literature (56). To give an example

why this may be the case, imagine that in the stroke scenario,

there is a disagreement between different specialties about the

best course of action. For example, if Mr. Smith had fewer

symptoms and a more distal occlusion, a lower NIHSS would

result, and the attending neurologist could argue that the risk of

the thrombectomy intervention is not justified in view of limited

benefits to the patient. How should such a disagreement be

resolved? An XAI system should provide decision support by

displaying known options, with pros and cons, and suggestions

of how to resolve disagreements. However, collective decision

making may also involve purely social abilities. Imagine that a

new team member has just started their residency, is intimidated

by the environment, and does not speak up about an important

finding—it is known that as much as 80% of clinical incidents

threatening patient safety may be due to communication errors

such as not speaking up (57). An XAI system that registers this

omission may push the new resident to speak up. To do this, the

system would need social awareness, the ability to understand the

social aspects of decision making, and act on this understanding

in a socially acceptable manner.

Developing decision support systems with social abilities faces

two major challenges. The first challenge is that developing such

systems requires the integration of medicine and social science.

However, the use of AI in social science has proven to be

extremely challenging (58). For example, there have been attempts

to develop decision support systems for recruiting with the

supposed ability to recognize emotions from videos of applicants

in order to determine suitability for a job (59). This kind of

application has been viewed skeptically by many AI scholars and

has even been dubbed “AI snake oil” (60). The reason is that use

of AI for the prediction of social outcomes, such as “job success”

or “recidivism within two years,” is not as successful as for more

narrow tasks like visual perception or speech recognition.

Predicting social outcomes appears to be fundamentally different

from a scientific point of view, in particular for outcomes that are

further in the future (61). Not only are outcomes less certain, but

the social constructs relevant to the outcomes, such as hierarchy,

are hard to measure as well (57). Creating systems with the ability

to reliably “read a room” lies far in the future.

The second challenge for the development of AI with social

abilities is that even if the first challenge could be solved, it is

unclear whether adding AI with social abilities to the medical

workspace would be an overall benefit because of human feedback.

For one, the usefulness of an AI system requires that the intended

users of the system actually accept it (62). A system that is socially

invasive, e.g., by tracking the physical location of personnel, could

be rejected. Whether this is the case is an empirical question. The

acceptance of such a system may also go too far in that the

humans involved trust the system too much, such that overall

performance and safety suffer—this has been observed in the case

of simple automated decision making systems in criminal justice

(63). The fact that models change, through their presence and

their predictions, the underlying distribution to which they are

applied, is called performativity (64, 65). Performativity crystallizes

the challenge of successfully deploying models in social contexts,

including the medical workspace.

We recommend that the second challenge of AI with social

capabilities is addressed first. Ultimately, XAI systems should

benefit medical professionals, and if medical professionals reject

the system, it will not be beneficial. Thus, it must be determined

whether and to what extent medical practitioners welcome an XAI

system with (moderate) social capabilities, e.g., a system that

intervenes in cases where a practitioner does not speak up

sufficiently, and where this may have severe consequences. If

medical professionals would consider this to be useful, then, in the

second step, it needs to be determined to what extent such a

system is feasible, integrating technical and social science

perspectives. Systems with social capabilities should not be

developed if they do not enhance the social system already in place

and benefit patients. In the near term, emerging tools from

sentiment analysis, affective computing, and Social Signal

Processing (SSP) may offer incremental steps toward socially

aware XAI. By analyzing vocal tone, facial expressions, response

latency, or written communication, a system could detect cues of

stress, hesitation, or overconfidence and adjust explanation style

accordingly—offering clarification when uncertainty is sensed, or

streamlining output when confidence is high. While these

methods face domain-adaptation challenges, they could help

identify potential communication breakdowns in settings such as

clinical team meetings. SSP also opens the door to modeling group

dynamics, such as who dominates a discussion or who remains

silent (66). Coupled with lightweight trust calibration and multi-

agent reinforcement learning, these techniques may one day

enable XAI systems to anticipate role conflicts, adapt to different

user types, and engage more effectively in social decision-making

contexts (67). As stressed above, these directions require caution

to avoid the pitfalls of “AI snake oil.”

Any move toward greater social awareness should be

accompanied by user-centered design principles. Approaches

such as participatory design and iterative prototyping, where

clinicians co-create features and validate their usability, can help

prevent systems from becoming overly intrusive or undermining

professional trust (68). During pilot projects, the AI might, for

instance, nudge a junior resident to articulate a critical

observation only when the situation carries a high risk for

patient safety, thus striking a balance between beneficial

intervention and excessive monitoring. Ultimately, a measured

approach, built through continuous feedback from healthcare

professionals and refined by limited deployments, could allow

these frameworks to evolve organically without disrupting the

delicate social fabric of medical teams. If accepted and proven

useful, further integration of technical and social science methods

may enable AI to “read the medical room” more reliably,

complementing clinicians’ expertise in collective decision-making

and thereby fostering safer and more equitable patient care.
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5 Conclusion

We examined the integration of XAI into the future clinical

routine, based on a stroke scenario, a simplified, full treatment

cycle. We identified three dimensions along which XAI should be

adapted to be fully integrated into this routine. First, we argued

that explanations should be context- and user-dependent. This

creates the challenge of either creating multiple systems for different

contexts and users, or of providing XAI with the ability to

autonomously differentiate contexts and users. Second, we analyzed

the prospect of creating dialogical explanations against the backdrop

of LLMs like ChatGPT. We proposed three properties that separate

these models from genuine dialogue: representation of the dialogue

partner, planning, and goal dependence, and the ability to draw on

previous parts of the dialogue. We found that these properties are

(mostly) absent from current models. Third, we argued that future

XAI systems may need social abilities. We found that this will

necessitate the integration of medicine and methods from social

science; the latter creates unique hurdles for AI in general.

How should XAI be operationalized in clinical practice on the

basis of the above discussion? First, awareness of the issues and

limitations of current AI systems should be created; this would

demonstrate the need for (current and future) XAI. This milestone

has been reached to some extent; however, there is still a lack of

awareness of the practical value of XAI among some medical

practitioners (14). Second, clinical evaluation frameworks for XAI

have to be created and run. Such frameworks could be similar to

Quantus (17), but should focus more on clinical scenarios. The

purpose of using these frameworks should be to produce evidence

on the clinical impact of XAI on AI-based tools in clinics. Third,

medtech companies should be involved in choosing and refining

XAI technologies so that they can be certified, deployed, and improved.
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