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Background: The incidence of Non-alcoholic Fatty Liver Disease (NAFLD) 

continues to rise, becoming one of the major causes of chronic liver disease 

globally and posing significant challenges to healthcare systems worldwide. 

Artificial intelligence (AI) technology, as an emerging tool, is gradually being 

integrated into clinical practice for NAFLD, providing innovative approaches to 

improve diagnostic efficiency, personalized treatment plans, and disease 

prognosis assessment. However, current research remains fragmented, 

lacking systematic and comprehensive analysis.

Objective: This study conducts a bibliometric analysis of artificial intelligence 

applications in Non-alcoholic Fatty Liver Disease (NAFLD), aiming to identify 

research trends, highlight key areas, and provide comprehensive and objective 

insights into the current state of research in this field. We expect that these 

research results will provide valuable references for guiding further research 

directions and promoting the effective application of AI in liver 

disease healthcare.

Methods: This study used the Web of Science Core Collection database as the 

data source, searching the Science Citation Index Expanded (SCI-Expanded) 

and Current Chemical Reactions (CCR-Expanded) citation indexes. The 

search timeframe was set to include all relevant literature from 2010 to March 

25, 2025. The research methodology adopted a multi-software joint analysis 

strategy: First, HistCite Pro 2.1 was used to analyze the historical evolution 

and citation relationships of literature in this field. The tables generated by the 

tool systematically recorded the development process of the literature, clearly 

depicting the evolution of the research field over time. Second, Scimago 

Graphica was used to create a country/region collaboration network view, 

intuitively showing academic collaboration among countries/regions 

(SCImago Lab, 2022). VOSviewer 1.6.20 was used to analyze collaboration 

networks and visualize keyword co-occurrences to identify main research 

themes and clusters. CiteSpace was used for deeper scientific literature 

analysis, precisely capturing the dynamic changes of research hotspots and 

the evolution of frontier trends through Burst Detection algorithms and 

Timezone View.
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Results: A total of 655 papers were retrieved from 60 countries, 1462 research 

institutions, and 4,744 authors published in 279 journals. The number of papers 

surged dramatically during 2019–2024, with papers from these six years 

accounting for approximately 83.8% (549/655) of the total. Country-level 

analysis showed that the United States and China are the major contributors to 

this field; journal analysis indicated that Scientific Reports and Diagnostics are 

the journals with the highest publication volumes. In-depth analysis of 655 

publications revealed four major research clusters: non-invasive assessment 

methods for liver fibrosis, imaging-based diagnosis (magnetic resonance 

imaging, CT, and ultrasound), disease progression prediction model 

construction, and biomarker screening genes. Recent research trends indicate 

that deep learning algorithms and multimodal data fusion have become 

research hotspots in AI applications for NAFLD diagnosis and treatment. 

Particularly, MRI-based liver fat quantification and fibrosis assessment, 

combined with deep learning technologies for non-invasive diagnostic 

methods, show potential to replace liver biopsy.

Conclusion: This study comprehensively outlines the development trajectory and 

knowledge structure of artificial intelligence technology in NAFLD research 

through systematic bibliometric analysis. The findings suggest that although the 

field faces challenges such as data standardization and model interpretability, AI 

technology shows broad prospects in NAFLD disease management and risk 

prediction. Future research should focus on multimodal data fusion, clinical 

translation, and evaluation of practical application value to promote the 

realization of AI-assisted precision medicine for NAFLD. This study not only 

depicts the current landscape of artificial intelligence applications in NAFLD but 

also provides a reference basis for future development in this field.

KEYWORDS

artificial intelligence, non-alcoholic fatty liver disease, metabolic-associated fatty liver 

disease, metabolic dysfunction-associated steatotic liver disease, bibliometric analysis, 
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD) represents one of 

the most prevalent chronic liver disorders globally (1–4), with 

worldwide prevalence reaching 30.05% and demonstrating a 

remarkable 50.4% increase from 1990 to 2019 (5). The 

geographic distribution exhibits substantial heterogeneity, 

ranging from 44.37% in Latin America to 25.10% in Western 

Europe. NAFLD serves not only as a principal etiologic factor 

for liver cirrhosis and hepatocellular carcinoma (6) but also 

demonstrates significant associations with multiple metabolic 

disorders, including type 2 diabetes mellitus and cardiovascular 

diseases (7). The recent nomenclature evolution from NAFLD to 

MASLD (Metabolic dysfunction-Associated Steatotic Liver 

Disease) (8, 9) has created novel opportunities for artificial 

intelligence (AI) technology implementation. In contrast to 

conventional NAFLD definitions, MASLD emphasizes 

quantitative assessment of metabolic dysfunction, which 

demonstrates high concordance with AI technology’s inherent 

advantages in multidimensional data integration and pattern 

recognition (10). Given that this study encompasses a historical 

timeframe spanning from 2010 to 2025, during which NAFLD 

terminology maintained predominance, we uniformly adopt 

NAFLD as the primary nomenclature for analysis while 

incorporating all relevant concepts in our search strategy to 

ensure comprehensive coverage.

Traditional diagnostic approaches for NAFLD primarily rely 

on liver biopsy (11), which, despite providing accurate 

histopathological information, presents inherent invasiveness 

limitations. Although imaging modalities offer non-invasive 

alternatives, they remain constrained by operator dependency 

and insufficient sensitivity for early-stage disease detection. The 

NAFLD disease spectrum encompasses a complex pathological 

progression from simple steatosis (NAFL) to liver cirrhosis and 

hepatocellular carcinoma (HCC), presenting challenges for 

accurate prediction and monitoring through conventional 

methodologies (12). These inherent limitations have prompted 

researchers to pursue more efficient and precise diagnostic and 

management approaches.

The rapid development of artificial intelligence (AI) technology 

has brought revolutionary opportunities for NAFLD diagnosis and 

treatment. AI is an interdisciplinary field that refers to using 

computers to simulate human intelligent behavior and train 

computers to learn human behavior (13). AI includes various 

technologies such as machine learning (ML), deep learning (DL), 

robotics, and natural language processing (NLP), which are 
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rapidly developing and playing indispensable roles in social 

development, particularly in medical applications (14).

In NAFLD research, AI demonstrates unique advantages: DL 

can screen disease characteristic genes (15) to determine 

potential therapeutic targets, thereby achieving the purposes of 

prediction, prevention, and personalized treatment; ML can be 

used to detect fibrosis and NASH (16). Artificial intelligence can 

integrate multi-source data, including clinical indicators, 

biochemical examinations, imaging features, pathological images, 

and even genomic data, potentially providing more precise 

NAFLD diagnosis and risk stratification tools (17).

More critically, contemporary literature lacks comprehensive 

analysis of academic networks and collaborative frameworks 

within this field, including identification of principal 

contributing nations and institutions, characterization of inter- 

research team collaborative relationships, and analysis of 

regional variations in technological pathway selections. 

Furthermore, existing literature reviews predominantly employ 

qualitative analytical methodologies, which, while capable of 

summarizing specific technological application statuses, cannot 

quantitatively capture the dynamic evolution patterns of 

research hotspots or predict future developmental trends based 

on large-scale bibliometric evidence. The methodological 

innovations spanning from early traditional statistical 

approaches to machine learning algorithms, and subsequently to 

recent deep learning and multimodal data fusion technologies, 

lack precise quantitative characterization regarding their 

temporal nodes, driving factors, and impact scope.

Bibliometric analysis serves as an effective tool for evaluating 

and tracking the development of specific research fields (18). By 

applying mathematical and statistical methods to analyze 

published literature, this approach can identify research hotspots, 

collaboration networks, and knowledge foundations, thereby 

revealing the developmental trajectory of academic disciplines 

(19). Through analyzing annual publication trends and citation 

patterns of AI research in NAFLD, we aim to: (1) assess the 

overall developmental dynamics of this field; (2) identify major 

contributing countries/regions, research institutions, and core 

authors to reveal global research distribution patterns and 

collaboration networks; (3) determine high-impact journals and 

FIGURE 1 

Modified PRISMA flow diagram incorporating bibliometric analysis methods.
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key literature to establish a knowledge map of the field; (4) identify 

research hotspots, thematic clusters, and technological evolution 

pathways through keyword co-occurrence and burst analysis; (5) 

explore research progress in different AI application domains 

within NAFLD (such as diagnosis, risk stratification, and disease 

progression prediction); and (6) analyze current research 

limitations and challenges to provide recommendations for future 

research directions.

The innovation of this study lies in its systematic analysis of 

the comprehensive landscape and evolutionary trajectory of AI 

applications in NAFLD from a bibliometric perspective. 

Distinguished from previous systematic reviews that primarily 

focused on clinical application efficacy, this research employs a 

multi-software joint analysis strategy to reveal research 

directions, collaboration networks, and knowledge structures 

within this field. Rather than merely describing the current 

status of artificial intelligence applications in NAFLD, this study 

tracks the dynamic migration of research hotspots and evolution 

patterns of frontier trends, thereby providing directional 

guidance for future research endeavors.

2 Methods

2.1 Data sources and search strategy

This study utilized the Web of Science Core Collection 

(WoSCC) as the primary data source. Web of Science 

represents the world’s most trusted and publisher-independent 

global citation database (20). The search timeframe was set 

from January 1, 2010, to March 25, 2025, to analyze 

developmental trends in this field.The search strategy was 

developed through multiple rounds of expert discussions and 

pre-search optimization. First, we identified NAFLD-related 

terms by combining Medical Subject Headings (MeSH) terms 

with free text words, including recently proposed concepts 

such as metabolic-associated fatty liver disease (MAFLD) and 

metabolic dysfunction-associated steatotic liver disease 

(MASLD) (8). Second, for the artificial intelligence domain, we 

incorporated not only broad terms such as “artificial 

intelligence” and “machine learning,” but also specifically 

included specialized techniques commonly used in medical 

imaging analysis, such as “convolutional neural network” and 

“radiomics,” to ensure comprehensive retrieval.The search 

formula was constructed using Boolean logical operators (AND 

and OR). To ensure the effectiveness and comprehensiveness 

of the search strategy, we employed a three-fold validation 

method: (1) Recall validation: We conducted retrospective 

testing using 10 high-impact representative articles in this field 

as benchmarks, achieving 100% recall rate with our final search 

strategy; (2) Precision assessment: We randomly sampled 200 

articles from preliminary search results for manual relevance 

evaluation, achieving 89.5% relevance ratio; (3) Iterative 

optimization: We balanced search sensitivity and specificity 

through multiple optimization rounds.The validated and 

optimized final search strategy is as follows:

TS = (“non-alcoholic fatty liver disease” OR “NAFLD” OR 

“MAFLD” OR “metabolic associated fatty liver disease” OR 

“MASLD” OR “metabolic dysfunction associated steatotic liver 

disease” OR “steatotic liver disease” OR “non-alcoholic 

steatohepatitis” OR “hepatic steatosis” OR “Liver Fat”) AND 

(“artificial intelligence” OR “machine learning” OR “deep 

learning” OR “decision making tree” OR “random forest” OR 

“support vector machines” OR “radiomics” OR “convolutional 

neural network” OR “clinical decision support system*” OR 

“predictive model” OR “medical image analysis”)

The selection of the Web of Science Core Collection as the sole 

data source was based on the methodological characteristics and 

data quality requirements of bibliometric research. Unlike 

systematic reviews that pursue absolute comprehensiveness in 

literature collection, bibliometric analysis prioritizes data 

standardization and citation network integrity, which are crucial 

for accurate co-citation analysis, burst detection, and other core 

analytical procedures.

2.2 Literature screening

This study adhered to the transparency principles of the 

PRISMA 2020 guidelines (21) during the literature identification 

and screening phases to ensure the systematicity and 

completeness of data used for bibliometric analysis (Figure 1).

2.2.1 Inclusion criteria
To ensure research quality, we established the following 

inclusion criteria: 

a. Research articles focusing on artificial intelligence technologies 

in non-alcoholic fatty liver disease (NAFLD), with no 

restrictions on study design

b. Articles published in journals indexed in WoSCC

c. For duplicate publications, the earliest published and most 

complete version was included

d. Article types limited to original research articles or 

review articles

e. Only articles published in English were included

2.2.2 Exclusion criteria
a. Conference abstracts, news reports, commentaries, letters, and 

retracted publications

b. Articles with only abstracts available and without full text

c. Articles irrelevant to the research topic

Following the preliminary search, two researchers 

independently reviewed all retrieved literature by examining 

titles and abstracts according to the aforementioned criteria to 

ensure all included articles were relevant to the research topic. 

In cases of disagreement, we employed a quantitative assessment 

approach: first recording the types and frequency of 

disagreements, then reaching consensus through discussion. 

When disagreements persisted, a third researcher was consulted 

for final determination.

He et al.                                                                                                                                                                  10.3389/fradi.2025.1634165 

Frontiers in Radiology 04 frontiersin.org



2.3 Data analysis and visualization tools

The theoretical foundation for employing a multi-software 

integrated analysis approach in this study stems from the 

limitation that individual tools cannot comprehensively address 

the multifaceted dimensions inherent in bibliometric investigations.

HistCite Pro 2.1, developed by Eugene Garfield, the originator of 

the Science Citation Index (SCI), was utilized to examine the 

historical development and citation patterns within this research 

domain. This software demonstrates distinctive capabilities in 

citation network processing and core literature identification (22). 

The analytical framework employs two fundamental metrics: Total 

Local Citation Score (TLCS) and Total Global Citation Score 

(TGCS). TLCS quantifies the frequency with which a specific 

publication is cited by other works within the current dataset, 

thereby indicating the academic inJuence of the publication within 

the designated research field. TGCS measures the aggregate 

citation frequency of the publication within the Web of Science 

database, representing its comprehensive impact across the global 

academic community. The concurrent application of these metrics 

facilitates a thorough assessment of both academic merit and 

inJuence scope.Consequently, HistCite functions as a robust 

citation analytical instrument, demonstrating efficacy in identifying 

the most inJuential authors, journals, and publications (23).

Scimago Graphica was employed to generate country/region 

collaboration network visualizations, providing intuitive 

representation of inter-regional academic collaboration patterns 

(SCImago Lab, 2022).

VOSviewer, a Java-based visualization platform developed by the 

Centre for Science and Technology Studies at Leiden University, 

demonstrates particular suitability for processing large-scale 

bibliometric datasets and generating diverse network analyses, 

encompassing co-occurrence networks, citation networks, and term 

frequency analyses (24). In the present investigation, VOSviewer 

1.6.20 was implemented for collaboration network analysis and 

keyword co-occurrence visualization to identify principal research 

themes and cluster formations. The keyword co-occurrence network 

analysis employed standardized parameters including: analytical 

unit specification (author keywords selection), enumeration 

methodology (full counting implementation), and minimum 

threshold criteria (minimum keyword occurrence frequency = 4). 

Prior to keyword analysis, manual standardization of semantically 

equivalent keywords was conducted by the research team. This 

standardization procedure was executed independently by two 

investigators through systematic keyword inventory examination, 

identification of semantically similar terms, and establishment of a 

standardized lexicon, with discrepancies resolved through consensus 

discussion.Standardization examples include the unification of 

“Non-Alcoholic Fatty Liver Disease” and “Nonalcoholic Fatty Liver 

Disease” as “NAFLD,” and the consolidation of “metabolism” and 

“metabolomics” under “metabolomics.”

CiteSpace v.6.4.R1, developed by Chaomei Chen, was employed 

for comprehensive scientific literature analysis (25). Through its 

distinctive burst detection algorithm and timeline visualization, 

temporal analysis of keywords and citations was conducted to 

precisely capture the dynamic evolution of research hotspots and 

emerging trend development. The time-slicing parameter was 

configured to one-year intervals to ensure precision and continuity 

in research evolution trends. For keyword burst detection, γ was 

set to 0.7 to capture early signals of emerging research concepts; 

for citation burst detection, γ was established at 1.0 to identify 

milestone studies with sustained academic impact. Node selection 

criteria utilized the g-index algorithm with k-value set to 25 for 

each time slice, ensuring network representativeness while 

controlling complexity.Network pruning employed the Pathfinder 

algorithm combined with pruning sliced networks strategy to 

effectively simplify network structure while preserving critical 

pathway information.

Additionally, SPSS 26.0 software was utilized for time series 

regression analysis to quantitatively assess developmental trends of 

AI in NAFLD research. Through construction of a log-linear 

regression model, publication volume variation patterns over time 

were analyzed, with the natural logarithm of publication count as the 

dependent variable and standardized temporal coding as the 

independent variable. Model specifications included residual 

normality testing, heteroscedasticity detection, and collinearity 

diagnostics to ensure statistical inference validity. Regression analysis 

employed the enter method with significance level set at α = 0.05.

This multi-software complementary analytical strategy not 

only enhanced research comprehensiveness and reliability but 

also achieved multi-level visualization analysis spanning from 

macroscopic to microscopic perspectives and from static to 

dynamic dimensions.

3 Results

3.1 Analysis of annual publication volume 
and average citation frequency

This study included 655 papers on artificial intelligence 

applications in non-alcoholic fatty liver disease (NAFLD). As shown 

in Figure 2, AI development in NAFLD research can be clearly 

divided into three stages: embryonic period (2010–2018), rapid 

growth period (2019–2022), and explosive period (2023–2024). 

Exponential regression analysis demonstrated R2 = 0.9162 (p < 0.001), 

indicating a significant exponential growth trajectory in this field. 

Since 2010, the publication volume in this field has shown steady 

growth, gradually increasing from 2 papers annually to 196 papers in 

2024. Particularly during 2019–2024, the number of papers surged, 

with publications from this five-year period accounting for 

approximately 83.8% (549/655) of the total. Although the publication 

volume in 2025 decreased to 62 papers, this reduction may be 

attributed to incomplete data collection for that year, with certain 

articles potentially unindexed during the retrieval process.

3.2 Analysis of countries/regions and 
institutions

Based on the Total Local Citation Score (TLCS, representing 

citations within the current dataset) and Total Global Citation 
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Score (TGCS, representing total citations in the Web of Science 

database) derived from HistCite analysis, we conducted an in- 

depth examination of the international distribution patterns in 

NAFLD artificial intelligence application research.

China and the United States demonstrated outstanding 

performance in this field (Table 1). Notably, although China leads 

in publication volume (237 articles, 36.2%), the United States 

exhibits significantly higher local citation scores (TLCS = 376) and 

global citation scores (TGCS = 6,751) compared to China, 

reJecting potentially greater academic impact of American 

research. European countries (Italy, the United Kingdom, 

Germany, Spain, and France) collectively contributed 

approximately 32.8% of research outputs, constituting the second- 

largest research cluster in this field. Italy and the United Kingdom 

tied for third place, each publishing 56 papers (8.5%). Particularly 

noteworthy is the United Kingdom, which, despite having the 

same publication volume as Italy, achieved markedly higher 

citation impact with TLCS = 127 and TGCS = 2,090, reJecting the 

quality advantage of British research. Beyond China and Taiwan, 

the Asian region also includes South Korea and Japan among the 

top contributors, demonstrating widespread Asian participation in 

this field. These international distribution characteristics not only 

reJect each country’s research strength and attention in the 

intersection of NAFLD and artificial intelligence research but also 

indicate potential directions for future international collaboration 

in this domain. This pattern is also reJected in the institutional 

publication rankings shown in Table 2A. It is worth noting that 

some countries, such as France, despite relatively modest 

publication volumes (29 articles, 4.4%), achieved relatively high 

citation scores. The network diagram in Figure 3 illustrates 

collaborative relationships among countries, with line thickness 

representing collaboration intensity. The thickest connection 

between the United States and China indicates the closest 

collaborative relationship between these two nations in this field. 

The United Kingdom serves as the third major node, maintaining 

extensive connections with multiple countries.

Through the institutional publication ranking data (Table 2A), 

we found that the University of California San Diego leads with 24 

publications (3.7%). Notably, the Chinese University of Hong 

Kong achieved a remarkably high Total Global Citation Score 

(TGCS) of 1,261 despite only 16 publications, demonstrating 

substantial global academic impact. The University of 

Wisconsin-Madison recorded a Total Local Citation Score 

(TLCS) of 128, showing significant inJuence in specific 

domains, particularly in CT imaging quantitative analysis.From 

the collaboration network activity perspective (Table 2B), 

Wenzhou Medical University ranks first with a total link 

strength of 72, reJecting its pivotal role in international 

collaboration networks, followed by the Chinese University of 

Hong Kong (55) and the University of Verona (43). This 

demonstrates the prominent performance of Chinese institutions 

in NAFLD-AI research collaboration networks.

FIGURE 2 

Annual publication volume and average citation frequency trends for artificial intelligence in non-alcoholic fatty liver disease (NAFLD) research from 

2010 to 2025.

TABLE 1 Top 10 countries/regions by number of publications.

Rank Country Publications, n (%) TLCSa TGCSb

1 China 237 (36.2%) 177 2,855

2 USA 186 (28.4%) 376 6,751

3 Italy 56 (8.5%) 47 991

4 UK 56 (8.5%) 127 2,090

5 Germany 42 (6.4%) 38 1,015

6 Japan 41 (6.3%) 36 778

7 South Korea 38 (5.8%) 11 427

8 Spain 33 (5.0%) 30 840

9 France 29 (4.4%) 74 1,918

10 Taiwan(China) 24 (3.7%) 32 395

TLCSa, Total Local Citation Score, reJecting the inJuence of literature within the specific 

collection of literature currently being analyzed.

TGCSb, Total Global Citation Score, reJecting the inJuence of literature in the broader 

global academic community.
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Figure 4 presents the institutional collaboration network 

cluster analysis, clearly revealing three major research clusters: 

the US cluster centered on the University of California San 

Diego; the Hong Kong cluster centered on the Chinese 

University of Hong Kong; and the mainland China research 

network cluster represented by Capital Medical University and 

Zhejiang University.

The analysis indicates that the Chinese University of Hong Kong 

possesses significant advantages in AI medical imaging analysis. 

Institutions such as Harbin Medical University and Nanjing 

FIGURE 3 

Visualization of countries/regions collaboration network generated based on scimago graphical.

TABLE 2A Top 10 institutions by number of publications(including ties, 12 institutions total).

Rank Institution Country Publications, n (%) TLCSa TGCSb

1 University of California, San Diego United States 24 (3.7%) 70 1,852

2 Capital Medical University China 22 (3.4%) 28 149

3 University of Wisconsin-Madison United States 18 (2.7%) 128 927

4 Wenzhou Medical University China 17 (2.6%) 45 762

5 The Chinese University of Hong Kong China 16 (2.4%) 85 1,261

6 Zhejiang University China 15 (2.3%) 18 178

7 Kurume University Japan 13 (2.0%) 3 284

8 Virginia Commonwealth University United States 13 (2.0%) 41 433

9 Harbin University China 12 (1.8%) 1 30

10 Harvard Medical School United States 12 (1.8%) 11 312

11 University of Oxford UK 12 (1.8%) 53 838

12 University of Verona Italy 12 (1.8%) 13 146

TLCSa, total local citation score. TGCSb, total global citation score.
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Medical University have relatively recent publication timelines, 

particularly during 2023–2024 (Supplementary Figure S1), 

suggesting that mainland China’s NAFLD artificial intelligence 

research is exhibiting a “late-mover advantage” trajectory.

3.3 Author and co-authorship network 
analysis

A total of 4,744 authors participated in the publications 

included in the analysis. Table 3 presents the top ten authors 

ranked by publication count. Rohit Loomba emerged as the 

most prolific author in this field with 17 papers (2.6%), followed 

by Perry J. Pickhardt, Vincent Wai-Sun Wong, and Ming-Hua 

Zheng. Vincent Wai-Sun Wong achieved a leading TGCS of 

1,156, indicating significant research impact.

The author collaboration network analysis in Figure 5 reveals 

three distinct clusters: the red cluster centered on Pickhardt, Perry 

J. (16 papers, TGCS = 843), primarily focusing on artificial 

intelligence applications in computed tomography; the blue 

cluster comprising Asia-Pacific researchers including Wong, 

Vincent Wai-Sun, specializing in clinical diagnostic algorithm 

TABLE 2B Top 10 institutions by total link strength in collaboration networks.

Rank Institution Countries TLSa

1 Wenzhou Medical University China 72

2 Chinese University of Hong Kong China 55

3 University of Verona Italy 43

4 Virginia Commonwealth University United States 42

5 University Hospital Southampton UK 42

6 National University of Singapore Singapore 36

7 Hangzhou Normal University China 32

8 University of Southampton Singapore 32

9 Key Laboratory of Diagnosis and Treatment Development of Chronic Liver Disease, Zhejiang Province China 31

10 Capital Medical University China 30

TLSa, total link strength.

FIGURE 4 

Visualization of research networks of institutions. Institutional collaboration network clustering analysis of artificial intelligence in non-alcoholic fatty 

liver disease research. Different colors represent different research clusters: the red cluster is centered around The Chinese University of Hong Kong, 

the green cluster is centered around University of California San Diego, and the blue cluster is represented by Capital Medical University, Zhejiang 

University, and Wenzhou Medical University. Node size indicates institutional publication volume/influence, while connecting lines represent 

collaboration relationship strength. This demonstrates the international collaboration network and major research communities in the application 

field of artificial intelligence in NAFLD research.
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development; and the green cluster representing European 

research alliance contributions to this field.

Additionally, through co-citation author network analysis 

(Supplementary Figures S2–S3), we identified Younossi as a core 

academic authority whose work likely established the foundation 

for NAFLD definition, epidemiological characteristics, and 

clinical significance. The David E. Kleiner cluster (163 co- 

citations) focuses on AI-assisted histopathological diagnosis, the 

Perry J. Pickhardt cluster (180 co-citations) leads deep learning 

algorithm development for medical imaging, the Paul Angulo 

cluster (130 co-citations) concentrates on clinical decision 

support system construction, while the Laurent Castera cluster 

advances intelligent applications of non-invasive diagnostic 

technologies (Supplementary Table S2).

TABLE 3 Top 10 authors who published research papers.

Rank Author Institution Country Publications, n (%) TLCS TGCS

1 Rohit Loomba University of California, San Diego United States 17 (2.6%) 61 1,768

2 Perry J. Pickhardt University of Wisconsin United States 16 (2.4%) 96 843

3 Vincent Wai-Sun Wong The Chinese University of Hong Kong China 14 (2.1%) 84 1,156

4 Ming-Hua Zheng Zhejiang University China 14 (2.1%) 45 747

5 Takumi Kawaguchi Kurume University School of Medicine Japan 13 (2.0%) 3 284

6 Arun J. Sanyal Virginia Commonwealth University United States 11 (1.7%) 41 401

7 Ronald M. Summers National Institutes of Health Clinical Center United States 11 (1.7%) 76 601

8 Jia Li Key Laboratory of Precision Diagnosis and Treatment China 10 (1.5%) 1 40

9 Christopher D. Byrne University of Southampton United Kingdom 9 (1.4%) 15 123

10 Takeshi Okanoue Saiseikai Suita Hospital Japan 9 (1.4%) 23 157

FIGURE 5 

Visualization of research networks of authors.
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3.4 Journal analysis

Journal analysis plays an irreplaceable role in identifying core 

journals within specific fields. Table 4 lists the top ten journals 

ranked by publication count along with their respective impact 

factors (IF) and categories based on the Science Citation Index 

Expanded (SCIE). Scientific Reports achieved the highest 

publication volume (43 articles, 6.6%), while Hepatology 

demonstrated a high IF (2024) of 13.0 and ranked second in 

TGCS. In Figure 6, Scientific Reports appears as the large 

central node in the network, occupying a core position in this 

field. The figure also shows the presence of Frontiers series 

journals and other open-access publications.

Based on the journal publication temporal heat distribution 

map (Supplementary Figure S4), this visualization reveals the 

temporal distribution patterns of AI-NAFLD related research 

across different journals. Some journals such as Scientific Reports 

and PLoS One maintained high publication activity throughout 

the entire research period, while different journals exhibited 

distinct contribution characteristics across various time periods.

The journal dual-map overlay network provides important 

insights into understanding the interdisciplinary nature of AI- 

NAFLD research. Figure 7 uses colored node clusters to 

represent different disciplinary domains, with connections of 

varying thickness (particularly the thick green lines) illustrating 

the primary pathways and intensity of knowledge Jow.

TABLE 4 Top 10 journals by publication volume in artificial intelligence research on Non-alcoholic fatty liver disease (NAFLD) and their 
academic metrics.

Rank Journal Publications, 
n (%)

TLCSa TGCSb IFc (2023) Category (SCIE)

1 Scientific Reports 43 (6.6%) 0 849 3.9 MULTIDISCIPLINARY SCIENCES

2 PLoS ONE 17 (2.6%) 0 283 2.6 MULTIDISCIPLINARY SCIENCES

3 Diagnostics 16 (2.4%) 0 88 3.3 MEDICINE, GENERAL & INTERNAL

4 Frontiers in Endocrinology 16 (2.4%) 0 88 4.6 ENDOCRINOLOGY & METABOLISM

5 Hepatology 14 (2.1%) 38 588 13.0 GASTROENTEROLOGY & HEPATOLOGY

6 European Radiology 11 (1.7%) 17 118 4.7 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

7 Hepatology Communications 11 (1.7%) 14 221 5.7 GASTROENTEROLOGY & HEPATOLOGY

8 Lipids in health and disease 11 (1.7%) 0 77 4.2 BIOCHEMISTRY & MOLECULAR BIOLOGY

9 Liver International 11 (1.7%) 11 349 5.2 GASTROENTEROLOGY & HEPATOLOGY

10 Alimentary Pharmacology & 

Therapeutics

10 (1.5%) 35 237 6.6 GASTROENTEROLOGY & HEPATOLOGY; 

PHARMACOLOGY & PHARMACY

TLCSa, Total Local Citation Score; TGCSb, Total Global Citation Score; IFc, Impact Factor.

FIGURE 6 

Visualization of research networks of journals.
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3.5 Keyword co-occurrence and keyword 
burst analysis

Co-occurrence analysis of keywords facilitates better 

understanding of research frontiers and developmental trends. 

The keyword ranking table (Table 5) reveals explosive growth in 

the integration of NAFLD research with AI technology, with 

NAFLD (231 occurrences, TLS = 476) and machine learning 

(163 occurrences, TLS = 370) occupying dominant positions. 

This high-frequency keyword co-occurrence indicates that AI 

technology has become the core methodological foundation for 

NAFLD research.

Figure 8A demonstrates research topic groupings through 

multi-colored clustering, where node size represents keyword 

frequency, connection thickness indicates co-occurrence 

strength, and different colors represent 10 distinct research 

clusters. The central node “NAFLD” serves as the core research 

theme, forming close connections with technical keywords such 

as “Machine Learning,” “Artificial Intelligence,” and “Deep 

Learning.” With “Machine Learning” and “NAFLD” as the two 

largest central nodes, the green area representing traditional 

medical imaging technologies (ultrasound, MRI, elastography) is 

deeply integrating with the blue area’s artificial intelligence 

technologies (machine learning, deep learning), forming new 

non-invasive diagnostic paradigms exemplified by radiomics, 

providing important alternatives to traditional liver biopsy 

diagnosis. The purple and red clusters highlight the importance 

of disease prediction models and epidemiological studies, 

particularly attention to special populations such as children.

Figures 8B,C displays temporal dynamics (2021.0–2024.0) and 

normalized citation strength (0.4–1.4) through gradient color 

spectra, presenting the temporal evolution of research hotspots 

and academic impact distribution. Particularly noteworthy in 

Figure 8B, keywords “InJammation,” “CT,” and 

“Bioinformatics” appear in red, indicating high normalized 

citation impact. Figure 8C provides intuitive temporal evolution 

FIGURE 7 

Journal dual graph overlay.

TABLE 5 Top 20 keywords by frequency of occurrence.

Rank Keyword Occurrences TLS Rank Keyword Occurrences TLS

1 NAFLD 231 476 11 Biomarker 24 58

2 Machine Learning 143 319 12 Radiomics 20 49

3 Artificial Intelligence 70 179 13 Nomogram 18 45

4 Liver Steatosis 52 113 14 Liver 17 40

5 Liver Fibrosis 51 141 15 Diagnosis 15 43

6 Deep Learning 49 119 16 Metabolic Syndrome 15 40

7 Nash 34 98 17 Hepatocellular Carcinoma 14 32

8 Prediction Model 33 85 18 Masld 14 24

9 Fatty Liver Disease 32 84 19 Type 2 Diabetes 14 37

10 Non-Alcoholic Steatohepatitis 31 83 20 Magnetic Resonance Imaging 13 34

TLS, total link strength.
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evidence. The timeline from left to right (2021–2024) shows 

distinct color gradation trends, with MASLD and MASH 

appearing in bright red, indicating the AI research community’s 

rapid adaptation to new conceptual frameworks.

Keywords with high citation burst intensity are widely 

recognized as important indicators for identifying research 

frontier hotspots, effectively reJecting innovation dynamics and 

developmental trends in the field. The red bars in the figure 

represent citation burst periods for each keyword, with 

numerical values indicating burst strength, reJecting the 

academic evolution trajectory from basic metabolic mechanism 

research toward precision diagnosis and epidemiological 

investigation. Figure 8D displays the top 21 burst keywords 

from 2010 to 2025. “Hepatic steatosis” demonstrated the highest 

burst strength (6.94), followed by “classification” (3.64) and 

“fatty liver” (3.57). Additionally, “alanine aminotransferase” 

exhibited the longest burst duration, spanning 10 years. 

Notably, “immune infiltration” and “expression” emerged as the 

strongest recent research hotspots (2023–2025), with burst 

intensities of 2.46 and 3.29, respectively. This marks a 

transition from traditional imaging diagnosis and clinical 

manifestation studies toward deeper exploration of molecular 

biological mechanisms and immunological aspects. The 

appearance of “pathogenesis” (2.23) further confirms the 

research focus shift toward mechanistic analysis.

3.6 Citation analysis

Figure 9 presents the 25 references with the most 

significant citation bursts from 2010 to 2025. Among these, 

Younossi ZM’s study published in Hepatology (2016) 

FIGURE 8 

Keyword Co-occurrence network analysis: knowledge graph and evolution trends. (A): NAFLD Research Topic Cluster Analysis.This figure identifies 

research direction clusters with different colors: Applications of Artificial Intelligence (AI) and Machine Learning (ML) in hepatic disorders, the blue 

cluster concentrates on chronic liver diseases and cirrhosis research and the red cluster represents the core investigations on fatty liver and Non- 

Alcoholic Fatty Liver Disease (NAFLD). (B): NAFLD Research Field Keyword Network Graph.This figure uses a color spectrum to represent 

temporal changes, displaying the co-occurrence network and connection strength of major keywords in NAFLD research, with “Machine 

Learning” and “NAFLD” as the core nodes. (C): NAFLD Research Keyword Link Strength Heat Map.This figure shows the association strength 

between keywords using a red-blue spectrum, where red indicates high-strength associations and blue indicates low-strength associations, 

intuitively reflecting the closeness between research topics. (D): Top 21 Keywords with the Highest Citation Frequency from 2010 to 2025. 

Arranged in chronological order, with citation burst periods marked by red lines.
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demonstrated the highest citation burst strength (26). 

Moreover, citation bursts of these high-impact publications 

were predominantly concentrated between 2020 and 2023. 

Figure 10 reveals academic associations among researchers 

through the CiteSpace citation network structure. Node size 

represents literature impact, while color variations indicate 

research hotspots migrating from early foundational studies 

(light green nodes) on the left to recent deep learning 

applications (dark red nodes) on the right, forming a 

distinct academic evolution pathway.

Subsequently, this study conducted cluster analysis of 

cited journals (Figure 11), identifying 9 major research 

direction clusters including artificial intelligence (#1), 

hepatic steatosis (#2), histology (#3), model fitting (#4), 

among others. Inter-cluster connections demonstrate the 

cross-integration between artificial intelligence technologies 

and traditional medical diagnostic methods. Research 

outcomes published in these journals significantly advanced 

related research topics and achieved widespread citation.

The cited journal cluster timeline in Figure 12 displays 

dynamic evolution of research hotspots along the temporal 

axis (2010–2025). References within clusters are 

chronologically ordered by publication year, with node size 

representing total citation count. The horizontal axis 

represents time progression from early to recent research. 

Research themes evolved from 2010 to 2025, with early 

studies (2010) focusing on traditional pathophysiological 

mechanism exploration, mid-term development emphasizing 

clinical practice guidelines and diagnostic criteria, while 

recent studies (2020) clearly shifted toward deep learning 

and machine learning applications.

4 Discussion

4.1 Temporal evolution and research 
development trends in NAFLD-AI studies

This study systematically analyzed 655 publications retrieved 

from the period spanning 2010 to March 25, 2025, investigating 

the evolutionary trends of artificial intelligence applications in 

non-alcoholic fatty liver disease over the past fifteen years. Based 

on the time series regression analysis (Supplementary Table S1), 

this study identified a significant logarithmic-linear relationship 

between publication volume and the temporal variable 

(R2 = 0.943, F = 216.642, p < 0.001). The regression coefficient 

β = 0.217 indicates an annual growth rate of 24.2% (e0.217 ≈ 

1.242) in this field, demonstrating statistically significant growth 

patterns. The model’s high explanatory power (adjusted 

R2 = 0.939) indicates that temporal factors account for 94.3% of 

FIGURE 9 

The 25 most significant citation burst papers in Non-alcoholic fatty liver disease research field. Figure shows the 25 papers with the strongest citation 

bursts in the NAFLD research field, including authors, publication year, journal, citation strength, and the start and end times of the citation burst.
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FIGURE 10 

Citation network structure of Non-alcoholic fatty liver disease research. Figure presents a citation network visualization map of NAFLD research, 

where node size represents the influence of literature, and colors ranging from light green to deep red indicate publication times from early to 

recent periods. Although only some authors are labeled in the figure (such as Powell EE, Riazi K, etc.), the overall network structure reveals the 

clustering and knowledge flow directions in the research field.

FIGURE 11 

Thematic clustering network of Non-alcoholic fatty liver disease research. Figure displays the thematic clusters in NAFLD research and their 

interconnections. The figure identifies 12 major research directions, including masld(#0), artificial intelligence (#1), and hepatic steatosis (#2), 

among others. The connections between clusters reflect the cross-integration of research directions, especially the trend of integrating artificial 

intelligence technologies with traditional medical diagnostic methods.
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publication volume variance, confirming sustained and stable 

exponential growth trends in this research domain.

Data analysis reveals that 2010–2018 represents the nascent 

phase of this field, characterized by relatively modest publication 

volumes with annual outputs not exceeding 10 articles. 

Subsequently, publication volumes demonstrated steady growth 

trajectories, with research scale rapidly expanding during 

2019–2024, exhibiting exponential growth in publications 

(approximately 83.8% of total output). This pattern reJects the 

substantial attention and investment from the global scientific 

community toward AI-enabled NAFLD diagnosis and treatment.

Due to data cutoff limitations, the 2025 publication data (62 

articles) represent only the first quarter of the year. Combined 

with temporal lag effects inherent in academic publishing, these 

incomplete data may underestimate actual research activity 

levels for that year. However, this limitation does not 

compromise the validity of the core conclusion identifying 

2023–2024 as the breakthrough period for research in this domain.

Overall, the geographical distribution of research demonstrates 

a pronounced “Sino-American dual-core” configuration. The 

combined research contributions from these two nations account 

for 64.6% of the total output (Table 1). In contrast to the 64.6% 

research contribution from China and the United States, Europe, 

despite having the highest NAFLD prevalence rate globally 

(54.53%), contributes only 32.8% of research output, while 

representation from other high-prevalence Asian countries and 

regions remains notably limited. Based on collaboration network 

analysis, this imbalance reJects structural disparities in scientific 

resource allocation: AI medical research and development 

requires large-scale computational infrastructure, standardized 

datasets, and interdisciplinary talent teams—resources whose 

accessibility varies significantly across different regions. 

Specifically, resource constraints in underrepresented regions may 

impede the effective global dissemination of AI technologies. 

Consequently, the current research concentration phenomenon 

not only reJects technological development inequalities but may 

also exacerbate disparities in NAFLD precision diagnostic and 

therapeutic capabilities across different regions. To achieve 

equitable global development of AI-assisted NAFLD management, 

future research should prioritize establishing more inclusive 

international collaboration mechanisms, particularly strengthening 

partnerships with regions bearing high disease burdens but 

possessing relatively limited research resources, ensuring that AI 

technological innovations benefit global patient populations.

Beyond these findings, this study reveals that the United States’ 

academic impact superiority in NAFLD artificial intelligence 

research stems from three core mechanisms: First, systematic 

differences in research quality—American institutions such as the 

University of Wisconsin-Madison, despite limited publication 

volume (18 articles), established standardized validation systems in 

CT imaging analysis and Rohit Loomba’s interdisciplinary research 

platform, ensuring methodological rigor and clinical translational 

value. Second, the knowledge amplification effect of diversified 

international collaboration networks—deep partnerships between 

the United States and major European research nations enhanced 

international visibility and citation dissemination of research 

FIGURE 12 

Timeline visualization Map of artificial intelligence applications in NAFLD. Through cluster analysis, cluster labels are generated, and references within 

clusters are arranged chronologically by publication year, with node size representing the total citation count of references. The horizontal axis 

represents time, with research progressing from early (left) to recent (right) periods.

He et al.                                                                                                                                                                  10.3389/fradi.2025.1634165 

Frontiers in Radiology 15 frontiersin.org



outcomes. Third, the citation accumulation advantage of early 

technological positioning—American research teams’ early 

exploration in the AI-NAFLD field established important 

methodological foundations and validation standards, with these 

pioneering works becoming essential citation sources for 

subsequent research, thereby forming sustained inJuence 

accumulation within citation networks. In contrast, China, 

leveraging its substantial research scale and rapid development of 

emerging institutions, demonstrates unique advantages in large- 

sample data acquisition and technological iteration, indicating the 

formation of future multipolar collaboration patterns.

Following analysis of overall research trends, we subsequently 

examined academic publication patterns and journal distribution 

characteristics in this field. Journal analysis can reJect the 

interdisciplinary nature of a field and changes in publication 

patterns, guiding clinical practitioners and researchers in journal 

selection and identifying emerging research areas. Scientific 

Reports (43 articles, 6.6%), as the journal with the highest 

publication volume, has become an important publication 

platform for this emerging interdisciplinary field due to its open- 

access model and interdisciplinary characteristics. Core journals 

including Scientific Reports, Frontiers in Endocrinology, and 

Diagnostics have published substantial AI-NAFLD related 

research in recent years (2022–2024). These journals typically 

offer faster publication speeds and broader accessibility.

4.2 Evolutionary trajectory and core 
application patterns of AI technologies in 
the NAFLD domain

Based on comprehensive evidence from keyword burst 

analysis, citation network evolution, and author collaboration 

patterns, AI applications in the NAFLD field have undergone a 

distinct three-stage technological evolution. Each phase 

represents different algorithmic approaches, research priorities, 

and technical challenges that reJect the maturation of AI 

methodologies in clinical medicine.

The Traditional Machine Learning Era (2010–2018) was 

characterized by the systematic processing of structured clinical 

data. Keyword burst analysis demonstrates that “alanine 

aminotransferase” maintained the longest burst duration (10 

years), while traditional biomarkers such as “insulin resistance” 

dominated the research landscape. This pattern indicates that 

early AI applications primarily focused on data mining of 

conventional laboratory parameters and the development of 

risk stratification models. The predominant computational 

approaches during this period included Support Vector 

Machines (SVM), Decision Trees, and Logistic Regression 

(27, 28). These traditional machine learning methods offered 

distinct advantages in terms of model interpretability and robust 

performance with limited sample sizes—critical considerations 

for early clinical AI applications.Citation analysis provides 

additional insights into the academic foundation established 

during this era. Among the 25 publications demonstrating the 

most significant citation bursts, the work by Younossi ZM 

(2016) achieved the highest citation intensity of 13.57. This 

landmark study conducted a comprehensive global meta-analysis 

that systematically characterized the worldwide epidemiological 

patterns of NAFLD, thereby establishing essential 

epidemiological foundations for subsequent AI-driven risk 

prediction and population screening applications.

The Deep Learning Breakthrough Era (2019–2022) 

represented a paradigm shift from clinical parameter analysis 

toward sophisticated medical imaging processing. Citation burst 

analysis reveals concentrated activity in keywords including “U- 

Net deep learning architecture,” “convolutional neural 

networks,” “artificial intelligence,” and “segmentation,” signaling 

the emergence of breakthrough applications in medical imaging 

analysis. The red research cluster centered on Pickhardt (16 

publications, 843 total citations) has predominantly focused on 

artificial intelligence applications in computed tomography. 

Their developed AI-automated CT analysis tools have 

demonstrated exceptional performance in detecting moderate- 

to-severe hepatic steatosis. When employing a diagnostic 

threshold of liver contrast-enhanced attenuation values below 90 

HU, the system achieved a sensitivity of 90.5% and specificity of 

78.4%. With a more stringent threshold of <80 HU, sensitivity 

was 77.8% while specificity improved to 93.2%. The diagnostic 

performance yielded an AUC of 0.938, providing a reliable 

automated solution for opportunistic fatty liver screening in 

routine CT examinations (29).

The Multimodal Integration Era (2023–2025) has been 

characterized by AI applications extending from imaging 

diagnostics into molecular biological mechanisms. Keyword 

burst analysis demonstrates (as shown in Figure 8D) that 

“immune infiltration” (burst strength 3.29) and “gene 

expression” (burst strength 2.46) have emerged as the most 

prominent recent research hotspots. This transition marks an 

evolution from traditional imaging diagnosis and clinical 

manifestation studies toward deeper exploration of molecular 

biological mechanisms and immunological aspects.AI 

technologies have demonstrated unique value in immune 

infiltration quantification. Machine learning algorithms can 

automatically quantify infiltration patterns of key immune cells 

including macrophages and regulatory T cells, revealing 

dynamic associations with metabolic inJammation (30). Deep 

learning approaches enable precise identification of 

inJammatory cell spatial distribution through histological image 

analysis, providing quantitative foundations for understanding 

immune crosstalk between metabolic organs (31). This AI- 

driven quantification of immune infiltration represents a critical 

technology for elucidating adipokine-mediated inter-organ 

immune dialogue mechanisms, offering essential tools for 

developing precision intervention strategies targeting 

metabolic inJammation.

In thematic cluster analysis (Figure 8A), “NAFLD” and 

“Machine Learning” constitute the core conceptual framework 

as the most frequently occurring keywords. The biological 

foundation underlying these technological applications is 

profound: research demonstrates that adipose tissue coordinates 

“meta-inJammation” responses through adipokine release. This 
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inJammatory state represents a common characteristic of 

metabolic diseases and directly promotes NAFLD progression 

(32). AI technologies achieve precision diagnosis and prediction 

by quantifying these complex biological processes.

The temporal distribution of citation bursts further elucidates 

the paradigmatic shifts in research priorities within this domain: 

progressing from early emphasis on clinical parameters and 

pathological characteristics, through the intermediate development 

of risk prediction models, to the contemporary widespread 

application of deep learning technologies. Moreover, co-citation 

network analysis (Figures 10–12) corroborates this evolutionary 

trajectory, demonstrating the migration of research foci from 

foundational studies toward advanced deep learning applications, 

thereby establishing a coherent academic progression pathway.

The nine principal research directions identified through 

cluster analysis constitute a comprehensive knowledge landscape 

of this field. Temporal axis analysis confirms the systematic 

evolution of research themes from epidemiological and 

foundational concepts, through clinical practice guidelines and 

diagnostic criteria, ultimately transitioning toward deep learning 

and precision medicine applications. Of particular significance is 

the prominent emergence of metabolic dysfunction-associated 

fatty liver disease (#9) in recent years, which correlates closely 

with the MAFLD nomenclature transition. The knowledge 

mapping demonstrates rapid growth in MAFLD-related research 

post-2020, alongside close associations with clusters 

encompassing insulin resistance and predictive biomarkers. This 

pattern substantively reJects the profound impact of this 

conceptual transformation on research trajectories. The 

nomenclature revision has facilitated a research paradigm shift 

from merely excluding alcoholic factors toward actively 

identifying metabolic risk factors, thereby advancing the 

development of artificial intelligence-based precision 

stratification diagnostics and individualized therapeutic 

strategies.This conceptual evolution has provided essential 

theoretical foundations and practical guidance for research 

paradigm transformation in this field. The transition emphasizes 

the movement from exclusion-based diagnostic approaches 

toward comprehensive metabolic risk assessment, aligning with 

contemporary precision medicine principles and establishing a 

robust framework for future AI-driven clinical applications in 

NAFLD management.

Based on the aforementioned technological evolution analysis 

and temporal distribution characteristics of citation bursts, this 

study further reveals that artificial intelligence applications in 

NAFLD research are primarily concentrated in three domains: 

non-invasive diagnostic technology development, predictive 

model construction, and biomarker identification. Machine 

learning and deep learning methodologies have become core 

methodological tools in NAFLD research, introducing new 

technological paradigms to traditional clinical investigations. 

The application of deep learning algorithms has enabled highly 

automated diagnostic processes for NAFLD. This technological 

innovation has substantially enhanced the capacity for early 

detection of clinically significant NAFLD, providing possibilities 

for timely intervention.

In terms of specific algorithmic applications, deep learning 

algorithms have achieved high automation in NAFLD diagnostic 

processes. Taking NASH-Scope (also known as Fibro-Scope) as 

an example, this artificial neural network diagnostic system 

demonstrated excellent performance in validation studies: 

sensitivity of 97.2% and specificity of 97.8% (AUC = 0.950) for 

distinguishing NAFLD from healthy controls, and sensitivity of 

90.7% with specificity of 93.3% for identifying NASH with 

fibrosis. In fibrosis staging, the system achieved sensitivity of 

99.5% and specificity of 90.9% for distinguishing F0 from F1-4 

stages, providing a reliable clinical tool for non-invasive NAFLD 

screening and fibrosis assessment (33, 34).

Beyond diagnostic applications, artificial intelligence technologies 

have demonstrated exceptional potential in NAFLD risk prediction. 

The predictive model developed by Charu et al. (35) based on the 

“super learner” algorithm has shown outstanding performance in 

detecting fibrotic NASH. This type of artificial intelligence model 

integrates the advantages of multiple machine learning algorithms 

to form “best-in-class” predictors, providing novel benchmark tools 

for clinical risk assessment.Artificial intelligence technologies also 

play a crucial role in hepatic steatosis evaluation. Neural network- 

based ultrasound assessment methods analyze high-level features 

extracted from hepatic B-mode ultrasound image sequences through 

deep convolutional neural networks (36), enabling automated 

assessment of hepatic fat content and effectively reducing 

clinical workload.

In biomarker identification, artificial intelligence similarly 

demonstrates broad prospects. Through the application of 

machine learning algorithms to construct MAFLD models and 

screen disease-characteristic genes, potential therapeutic targets 

can be identified, achieving goals of prediction, prevention, and 

personalized treatment (37). Currently developed quantitative 

imaging biomarkers include liver elastography for fibrosis 

staging and magnetic resonance proton density fat fraction for 

hepatic steatosis assessment (38). These technologies provide 

novel pathways for predicting the risk of early chronic liver 

disease progression to cirrhosis-related complications, facilitating 

the realization of precision medicine. Furthermore, machine 

learning algorithms have been applied to quantitative assessment 

of NAFLD immune cell infiltration patterns (39), providing new 

perspectives for disease mechanism research.

4.3 Summary and future perspectives of AI 
applications in NAFLD research

Currently, liver tissue biopsy remains the gold standard for 

NAFLD diagnosis, staging, and prognostic assessment (40, 41). 

However, this approach presents significant limitations: it is not 

only invasive but may also induce rare yet life-threatening 

complications, while facing challenges including sampling 

variability and high costs (42). These constraints limit the 

widespread application of liver biopsy in large-scale population 

screening and long-term follow-up studies.

The advancement of artificial intelligence technologies offers a 

breakthrough solution to this clinical dilemma.Although non- 
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invasive methods such as FibroScan and ELF serum testing have 

been implemented in clinical practice, each approach possesses 

specific limitations. Elastography techniques demonstrate 

reduced success rates in obese patients and are susceptible to 

acute inJammation effects, while serum biomarker detection, 

despite higher standardization levels, exhibits limited sensitivity 

in early fibrosis detection (42). Artificial intelligence 

technologies demonstrate the potential to integrate clinical 

parameters, laboratory indices, and imaging features, promising 

to further enhance diagnostic performance beyond existing non- 

invasive methodologies (38). Non-invasive diagnosis and 

precision staging represent promising application directions for 

artificial intelligence technologies in the NAFLD domain (36). 

Accurate assessment of hepatic fibrosis is not only crucial for 

predicting disease outcomes in clinical practice but also holds 

irreplaceable value in evaluating therapeutic responses within 

clinical trials (43).

The MAESTRO-NASH large-scale randomized controlled trial 

has further validated the clinical utility of non-invasive diagnostic 

technologies. This landmark study demonstrated that multiple 

non-invasive assessment methods, including blood biomarkers 

and imaging examinations, possess sufficient sensitivity and 

specificity to accurately evaluate NASH disease activity and 

fibrosis severity (44). This milestone clinical evidence provides 

essential validation benchmarks for further optimization and 

clinical translation of AI technologies, particularly in constructing 

more precise predictive models and risk stratification 

systems.These developments underscore the transformative 

potential of artificial intelligence in revolutionizing NAFLD 

clinical management through enhanced diagnostic accuracy, 

reduced invasiveness, and improved patient accessibility to 

comprehensive hepatological assessment.

Despite the tremendous potential demonstrated by artificial 

intelligence in NAFLD research, bibliometric analysis from this 

study reveals that current research confronts three core challenges 

requiring urgent resolution.First, the absence of standardized 

datasets constitutes a fundamental constraint limiting large-scale 

technological applications (45). Most contemporary studies 

employ datasets exhibiting significant heterogeneity in image 

acquisition protocols, pathological diagnostic criteria, and patient 

population characteristics, thereby compromising model 

reproducibility and generalizability (10). This phenomenon is 

exemplified by the highest publication volumes observed in open- 

access journals such as Scientific Reports, where research quality 

demonstrates considerable variability and lacks unified data 

standards and validation benchmarks. The establishment of 

multi-center, large-sample, standardized NAFLD imaging and 

pathological databases represents a foundational prerequisite for 

achieving AI technological breakthroughs. Second, limitations in 

external validation significantly compromise the credibility of 

research findings. This investigation reveals that most high-impact 

publications undergo validation exclusively within single 

institutions or specific populations, lacking cross-racial and cross- 

regional external cohort validation. This constraint substantially 

limits the applicability of AI models across diverse clinical 

environments, thereby hindering their broader implementation.

Additionally, citation burst analysis from this study 

illuminated the phenomenon of “technological translation 

delay.” For instance, the U-Net deep learning architecture 

proposed by Ronneberger O in 2015 did not trigger citation 

bursts in NAFLD research until 2019–2020 (burst intensity 3.72) 

(46), indicating an approximate 4–5 year translation cycle from 

artificial intelligence theoretical development to practical medical 

applications. This temporal lag stems not only from 

technological maturity considerations but also reJects systemic 

barriers including healthcare workJow adaptation requirements, 

clinical physician acceptance cultivation, and regulatory approval 

complexities. These findings underscore the necessity for 

systematic approaches to address infrastructure, validation, and 

implementation challenges to fully realize the transformative 

potential of artificial intelligence in NAFLD clinical practice.

To accelerate the clinical implementation of AI technologies in 

NAFLD practice, comprehensive advancement is required across 

four strategic dimensions: data resource integration and 

standardization, institutionalization of multidisciplinary 

collaboration mechanisms, adaptive reform of regulatory and 

evaluation frameworks, and systematic development of 

international cooperation networks.

Based on successful experiences from high-impact research 

institutions, we propose four specific improvement strategies. 

First, data resource integration and standardization represents the 

foundational prerequisite for eliminating translational bottlenecks. 

Examining successful models from high-impact institutions, the 

“gold standard” validation framework established by the 

University of Wisconsin-Madison in CT imaging analysis (with 

research primarily focused on CT-based hepatic fat quantification 

technology development, including fully automated deep learning 

segmentation tools and opportunistic screening methods) and the 

interdisciplinary standardized research platform developed by 

Rohit Loomba’s team at the University of California San Diego 

both exemplify the critical importance of data standardization for 

rapid technology validation.

Second, institutionalized innovation in multidisciplinary 

collaboration mechanisms holds decisive significance for 

overcoming traditional developmental bottlenecks. High- 

productivity author network analysis from this study reveals that 

successful research teams universally establish deep integration 

models between clinical medicine and computational sciences. 

This collaborative paradigm ensures close alignment between AI 

algorithm development and clinical requirements, thereby 

significantly reducing the temporal span from proof-of-concept 

to clinical application.

Third, adaptive reform of regulatory and evaluation frameworks 

should be optimized according to the technical characteristics of AI 

medical applications. For medium-to-low risk clinical applications 

such as NAFLD diagnosis, we recommend implementing risk- 

stratified differential management strategies through the 

establishment of experimental clinical application evaluation 

mechanisms that permit limited-scope clinical validation while 

ensuring patient safety.

Fourth, systematic development of international cooperation 

networks will further optimize translational efficiency through 
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knowledge sharing and resource integration. The close collaborative 

relationships between the United States and major research nations 

including China and the United Kingdom provide foundations for 

rapid technology dissemination. Building upon this foundation, 

more institutionalized collaborative mechanisms should be 

established, including unified algorithm validation standards, data 

format specifications, and clinical evaluation guidelines, with the 

objective of reducing technological translation cycles to more 

efficient timeframes.

In summary, based on the analytical findings of this study, 

future research should strengthen collaborative exchanges with 

low- and middle-income countries where artificial intelligence 

technologies and resources remain limited, thereby promoting 

globally balanced development in this field. Concurrently, it is 

imperative to further dismantle disciplinary barriers and foster 

deep integration among imaging analysis, genomics, and clinical 

diagnostics, constructing a more innovative research ecosystem. 

Reducing the translational cycle from theoretical AI 

development to practical medical applications while accelerating 

technology implementation remains critically important.

Furthermore, enhanced application of AI technologies in 

NAFLD molecular pathology and immunological mechanism 

research should be prioritized to deepen understanding of 

disease pathogenesis. Achieving optimal balance between the 

practical utility of clinical prediction tools and their academic 

impact will facilitate synergistic development between 

fundamental research and clinical applications. These collective 

efforts will contribute to fully realizing the potential of artificial 

intelligence in NAFLD research and clinical practice, ultimately 

improving diagnostic accuracy and therapeutic outcomes 

for patients.

The advancement of AI-enabled NAFLD management 

represents a paradigmatic shift toward precision medicine, 

necessitating systematic coordination across technological, 

institutional, and regulatory domains. Through strategic 

implementation of the proposed multi-dimensional framework, 

the field can accelerate the translation of artificial intelligence 

innovations into clinically meaningful improvements in patient 

care,establishing a sustainable foundation for continued 

advancement in hepatological practice and research.

5 Conclusion

This study reveals three core findings regarding artificial 

intelligence applications in NAFLD research through 

comprehensive bibliometric analysis. First, the research landscape 

demonstrates a Sino-American dual-core driven multidisciplinary 

collaborative network, characterized by exponential growth 

patterns across three distinct phases: the nascent period (2010– 

2018), rapid growth period (2019–2022), and explosive 

development period (2023–2024). This evolution has established 

four major technological clusters: non-invasive assessment of 

hepatic fibrosis, imaging-based diagnosis, disease progression 

predictive modeling, and biomarker screening. Second, the 

research paradigm has undergone dual transformations—scientific 

inquiry has shifted from clinical phenotypic analysis toward 

molecular mechanism exploration, while technological approaches 

have evolved from single algorithms toward multimodal deep 

learning systems. Third, the explosive growth of emerging themes 

including “immune infiltration” and “gene expression” (2023– 

2025) signifies the field’s entry into a new era of precision medicine.

Current AI technologies have achieved breakthroughs across 

three major application scenarios: deep learning-based imaging 

analysis has significantly enhanced non-invasive diagnostic 

accuracy for fatty liver disease, multidimensional machine 

learning models have enabled precise risk stratification, and 

bioinformatics algorithms have accelerated novel biomarker 

discovery. Despite confronting challenges related to data 

heterogeneity and clinical translation bottlenecks, AI technologies 

are reconstructing NAFLD diagnostic and therapeutic frameworks 

through innovations such as promoting non-invasive testing as 

liver biopsy alternatives and implementing quantitative predictive 

models to support clinical decision-making.

Future breakthrough directions should focus on: constructing 

standardized multimodal databases, developing interpretable AI 

systems, and establishing clinical validation frameworks. The 

longitudinal trend analysis and knowledge mapping constructed 

in this study provide strategic navigation for the deep 

integration of artificial intelligence and hepatology, substantially 

advancing precision hepatology development and contributing 

to addressing NAFLD as a global public health challenge.These 

findings underscore the transformative potential of artificial 

intelligence in revolutionizing NAFLD research methodologies 

and clinical practice, establishing a robust foundation for 

continued advancement in precision medicine approaches to 

metabolic liver disease management.

6 Limitations and Future Perspectives

This study possesses certain inherent limitations that warrant 

acknowledgment. First, potential selection bias may exist in the 

results due to the exclusive utilization of the WoSCC database 

and the exclusion of non-English publications, potentially 

overlooking significant research published in journals not 

indexed by Web of Science. Second, temporal constraints arise 

from the incomplete nature of 2025 data, which, given the rapid 

evolution of AI technologies, may compromise accurate 

assessment of the most recent trends.

From a methodological perspective, while bibliometric approaches 

excel in revealing macroscopic patterns and developmental trajectories, 

they possess inherent limitations in reJecting specific research quality 

and innovation. It is particularly important to note that the current 

study primarily employed descriptive statistics and visualization 

techniques. Although this methodological choice aligns with 

established traditions in exploratory bibliometrics, it indeed 

constrains the capacity for statistical validation of certain specific 

assertions, such as technology adoption cycles and the significance of 

international collaboration patterns.

Despite these limitations, we validated the representativeness 

of our findings through analysis of the disciplinary distribution 
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of indexed journals. The included studies encompassed core 

journals across relevant fields, including premier hepatology 

journals (Hepatology, IF = 13.0) and AI medical journals 

(Artificial Intelligence in Medicine, IF = 6.1), with a broad 

distribution of impact factors, indicating robust disciplinary 

representativeness of our sample.

Future research should explore analytical frameworks that 

integrate descriptive bibliometrics with inferential statistical 

methods, while considering the incorporation of multiple data 

sources combined with qualitative assessment approaches. Such 

methodological advancement would provide more rigorous 

quantitative evidence and comprehensive understanding for this 

rapidly evolving field, thereby enhancing the precision and depth of 

insights into AI applications in NAFLD research and clinical practice.
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SUPPLEMENTARY TABLE 1

Time Series Regression Analysis of Publication Growth Trends in Artificial 

Intelligence Applications for Non–Alcoholic Fatty Liver Disease Research 

(2010–2024). Analysis includes complete annual data from 2010–2024 (n 

= 15 years). Data from 2025 were excluded due to incomplete year 

coverage (only partial data available through March 25, 2025). Dependent 

variable: ln_articles (natural logarithm of annual publication count). 

Independent variable: Time coding (2010 = 1, 2011 = 2, ... , 2024 = 15). 

Model interpretation: The regression coefficient β = 0.217 indicates an 

annual growth rate of 24.2% [e^0.217 ≈ 1.242]. Model performance: The 

model explains 94.3% of the variance in publication volume over the 15– 

year study period. Statistical assumptions: All regression assumptions were 

verified including normality of residuals, homoscedasticity, and 

independence of observations. Significance levels: p < 0.05, *p < 0.01, **p 

< 0.001. Analysis software: IBM SPSS Statistics 26.0 using Enter method 

with α = 0.05.

SUPPLEMENTARY TABLE 2

Identification of Core Authors Based on Co-citation Analysis. This table 

presents the top 10 core authors identified through co-citation analysis in 

the field of artificial intelligence applications in non-alcoholic fatty liver 

disease research. Co-citations represent the frequency with which each 

author's work was cited alongside other authors' publications, indicating 

collaborative relationships and shared research themes. Total link strength 

measures the overall connectivity of each author within the citation 

network, with higher values indicating greater influence and centrality in 

the research community.

SUPPLEMENTARY FIGURE 1

Time Evolution of Institutional Collaboration Networks in Artificial 

Intelligence Research on Non-alcoholic Fatty Liver Disease from 2021- 

2024. Nodes represent research institutions, connecting lines represent 

collaborative relationships, and the color gradient from blue to red 

represents the temporal change from 2021 to 2024. This figure displays 

the institutional collaboration network for research related to non- 

alcoholic fatty liver disease (NAFLD) and artificial intelligence, presented in 

the form of a heat map. In the figure, each node represents a different 

research institution, while the lines between nodes indicate collaborative 

relationships between institutions; thicker lines represent stronger 
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collaborative intensity. The color gradient from blue to red corresponds to 

the time span from 2021 to 2024, with red nodes indicating more active 

institutions in recent years (2023-2024), while blue nodes represent major 

participants in earlier years (2021-2022).

SUPPLEMENTARY FIGURE 2

Visualization of institutional collaboration network in the field of non- 

alcoholic fatty liver disease and artificial intelligence research (bright 

background). This network diagram shows collaborative relationships 

between research institutions, where nodes represent different institutions and 

connecting lines indicate collaborative relationships. Researchers such as 

Younossi ZM, Chalasani N, and others located in the central area occupy core 

positions in the network, indicating their significant influence in this field. 

Different colored clusters represent different research communities or 

directions.

SUPPLEMENTARY FIGURE 3

Visualization of institutional collaboration network in the field of non- 

alcoholic fatty liver disease and artificial intelligence research (dark 

background). The diagram clearly shows the collaborative relationships 

between the research team centered around Younossi ZM and other 

research groups such as Chalasani N, Pickhardt PJ, etc. Different colors 

represent the distribution of different research communities.

SUPPLEMENTARY FIGURE 4

Research Topic Distribution Map in the Field of Non-alcoholic Fatty Liver 

Disease and Artificial Intelligence Research. This network diagram 

illustrates the thematic distribution and interconnections within the 

research domains of non-alcoholic fatty liver disease and 

artificial intelligence. The nodes represent distinct research directions or 

keywords, while the connecting lines indicate the relationships among 

these topics. Multiple research clusters are distributed around the core 

area of “Scientific Reports,” encompassing hepatology, diagnostics, 

imaging, artificial intelligence applications, and related clinical 

fields. The color gradient from blue to red reflects the temporal 

evolution or research intensity changes of topics spanning from 2021 

to 2024.
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