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Introduction: This study investigates the application of a deep learning model, 

YOLOv8-Seg, for the automated classification of osteoporotic vertebral 

fractures (OVFs) from computed tomography (CT) images.

Methods: A dataset of 673 CT images from patients admitted between March 

2013 and May 2023 was collected and classified according to the European 

Vertebral Osteoporosis Study Group (EVOSG) system. Of these, 643 images 

were used for training and validation, while a separate set of 30 images was 

reserved for testing.

Results: The model achieved a mean Average Precision (mAP50-95) of 85.9% in 

classifying fractures into crush, anterior wedge, and biconcave types.

Discussion: The results demonstrate the high proficiency of the YOLOv8-Seg 

model in identifying OVFs, indicating its potential as a decision-support tool 

to streamline the current manual diagnostic process. This work underscores 

the significant potential of deep learning to assist medical professionals in 

achieving early and precise diagnoses, thereby improving patient outcomes.

KEYWORDS

deep learning, osteoporotic vertebral fracture, YOLOv8-Seg, computed tomography 
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1 Introduction

Osteoporotic vertebral fractures (OVFs) are often caused by minor external forces, 

typically resulting in mild compression fractures of the vertebral body. In severe cases 

of osteoporosis or due to inappropriate treatment, these fractures can escalate into 

vertebral body burst fractures, significant collapse, and kyphosis (1–3). OVFs not only 

trigger symptoms of spinal cord nerve damage but also adversely affect 

cardiopulmonary and gastrointestinal functions, thereby increasing mortality risk. Such 

conditions place substantial burdens on individuals, families, and society at large 

(4–6). Therefore, thorough investigations into the prevention and treatment of OVFs 

are crucial to improve patient survival quality and reduce mortality rates (7, 8).

Imaging serves as the principal method for diagnosing orthopedic conditions, 

including fractures, osteoarthritis, bone tumors, etc. (9). Misdiagnosis, often due to 

image misinterpretation or misjudgment, is prevalent in clinical settings. This issue is 

frequently linked to the inexperience or heavy workload of the radiologist, 

compounded by the subtle or atypical nature of the lesions (10). Addressing 
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misdiagnoses in orthopedic diseases is vital, as incorrect diagnoses 

can severely impact patient outcomes. For example, a 

misdiagnosed fracture could delay surgical intervention, leading 

to complications like malunion or osteoarthritis. Similarly, a 

delayed diagnosis of a bone tumor could prevent timely surgical 

intervention, resulting in exacerbated symptoms and reduced 

functionality (11). From a clinical perspective, developing a 

user-friendly diagnostic model that facilitates early and accurate 

medical image diagnosis by less experienced physicians is 

essential. The integration of deep learning technology in clinical 

settings primarily aims at the swift identification of abnormal 

structures or regions within medical images, providing critical 

reference points for physicians’ assessments and diagnoses 

(12–16). This study introduces a novel fracture classification 

method leveraging YOLOv8-Seg technology, aimed at refining 

the complex manual diagnostic processes.

2 Methods

2.1 Study subjects

The dataset comprised 643 computed tomography (CT) 

images of osteoporotic vertebral fractures collected from our 

hospital and affiliated institutions between March 2013 and May 

2023. These images, which originated from patients treated for 

osteoporotic vertebral fractures, distinctly revealed the fractures.

2.2 YOLOv8-based fracture classification

This research introduces a novel fracture classification method 

utilizing the YOLOv8 deep learning network. YOLOv8 has been 

employed to analyze a substantial dataset of pre-labeled CT 

images representing various types of fractures. The network 

extracts distinctive features from these samples, which serve as 

inputs for the classifier, thereby facilitating accurate classification 

of the test data corresponding to different fracture types. 

Besides, we used the official Ultralytics YOLOv8-Seg 

implementation (version 8.0.*),specified the initial learning rate 

(lr0 = 0.01), final learning rate (lrf = 0.01), batch size 

(batch = 16), and number of training epochs (epochs = 300), 

detailed the techniques used [e.g., Mosaic (enabled for first 90% 

of epochs), horizontal >ipping, scaling (±10%), and rotations 

(±10 degrees)] as part of the model’s built-in augmentation 

pipeline and used the AdamW optimizer with a weight decay of 

5 × 10−5.

2.3 Data preprocessing

In preparation for input into YOLOv8, the CT images undergo 

a preprocessing stage. This stage involves standardizing the images 

to a uniform size and resolution and converting them to grayscale. 

The conversion to grayscale, which reduces the number of image 

channels, enhances the efficiency of image processing. LABELME, 

a Python-based tool, is utilized for implementing this grayscale 

processing (17).

2.4 Dataset construction

Under the supervision of an experienced orthopedic 

surgeon, a medical trainee classified and confirmed CT 

images using the Imaging Labeling system, thus constructing 

the training and validation sets for the deep learning 

networks. This process followed data preprocessing 

guidelines. According to the 1999 EVOSG OVF classification, 

vertebral fractures are categorized as crush (complete collapse 

of the vertebral body), anterior wedge (collapse of the 

anterior border of the vertebral body), and biconcave 

(collapse of the central portion of the body) (6). For this 

study, 643 osteoporotic vertebral fracture images were selected 

for training, including 120 crush, 198 anterior wedge, and 325 

biconcave types. Additionally, 30 images were chosen as the 

test sample, with 10 of each fracture type. Though the 

proportion of samples of the three types of fractures was 

seriously unbalanced, we have employed class-weighted loss 

functions to mitigate this issue, increasing the loss penalty for 

misclassifications on the minority classes.

2.5 Applying YOLOv8 to extract features

YOLOv8, the latest iteration of the YOLO object detection 

model (18, 19), retains the architecture of its predecessors but 

incorporates several enhancements, such as a new neural 

network architecture that integrates both the Feature Pyramid 

Network (FPN) and the Path Aggregation Network (PAN), 

along with a new labeling tool that streamlines the annotation 

process (18, 19). The FPN progressively decreases the spatial 

resolution of the input image while augmenting the number of 

feature channels, thereby generating feature maps capable of 

detecting objects across various scales and resolutions. The 

PAN architecture amalgamates features from different levels of 

the network through skip connections, enabling the network to 

capture features at multiple scales and resolutions effectively. 

This capability is crucial for accurately detecting objects of 

varying sizes and shapes. Figure 1 shows the architecture 

of YOLOv8.

2.6 Evaluation indicators

In this study, the evaluation of the overall classification effect 

was conducted using mean average precision (mAP) values 

derived from the test set. mAP, a widely used metric for object 

detection, calculates the average precision (AP) across all classes 

at predetermined Intersection over Union (IoU) thresholds. 

Precision is determined based on true positives and false 

positives in object detection. A prediction is deemed a true 

positive if the IoU between the predicted box and the ground 
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truth exceeds the set IoU threshold, while it is considered a false 

positive if the IoU falls below this threshold. The mean average 

precision (mAP) for each class is calculated by iterating over a 

series of thresholds, starting from an IoU of 0.5 and increasing 

in steps of 0.05 up to 0.95. The class AP represents the average 

precision across this range. By computing this value for all 

classes and averaging the results, the mAP50-95 is obtained.

Formula 1. Recalls (n) = 0, Precisions (n) = 1, n = Number of 

thresholds

AP ¼

Xk¼n�1

k¼0

[Recalls(k) � Recalls(k þ 1)] � Precisions(k) (1) 

Formula 2. APk = the AP of class k, n = the number of classes

mAP ¼
1

n

Xk¼n

k¼1

APk (2) 

2.7 Experimental environment

The experimental setup employed an NVIDIA A6000 graphics 

card alongside the YOLOv8n-seg model, which is designed for 

simultaneous target detection and instance segmentation. This 

dual-function capability allows the model to perform both tasks 

concurrently. This enables the model to complete two 

tasks concurrently.

3 Results

For clarity in the labeling process, this study adopts specific 

nomenclature: “ys” for crush fractures, “xx” for wedge fractures, 

and “sa” for biconcave fractures. This nomenclature is 

consistently used in the figures.

The classification results for the three types of osteoporotic 

vertebral fractures (OVF)—biconcave fractures, anterior wedge 

fractures, and crush fractures—are detailed in Figure 2 and 

Table 1. The YOLOv8 algorithm’s performance was assessed 

using a comprehensive dataset. Out of the 315 biconcave 

fractures analyzed, 6% were not detected, while 94% were 

correctly identified, indicating a high level of accuracy in 

detecting biconcave fractures. Similarly, of the 188 anterior 

wedge fractures examined, 7% were not detected, and 93% were 

accurately identified, demonstrating the algorithm’s effectiveness 

in recognizing anterior wedge fractures. Notably, each of the 110 

crush fractures was correctly identified, resulting in a perfect 

detection rate of 100%. The overall mean Average Precision 

(mAP50-95) for the classification of these fractures was 

calculated to be 85.9%, re>ecting the robust performance of the 

YOLOv8 algorithm in accurately classifying different types of 

osteoporotic vertebral fractures.

Figure 3 presents data on the training set, including the 

number of instances in each category, the dimensions and 

number of frames, the position of the center point relative to 

the entire map, and the height-to-width ratio of the target 

within the map.

Figure 4 depicts the relationship between the horizontal and 

vertical coordinates of the center point and the dimensions of 

the frame.

Figure 5 illustrates the model’s loss functions, which quantify 

the discrepancy between the predicted and actual values. These 

loss functions significantly in>uence the model’s performance, 

as they guide the training process towards more accurate 

predictions. The positioning loss (box_loss) is represented by 

the error between the prediction box and the calibration box, 

calculated using the Generalized Intersection over Union 

(GIoU) metric. A lower GIoU value indicates better accuracy in 

positioning, re>ecting a more precise overlap between the 

predicted and true bounding boxes. The confidence loss 

(obj_loss) measures the network’s confidence in its predictions; 

a lower value suggests higher accuracy in determining the 

presence of an object, thus improving the model’s ability to 

differentiate between objects and the background. Lastly, the 

classification loss (cls_loss) evaluates the accuracy of classifying 

the anchor frame relative to the calibration. A lower 

classification loss indicates more precise classification of detected 

objects into their respective categories, ensuring that the model 

accurately identifies the types of objects present. Collectively, 

these loss functions are integral to optimizing the YOLOv8 

model, driving enhancements in both detection precision and 

classification accuracy.

Extensive experiments were conducted on multiple spinal 

computed tomography (CT) images to validate the performance 

of the YOLOv8 algorithm. Figure 6 illustrates some of the 

FIGURE 1 

The YOLOv8 architecture.
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detection results. In this figure, regions identified as wedge 

fractures and biconcave fractures by the YOLOv8 algorithm are 

highlighted, with corresponding confidence scores annotated. 

Specifically, the upper row of images in Figure 6 displays the 

detection of wedge fractures, labeled as “xx,” while the lower 

row of images shows the detection of biconcave fractures, 

labeled as “sa.” Both types of fractures are detected with a high 

confidence score of 0.92.

Precision is defined as the measure of the accuracy of the 

model’s positive predictions, calculated as the ratio of 

correctly identified positive instances (true positives) to all 

identified positive instances (both true positives and false 

positives). A higher precision indicates that the model 

commits fewer false positive errors, thereby ensuring that 

most of its positive predictions are accurate. Recall, in 

contrast, represents the proportion of actual positive samples 

that are correctly identified by the model, essentially 

measuring the model’s ability to identify all relevant instances 

within the dataset. Specifically, recall is calculated as the ratio 

of true positives to the sum of true positives and false 

negatives. Essentially, recall quantifies the number of true 

FIGURE 2 

Confusion matrix normalized.

TABLE 1 The mean average precision (mAP50-95).

Class All sa xx ys

Images 58 58 58 58

Instances 58 32 15 11

Box (P) 0.943 0.937 0.926 0.965

R 0.957 0.938 0.933 1

mAP50 0.966 0.96 0.943 0.995

mAP50-95 0.859 0.839 0.869 0.869

Mask(P 0.943 0.937 0.926 0.965

R 0.957 0.938 0.933 1

mAP50 0.966 0.96 0.943 0.995

mAP50-95 0.779 0.732 0.792 0.814
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FIGURE 3 

The quantity of data in the training set, the number of instances in each category, the dimensions and number of frames, the position of the center 

point in relation to the entire map, and the height-to-width ratio of the target in the map relative to the entire map.

FIGURE 4 

The horizontal and vertical coordinates of the center point and the height and width of the frame.
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positive examples in the test set that are accurately identified by 

the binary classifier.

The mean Average Precision (mAP) is an aggregate metric 

that encapsulates both precision and recall into a singular value. 

It is determined by the area under the precision-recall curve, 

where precision is plotted on the y-axis and recall on the x-axis. 

The mAP offers a balanced assessment of the model’s 

performance, considering both the accuracy and completeness of 

the positive predictions.

Figures 7–10 depict various relationships involving the F1 

score, confidence, precision, and recall. The F1 score, a 

harmonic mean of precision and recall, provides a single metric 

that balances these two aspects. These figures elucidate how 

alterations in the confidence threshold in>uence the F1 score, 

precision, and recall, providing insights into the trade-offs 

between these metrics. By examining these relationships, one 

can gain a deeper understanding of the model’s performance 

and make informed decisions regarding the optimal confidence 

thresholds for various applications.

The YOLOv8-Seg model demonstrated superior performance 

in terms of mAP50-95 and inference speed against a benchmark 

Mask R-CNN model (with a ResNet-50 backbone) trained and 

tested on our dataset under identical conditions.

4 Discussion

This study utilized the YOLOv8-Seg deep learning model to 

classify osteoporotic vertebral fractures (OVFs)—specifically 

biconcave, wedge, and crush types—based on spinal CT 

images. The model achieved an overall mean Average 

Precision (mAP50-95) of 85.9%, demonstrating high 

proficiency in detecting and segmenting fracture regions. 

Notably, the model showed perfect detection (100%) for crush 

FIGURE 5 

The loss functions.
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fractures, which may be attributable to their more pronounced 

morphological deformation compared to wedge and 

biconcave types.

Our results align with recent advances in applying deep 

learning to medical image analysis, particularly in orthopedics. 

For instance, Yang et al. (16) reported comparable mAP values 

in fracture detection using convolutional neural networks, 

though their model did not perform instance segmentation. The 

incorporation of both FPN and PAN in YOLOv8-Seg allows 

multi-scale feature aggregation, enhancing detection across 

fracture types of varying shapes and sizes—a challenge noted in 

earlier studies such as Zhou et al. (20). Moreover, our model’s 

lightweight architecture offers faster inference speeds compared 

to heavier networks like Mask R-CNN, making it more suitable 

for real-time clinical applications.

The integration of YOLOv8-Seg into clinical work>ows has 

the potential to significantly reduce diagnostic time and assist 

less experienced radiologists in identifying OVFs accurately. By 

providing automated, high-confidence fracture classifications 

and localizations, the system can serve as a decision-support 

tool, particularly in high-volume settings. Future 

implementation may involve embedding the model into PACS 

systems for real-time inference during image reading, thereby 

offering immediate diagnostic suggestions.

While this study demonstrates the promising performance of 

YOLOv8-Seg in classifying osteoporotic vertebral fractures, 

FIGURE 6 

Examples of the three types classification test results.

FIGURE 7 

F1-confidence curve.
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FIGURE 8 

Precision-recall curve.

FIGURE 9 

Precision-confidence curve.
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several limitations should be acknowledged. First, the model was 

trained and validated on a single-center dataset with inherent 

demographic and diagnostic biases, which may limit its 

generalizability to other populations or imaging protocols. 

Future studies should incorporate multi-institutional data to 

improve robustness and external validity. Second, the dataset 

exhibited significant class imbalance, particularly with 

underrepresentation of crush and wedge fractures. Although 

class-weighted loss was employed to mitigate this issue, future 

work could explore advanced techniques such as synthetic 

minority oversampling (SMOTE) or generative adversarial 

networks (GANs) to create more balanced training sets.

Furthermore, the current study lacks comparative validation 

against other state-of-the-art segmentation models or clinician 

performance (21–23). A future reader study involving 

radiologists of varying experience levels would help 

contextualize the model’s diagnostic accuracy and practical 

utility. Finally, the translation of such AI tools into clinical 

practice faces practical barriers, including integration into 

existing Picture Archiving and Communication Systems 

(PACS), compliance with healthcare data privacy regulations, 

and the need for real-time inference capabilities. Future 

efforts should also address clinician trust and interpretability 

by incorporating explainable AI techniques, such as attention 

maps or uncertainty quantification, to provide deeper insight 

into model predictions.

5 Conclusion

This study addresses the prevalent challenges in diagnosing 

spinal fractures, an issue that is increasingly significant due to 

the aging population. It introduces cutting-edge deep learning 

methods for the classification of fracture diagnoses, contributing 

significantly to the enhancement of medical image diagnosis, 

assisted decision-making, and pre-operative planning for various 

clinical treatments. Furthermore, this research advances the 

precision of invasive operations and the execution of plans in 

areas such as surgical robotics.

It is important to note that the study’s limitations include a 

relatively small sample size, which impacts the classification 

accuracy of the proposed method. Additionally, the potential for 

misidentification and misclassification increases with a smaller 

dataset. Future research will aim to overcome these limitations 

by developing a more robust network structure and algorithm, 

enhancing the accuracy of learning fracture patterns.
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FIGURE 10 

Recall-confidence curve.
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