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Objective: To systematically evaluate the diagnostic accuracy of various GPT 

models in radiology, focusing on differential diagnosis performance across 

textual and visual input modalities, model versions, and clinical contexts.

Methods: A systematic review and meta-analysis were conducted using PubMed 

and SCOPUS databases on March 24, 2025, retrieving 639 articles. Studies were 

eligible if they evaluated GPT model diagnostic accuracy on radiology cases. Non- 

radiology applications, fine-tuned/custom models, board-style multiple-choice 

questions, or studies lacking accuracy data were excluded. After screening, 28 

studies were included. Risk of bias was assessed using the Newcastle–Ottawa 

Scale (NOS). Diagnostic accuracy was assessed as top diagnosis accuracy (correct 

diagnosis listed first) and differential accuracy (correct diagnosis listed anywhere). 

Statistical analysis involved Mann–Whitney U tests using study-level median 

(median) accuracy with interquartile ranges (IQR), and a generalized linear mixed- 

effects model (GLMM) to evaluate predictors influencing model performance.

Results: Analysis included 8,852 radiological cases across multiple radiology 

subspecialties. Differential accuracy varied significantly among GPT models, 

with newer models (GPT-4T: 72.00%, median 82.32%; GPT-4o: 57.23%, 

median 53.75%; GPT-4: 56.46%, median 56.65%) outperforming earlier versions 

(GPT-3.5: 37.87%, median 36.33%). Textual inputs demonstrated higher 

accuracy (GPT-4: 56.46%, median 58.23%) compared to visual inputs (GPT-4V: 

42.32%, median 41.41%). The provision of clinical history was associated with 

improved diagnostic accuracy in the GLMM (OR = 1.27, p = .001), despite 

unadjusted medians showing lower performance when history was provided 

(61.74% vs. 52.28%). Private data (86.51%, median 94.00%) yielded higher 

accuracy than public data (47.62%, median 46.45%). Accuracy trends indicated 

improvement in newer models over time, while GPT-3.5’s accuracy declined. 

GLMM results showed higher odds of accuracy for advanced models 

(OR = 1.84), and lower odds for visual inputs (OR = 0.29) and public datasets 

(OR = 0.34), while accuracy showed no significant trend over successive study 

years (p = 0.57). Egger’s test found no significant publication bias, though 

considerable methodological heterogeneity was observed.

Conclusion: This meta-analysis highlights significant variability in GPT model 

performance influenced by input modality, data source, and model version. 

High methodological heterogeneity across studies emphasizes the need for 

standardized protocols in future research, and readers should interpret 

pooled estimates and medians with this variability in mind.
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Introduction

Interest in artificial intelligence (AI) in radiology has grown in 

recent decades, with convolutional neural networks (CNNs) 

showing promise in tasks such as lesion detection, classification, 

segmentation, image reconstruction, and natural language 

processing (1). More recently, however, large language models 

(LLMs) like GPT (OpenAI, San Francisco, California) have 

garnered interest within radiology (2). LLMs are AI models that 

use transformer architectures to process and generate human 

language by learning from vast amounts of text data. These 

models understand the context of users’ queries, enabling them to 

perform various language-related tasks, including text generation, 

translation, and summarization. Unlike CNNs, which are trained 

on extensive labeled image datasets, GPT is trained on textual data 

using natural language processing. GPT-3.5 could generate 

differential diagnoses and management recommendations 

primarily from textual descriptions of imaging findings (3). 

However, GPT-4 and subsequent models are multimodal LLMs 

capable of processing text and images. This integration enhances 

their ability to generate comprehensive responses based on diverse 

inputs, for example, generating a differential diagnosis based on a 

patient history alongside either radiological images or transcribed 

interpretations of those images (3, 4). These GPT models, among 

more recently released versions such as GPT-o1 and GPT- 

o3-mini, are widely recognized LLMs that have demonstrated 

success in various medically related applications, such as clinical 

decision support and medical education (5, 6). Other LLMs, 

including Google’s Gemini (Mountain View, California) and 

Anthropic’s Claude (San Francisco, California), are also advancing 

rapidly. These models, along with GPT, all represent a growing 

body of tools with the potential to reshape healthcare through 

improved data analysis, language comprehension, and decision- 

making capabilities.

Researchers have published numerous examples of GPT’s 

ability to generate differential diagnoses. For instance, a recently 

published study assessed GPT’s ability to generate differential 

diagnoses from transcribed radiologic findings, revealing a 

diagnosis accuracy of 66.1% with GPT-4 (3). Another study 

evaluated GPT-4’s performance using patient history and imaging 

findings from the “Diagnosis Please” quizzes in Radiology. The 

results showed a 54% accuracy in generating final diagnoses, with 

the highest accuracy in cardiovascular radiology (79%) and the 

lowest in musculoskeletal radiology (42%) (4). A separate study 

on thoracic radiology demonstrated that GPT-4 achieved a 

diagnostic accuracy of 59.7% when using complex, role-specific 

prompts, highlighting the importance of prompt engineering in 

optimizing model performance (7). Collectively, these findings 

suggest that while GPT has the potential to complement 

radiologic decision-making, its diagnostic accuracy and clinical 

reliability remain areas of active investigation. Further, the wide 

range in accuracy performance begs the question of what factors, 

such as prompt formulation, case complexity, imaging modality, 

and subspecialty, in>uence GPT’s diagnostic performance.

Given these uncertainties, a comprehensive assessment of 

GPT’s strengths, limitations, and areas for improvement is 

essential before considering its integration into radiologic 

work>ows. In this meta-analysis, we compare the accuracy of 

various GPT models in generating differential diagnoses based 

on text and visual inputs of radiographic findings and patient 

histories to better characterize the strengths, weaknesses, and 

overall trajectory of GPT’s diagnostic capabilities.

Methods

Institutional Review Board (IRB) approval was not required 

because this meta-analysis used only previously published, de- 

identified data and did not involve human subjects or protected 

health information.

This meta-analysis was not prospectively registered, and no 

formal review protocol was prepared. The study was conducted 

in accordance with PRISMA guidelines, and all inclusion/ 

exclusion criteria, analysis plans, and outcomes were determined 

prior to data extraction. The PRISMA diagram of the work>ow 

can be seen in Figure 1. 639 articles were retrieved from 

PubMed (n = 322) and SCOPUS (n = 317) on 3-24-2025. Search 

terminology for PubMed was “ChatGPT” OR “ChatGPT-4” OR 

“ChatGPT-3.5” OR “ChatGPT4” OR “ChatGPT4O” OR 

“ChatGPT-4o” OR “GPT” OR “Chat-GPT” OR “large language 

model” OR “artificial intelligence chatbots”) AND (“radiology” 

OR “radiologic”) AND (“accuracy” OR “diagnostic performance” 

OR “diagnose”). Search terminology for SCOPUS was 

(“ChatGPT” OR “ChatGPT-4” OR “ChatGPT-3.5” OR 

“ChatGPT4” OR “ChatGPT4O” OR “ChatGPT-4o” OR “GPT” 

OR “Chat-GPT” OR “large language model” OR “artificial 

intelligence chatbots”) AND (“radiology” OR “radiologic”) AND 

(“accuracy” OR “diagnostic performance” OR “diagnose”). 

Articles evaluating GPT performance on radiological cases with 

reported diagnostic accuracy were included. A total of n = 28 

studies were included in this study after review by n = 2 research 

personnel with two years’ worth of research experience in the 

field of LLMs, followed by review by a board-certified 

radiologist (3, 4, 7–32).

Eligibility criteria

Articles initially excluded from analysis were removed due to 

duplicates (n = 244), resulting in a total of 396 articles for retrieval. 

Following that, a total of n = 279 articles retrieved were papers 

that evaluated the accuracy of GPT in diagnosing non-imaging, 

non-radiology-related cases such as dermatological conditions, 

simulated clinical scenarios, or clinical vignettes. For example, this 

exclusion criterion included articles that provided a clinical 

vignette and asked GPT to manage medications, generate 

documentation, and/or guide the clinical management of a patient 

in a field unrelated to radiology. The remaining 117 articles were 

independently assessed for eligibility by two researchers.

Disagreements were resolved through discussion and 

consensus, or by involving third research personnel when 

consensus could not be reached. 279 retrieved articles were 
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excluded based on the models being tested on basic trivia, general 

medical facts, and/or short questions related to radiology, which 

do not simulate real scenarios where GPT may be used in a 

clinical work>ow. Similarly, 3 of the retrieved articles provided 

multiple-choice answers in the prompt in the form of either 

medical trivia/or board-style exam questions. Two of the 

retrieved articles used an LLM other than GPT. Other exclusion 

factors included correspondence (n = 4) and articles that did not 

report the GPT version used (n = 2). Interestingly, six articles 

used a version of GPT (non-generic GPT) that had been 

pre-trained with user-provided datasets. Studies evaluating 

fine-tuned GPT models were excluded to focus on publicly and 

commercially available versions. Finally, six retrieved articles did 

not report accuracy-level data that could be used in our meta- 

analysis. One of the retrieved articles did not explicitly ask GPT 

for a clinical diagnosis but instead asked to point out imaging 

findings (33).

Data collection

Data extraction was conducted by n = 2 research personnel 

with two years’ worth of research experience in the field of 

LLMs. Data extracted from the n = 28 studies include the 

FIGURE 1 

PRISMA diagram. The search strategy can be found in the Methods section of the manuscript. Records were retrieved from PubMed and SCOPUS. 

A total of n = 279 articles retrieved were found not to contain any imaging-related cases used for GPT diagnostic evaluation. A total of n = 65 studies 

evaluated GPT performance on board exam questions or questions that mimic board exam question style. A total of n = 6 studies also did not provide 

accuracy data that could be used for the subsequent statistical analysis completed in our meta-analysis.
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radiology topic being tested by the LLMs, whether patient history 

was provided in the context of the radiological case, GPT version, 

GPT access date, and whether the images or cases were obtained 

were publicly available on the internet or provided from a 

private source (such as institutional medical records). Accuracy 

was included and reported in two ways: top diagnosis accuracy, 

defined as GPT correctly listing the diagnosis as the first entry 

in its differential diagnosis, and differential accuracy, defined as 

GPT listing the correct diagnosis anywhere within its differential 

diagnosis. To identify a potential source of methodological 

variation, the size of differential diagnosis list (k) was extracted. 

As the k value could not be confirmed for 13 of the included 

studies, no formal moderator analysis was completed; however, 

the determined k values are noted in Table 1.

Textual and visual inputs

Among the n = 28 studies included, the types of textual and 

visual inputs provided to GPT models varied widely depending 

on study design. Textual inputs primarily consisted of 

descriptions of imaging findings, sourced either from radiology 

TABLE 1 Summary of literature and input types for each study.

Study name Dataset Textual input Visual input Grading 
scheme

k value

Brin et al. 2025 (31) Acquired hospital images/reports None US, CT, XR Differential Undefined

Cesur et al. 2024 (7) Thoracic Society of Radiology Case of the Month Patient history, imaging 

findings

None Differential 3

Dehdab et al. 2024 (30) The Cancer Imaging Archive None CT Differential Undefined

Fink et al. 2025 (29) Created written report findings Imaging findings None Differential Undefined

Hiredesai et al. 2024 (32) Radiopaedia for 6 common upper extremity bony 

pathology

None XR, CT, MRI Differential Undefined

Horiuichi et al. 2024 (26) “Test yourself” cases from skeletal radiology Patient history, imaging 

findings

Used, did not clarify which 

modalities were in the dataset

Both 3

Horiuichi et al. 2024 (27) Neuropathology case conference cases from 

Clinical Neuroradiology

Patient history, imaging 

findings

Used, did not clarify which 

modalities were in the dataset

Both Undefined

Horiuichi et al. 2023 (28) American Journal of Neuroradiology Case of the 

Month

Patient history, imaging 

findings

None Both Undefined

Huppertz et al. 2025 (25) Acquired hospital images/reports Patient history CT, MRI, Angiography Both Undefined

Kikuchi et al. 2024 (24) American Journal of Neuroradiology Case of the 

Month

Patient history, imaging 

findings

None Differential 3

Koyun et al. 2024 (22) Acquired hospital images/reports None MRI Differential Undefined

Koyun et al. 2025 (23) Acquired hospital images/reports None CT Differential Undefined

Li et al. 2024 (20) Radiology Diagnosis Please archive Patient history, imaging 

findings

None Differential 5

Li et al. 2025 (21) Radiology Diagnosis Please archive Patient history, imaging 

findings

None Differential 5

Mitsuyama et al. 2025 (19) Acquired hospital images/reports Imaging findings None Both 3

Mohammadi et al. 2024 

(18)

Acquired hospital images/reports None XR Differential Undefined

Ozenbas et al. 2025 (17) Acquired hospital images/reports None MRI Both 3

Rau et al. 2024 (16) Created written report findings Patient history, imaging 

findings

None Both 3

Reith et al. 2024 (15) Publicly available images from Pediatric Imaging 

website

Patient history XR, Fluoroscopy, US, CT, MRI Differential Undefined

Ren et al. 2024 (14) Acquired hospital images/reports None XR Both 3

Sonoda et al. 2024 (13) Radiology Diagnosis Please archive Patient history, imaging 

findings

None Both 3

Sorin et al. 2024 (12) Acquired hospital images/reports Imaging findings None Differential 3

Strotzer et al. 2024 (11) Acquired hospital images/reports None CT, MRI, XR Both 5

Suh et al. 2024 (10) Radiology Diagnosis Please archive Patient history, imaging 

findings

XR, CT, US, MRI Differential 3

Sun et al. 2024 (3) Cases from “Top 3 Differentials in Radiology” Imaging findings None Both 3

Suthar et al. 2023 (9) American Journal of Neuroradiology Case of the 

Month

Patient history, imaging 

findings

None Differential Undefined

Ueda et al. 2023 (23) Radiology Diagnosis Please archive Patient history, imaging 

findings

None Both Undefined

Wada et al. 2024 (8) American Journal of Neuroradiology Case of the 

Month

Patient history, imaging 

findings

None Both 5

Below is a summary table of the n = 28 studies used in the meta-analysis. “Acquired hospital images/reports” signifies that that data (either the images themselves or the radiology report) was 

extracted from a hospital system and/or institution. Textual input is defined as additional, textual information that is added into the prompt. Visual input is defined as any image added into 

the prompt. Grading Scheme is defined as the grading system employed by the study, which is either differential accuracy (differential), top diagnosis accuracy (top), or both. The k value 

refers to the size of differential diagnosis list.
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reports within de-identified institutional datasets or from online 

resources such as the American Journal of Neuroradiology Case 

of the Month series or Radiology: Diagnosis Please cases. Several 

studies evaluated the impact of providing clinical context, such 

as age, symptoms, or referring physician notes. In contrast, 

others tested the model’s ability to generate interpretations 

based solely on imaging descriptions without supplementary 

history. Visual inputs, when used, included static images (e.g., x- 

rays [XR], CT scans [CT], magnetic resonance imaging [MRI], 

or ultrasound [US] screenshots), either embedded directly into 

the prompting interface (for multimodal-capable models) or 

described textually in image captions. A summary of the inputs 

can be found in Table 1. The different methodologies by which 

the inputs were utilized can be found in Figure 2.

Bias assessment

We assessed risk of bias for each included study using the 

Newcastle-Ottawa Scale (NOS), focusing on selection, 

comparability, and outcome domains. This scale has been 

previously used in a meta-analysis that assessed GPT accuracy in 

answering medical queries, which we had adapted to this meta- 

analysis in assessing GPT diagnostics (34). Two independent 

reviewers assessed all studies based on the NOS framework, 

which evaluates risk of bias across three core domains: (1) 

selection of study cohorts or designs, (2) comparability of groups, 

and (3) ascertainment of outcomes. For domains D1-D4 

(Supplementary Figure S1), studies were judged on criteria such 

as the clarity and representativeness of included cases. The 

comparability domain D5-D6 (Supplementary Figure S1) assessed 

how well studies controlled for potential confounders, such as 

model version or input modality. The outcome domain D7-D9 

(Supplementary Figure S1) is the appropriateness of outcome 

measurement. Each criterion (D1-D9) was scored as follows: none 

(0 points), unclear (0.5 points), and yes (1 point). The results 

from both reviewers were summed to produce an overall score 

for each study (maximum total = 18). Based on the total NOS 

scores, studies were categorized into high (dark red, 0–6 points), 

moderate (dark yellow, 7–12 points), or low risk of bias (dark 

green, 13–18 points). The risk of bias ratings was factored into 

our interpretation of pooled results and heterogeneity.

Statistical analysis

Data from the included radiology studies were analyzed using R 

(version 4.2.2). Descriptive statistics were used to summarize the 

evaluated radiologic topics and the GPT models’ diagnostic 

performance across tasks. Accuracy was calculated for both top 

diagnosis (correct diagnosis listed first when GPT provides a 

differential diagnosis) and differential diagnosis (correct diagnosis 

listed anywhere in the list), reported as proportions with 95% 

confidence intervals (CI) derived from standard errors under 

binomial distribution assumptions. The first scheme is defined as 

top diagnosis accuracy, and the second is defined as differential 

accuracy. Across the n = 28 studies, a correct diagnosis is defined 

as a diagnosis that matches the ground truth. In studies using 

publicly available cases (e.g., the American Journal of 

Neuroradiology or Radiology: Diagnosis Please), the correct 

diagnosis was typically defined as the official answer provided by 

the source. In studies using de-identified institutional datasets, the 

ground truth was defined as the attending radiologist’s final 

diagnosis documented in the official radiology report. This meta- 

analysis relied on each study’s reported accuracy values and did 

not re-evaluate model predictions independently.

FIGURE 2 

Workflow of inputs and outputs for GPT across the included studies: this figure illustrates the various methodologies used by visual or textual inputs 

across the studies. Researchers employed public or private datasets to extract selected images and relevant patient history or findings. Written image 

findings were used for textual inputs; the actual images were submitted for visual inputs. The inclusion of patient history varied by study. Prompt 

engineering was applied to format inputs according to individual study protocols or based on previously established literature. The outputs 

generated by GPT models were either a list of potential diagnoses or a single most likely diagnosis.
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To account for clustering of multiple cases within each study, 

we collapsed results to the study level by summing the number 

of correct predictions and total cases for each article, stratified 

by GPT model, input modality, history provision, and data 

source. From these counts, we calculated study-level accuracy 

proportions (both top diagnosis and differential diagnosis). For 

descriptive reporting, we summarized pooled accuracy as well as 

the study-level median accuracy and interquartile range (IQR) 

across included studies. Between-group comparisons (e.g., GPT- 

3.5 vs. GPT-4 family models, textual vs. visual inputs, history 

provision, and public vs. private datasets) were assessed using 

two-sided Mann–Whitney U tests (Wilcoxon rank-sum), which 

compare distributions without assuming normality.

To evaluate predictors of diagnostic accuracy while adjusting 

for potential confounders, we constructed a generalized linear 

mixed-effects model (GLMM). The dependent variable was 

correct vs. incorrect diagnosis at the case level, expanded from 

study-level counts. Fixed effects included GPT model type 

(GPT-4 family vs. GPT-3.5), input modality (textual vs. visual), 

history provision (yes vs. no), data source (public vs. private), 

and study year (continuous). A random intercept for each study 

was included to account for within-study clustering. Model 

results were expressed as odds ratios (OR) with 95% confidence 

intervals, where OR > 1 indicates higher odds of accuracy.

A funnel plot was generated using a fixed-effect model to assess 

publication bias, and Egger’s regression test was applied. All 

statistical tests were two-sided, with significance defined as p < 0.05.

Results

The search strategy yielded 639 records from PubMed 

(n = 322) and SCOPUS (n = 317). After removing duplicates 

(n = 244), 396 articles remained for screening. Following a 

detailed assessment for eligibility, 28 studies were included in 

the final analysis (Figure 1; Table 1).

The included studies evaluated various radiology subspecialties, 

most frequently neuroradiology (60.71%), musculoskeletal radiology 

(42.86%), and chest radiology (25.00%). Other notable areas included 

breast imaging (17.86%), gastrointestinal imaging (21.43%), 

cardiovascular imaging (17.86%), genitourinary imaging (17.86%), 

and pediatric radiology (14.29%). We found that several studies 

(14.29%) did not specify the radiology subspecialty tested (Table 2). 

A total of n = 8,852 radiological cases (whether the images themselves 

or the radiological image described in text) were evaluated across all 

the included n = 28 studies. In the meta-analysis data, GPT-4 was the 

most tested GPT model with n = 2,662 radiological cases, followed by 

GPT-4V with n = 2,306 radiological cases (Table 3).

Model performance comparison

The accuracy of GPT models varied significantly, especially in 

the context of the GPT model being employed. A total of n = 13 

studies provided the top diagnosis accuracy, whereas all n = 28 

studies provided differential accuracy. GPT-4 outperformed 

GPT-3.5 in both top diagnosis (57.1% vs. 51.1%) and differential 

accuracy (56.5% vs. 37.9%) at a statistically significant level. 

Accuracy was even higher for GPT-4T (72.0%) and GPT-4o 

(57.2%) for differential accuracy (Table 3). The overall 

differential accuracy across all GPT models was 50.92% (study- 

level median accuracy: 47.21%) (Table 3). Because all the n = 28 

studies provided differential accuracy, this metric of accuracy 

was used as the accuracy metric for subsequent analysis.

Textual vs. visual analysis

Comparing textual and visual modalities, GPT-4T achieved 94% 

accuracy with textual input but only 67% with visual input, based on 

a single study. GPT-4o performed slightly better with visual (59.6%) 

than textual (49.4%) inputs, though not significantly. GPT-4’s textual 

accuracy was 56.5%, and GPT-3.5 reached 37.9%; visual data were 

unavailable for these models (Table 4).

Impact of patient history provision

Among the studies, some included pertinent patient clinical 

information for the radiological case in the user-inputted 

prompt of GPT, whereas others did not. As such, we sought to 

tabulate the impact this provision had on the GPT differential 

accuracy. Providing patient history for textual inputs reduced 

overall accuracy (from 61.7% median to 52.3% median, p < .05). 

For visual inputs, accuracy also declined (from 54.3% to 42.6%), 

although not at statistical significance (Table 4).

Public vs. private data sources

It is well known that GPT models are trained based on information 

provided on the Internet, with some models even having access to the 

Internet, such as GPT-4o. During this analysis, we found that 

differential accuracy differed by data source. For textual inputs, 

private datasets achieved much higher accuracy (86.5%) than public 

TABLE 2 Stratification of radiology topics tested.

Tested radiology topics N Frequency (%)

Neuroradiology 17 60.71

Musculoskeletal 12 42.86

Chest 7 25.00

Gastrointestinal 6 21.43

Breast 5 17.86

Cardiovascular 5 17.86

Genitourinary 5 17.86

Pediatric 4 14.29

Not reported 4 14.29

Head and neck 3 10.71

OB/GYN 3 10.71

A table showing a list of all the different radiology topics that were reported in review of all 

published papers. This table only displays radiology topics more than n = 2 times. Also 

displays the frequency which is that number divided by n = 28 total studies. Not 

Reported signifies the number of studies that did not report the radiology topic.
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datasets (47.6%, p < .05). No significant differences were seen for visual 

inputs (private 51.0% vs. public 52.7%) (Table 4).

Accuracy trends over time

GPT performance demonstrated variability over the years. 

Notably, GPT-4 accuracy increased from 57.49% in 2023 to 

70.91% in 2025, while GPT-3.5 showed declining performance 

over time from 38.77% in 2024 to 26.10% in 2025. GPT-4T 

achieved a high accuracy of 94% in 2025, marking an 

improvement from 66.97% in 2024 (Supplementary Table S2), 

although this was just reported for one study.

Generalized linear mixed-effect model 
analysis

We conducted a generalized linear mixed-effect model 

(GLMM) to identify key diagnostic accuracy predictors and assess 

how variables such as model version, input modality, data source, 

and study year in>uenced performance outcomes. More advanced 

GPT versions (GPT-4T/4 V/4/4o) were more likely (OR = 1.84, 

p < .001) to provide accurate diagnoses compared to GPT-3.5. 

Visual analysis had lower accuracy odds than textual analysis 

(OR = 0.29, p < .001). Public data sources had significantly lower 

odds of accuracy than private data (OR = 0.34, p < .001). Cases 

with patient history provided yielded a higher differential 

accuracy compared to those without (OR = 1.27, p = .001). There 

was no statistically significant difference over successive study 

years (OR = 1.19 per year, p < .001) (Table 5). We also removed 

n = 3 studies that were noted to have a moderate risk of bias as 

demonstrated in Supplementary Figure S1 (14, 23, 30), where we 

found that the results remained unchanged in direction or 

significance (Supplementary Table S2).

Heterogeneity assessment

To assess the presence of publication bias, we conducted a 

funnel plot visualization and applied Egger’s regression test. The 

funnel plot (Figure 3) visualized study-level differential accuracy 

estimates, plotting mean accuracy along the x-axis and 

individual studies along the y-axis. The Fixed-Effects Model 

with n = 28 studies resulted in an average accuracy of 54.75% 

(95% CI: 53.78, 55.72%). While moderate heterogeneity was 

observed across studies (Q = 1206.80, p < 0.001; I2 = 97.76%), 

Egger’s regression test revealed no statistically significant 

asymmetry (p = 0.9192), suggesting no substantial publication 

bias in the included literature.

Discussion

In this meta-analysis, we provided essential insights into the 

diagnostic capabilities of various GPT models when applied to 

radiological cases. Newer GPT models demonstrated 

significantly higher diagnostic performance compared to earlier 

versions. This improvement aligns with advancements in 

multimodal capabilities, suggesting that continual refinement of 

transformer-based architectures significantly boosts their clinical 

utility (35). This pattern indicates that future iterations of LLMs 

may become increasingly reliable adjuncts to radiologists, 

particularly if their accuracy continues to evolve at a similar 

pace. However, caution is warranted as our analysis revealed 

widespread >uctuations in performance that vary between studies.

Although not statistically significant, the analysis revealed 

modality-specific strengths and weaknesses. GPT-4T excelled in 

textual inputs, achieving exceptionally high accuracy, whereas its 

performance notably declined with visual inputs. However, this 

result was based on only n = 50 cases from a single study. With 

limited sample sizes and potential selection bias, these cases may 

not represent the full scope of radiology diagnostics. On the 

other hand, GPT-4o demonstrated stronger diagnostic accuracy 

from visual inputs compared to textual descriptions. Previous 

studies have shown consistently poorer visual input performance 

than textual inputs (4, 36, 37). The observed discrepancy in 

GPT-4o’s visual performance compared to the literature may be 

in>uenced by the broad methodological variability across studies 

included in this meta-analysis. Factors such as differences in 

data sources (public vs. private), year of model use, and 

TABLE 3 Average accuracy table of GPT-4, GPT-4o, and overall for Top diagnosis vs. differential diagnosis.

GPT model Top accuracy Differential accuracy

Accuracy [95% C.I] Study-level 
median accuracy

IQR Accuracy [95% C.I] Study-level 
median accuracy

IQR

GPT-3.5 150/293 (51.21%) [45.47, 56.91] 55.92% 0.00 636/1680 (37.87%) [35.53, 40.17] 36.33% 12.62

GPT-4 614/1075 (57.1%) [55.63, 63.01] 57.82% 50.82 1514/2662 (56.46%) [54.57, 58.34] 56.65%十 10.58

GPT-4T 414/751 (55.12%) [51.56, 58.58] 55.21% 27.69 577/801 (72.00%) [68.95, 73.59] 82.32%十 11.72

GPT-4V 343/1023 (33.53%) [30.63, 36.42] 33.33% 20.88 976/2306 (42.32%) [40.30, 44.34] 41.41% 30.97

GPT-4o 146/368 (39.67%) [34.68, 44.67] 35.35% 14.81 803/1403 (57.23%) [54.64, 59.82] 53.75%十 14.52

Overall 1667/3510 (47.50%) [45.84, 49.18] 48.36% 4506/8852 (50.92%) [49.95, 51.47] 47.21%

This table presents the average accuracy of GPT-3.5, GPT-4, GPT-4V, GPT-4T, GPT-4o, and overall performance for top diagnosis vs. differential diagnosis. Accuracy is calculated as the 

number of correct cases divided by the total number of cases used, alongside the 95% confidence interval in brackets. Results were collapsed to the study level by summing correct predictions 

and total images per study. For each subgroup, we report the Study-level median accuracy and the interquartile range (IQR; Q3–Q1). A Mann–Whitney test is also reported to compare 

accuracy (either Top Accuracy or Differential Accuracy) performance between GPT-3.5 vs. the other GPT models, which displays significance at p < .05 (十).

Bold indicates statistical significance.
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variability in prompt engineering likely confounded these results, 

emphasizing the need for standardized methodologies in future 

investigations. Nonetheless, our GLMM results revealed that 

visual inputs had lower odds of accuracy than textual inputs. 

This difference in performance might re>ect ongoing challenges 

with visual recognition and interpretation, as evidenced by the 

literature (2, 36). The observed distinction in performance may 

be attributed to the fundamental differences in how LLMs 

process these modalities. Textual prompts are handled via 

token-based transformer architectures optimized for language 

inputs, whereas visual inputs rely on separate encoders (38). In 

current models, this vision-language integration remains limited. 

Unlike textual prompts, which often already provide structured 

summaries of the imaging findings, visual prompts require the 

model to extract raw spatial features, for which GPT may not 

be optimized.

GPT-based models in radiological applications exhibited 

several distinct categories, or “types” of mistakes. One of the 

most prevalent issues reported in the literature is hallucination, 

where the model fabricates findings or diagnoses without any 

basis in the actual image data. For instance, GPT-4V has been 

shown to generate diagnoses and conclusions unsupported by 

the underlying images (25, 31). Even when prompted to provide 

up to five differential diagnoses, GPT-4T demonstrated a 29.4% 

misdiagnosis rate (221/751 cases), where the correct diagnosis 

was not included in its top five suggestions (8). Another study 

highlighted that while GPT models could detect the presence of 

intracranial hemorrhages, they struggled to accurately classify 

the hemorrhage type or localize them within the brain (23). The 

errors observed in GPT-based models underscore the critical 

need for further research, particularly given the potential risks 

that hallucinations and diagnostic inaccuracies pose if such 

systems are integrated into clinical practice.

Despite the absence of significant publication bias detected by 

Egger’s test, our analysis revealed heterogeneity across included 

studies, re>ecting considerable differences in methodologies, 

radiological cases, diagnostic criteria, prompt engineering 

approaches, and evaluation standards. The heterogeneity likely 

re>ects the in>uence of additional unmeasured factors, most 

notably variations in prompt design. Prior studies have shown 

that prompt engineering can significantly enhance GPT’s 

diagnostic performance (39). However, the included studies in 

our meta-analysis employed at least 10 distinct and non- 

overlapping prompting strategies (Table 6), making their 

inclusion as covariates difficult due to concerns of model 

overfitting. This methodological diversity significantly impacts 

the ability to generalize findings and directly compare study 

TABLE 4 Comparison of textual GPT versus vs. GPT differential accuracy.

GPT 
functionality

Total 
cases

Accuracy 
[95% C.I]

Study-level 
median 

accuracy

IQR

GPT-3.5

Textual 1,680 37.85% [35.45, 40.17] 35.40% 12.63

Visual NA NA NA NA

GPT-4

Textual 2,662 56.46% [54.57, 58.34] 58.23% 10.52

Visual NA NA NA NA

GPT-4T

Textual 50 94.00% [87.45, 100.00] 94.00% 0.00

Visual 751 66.97% [63.61, 70.34] 70.60% 0.00

GPT-4V

Textual NA NA NA NA

Visual 2,306 42.32% [40.30, 44.34] 38.95% 30.92

GPT-4o

Textual 324 49.38% [43.93, 54.82] 49.40% 0.00

Visual 1,079 59.59% [56.66, 62.59] 56.30% 16.46

Textual vs.  
visual

Total 
cases

Accuracy Study-level 
median 

accuracy

IQR

Textual

(−) Patient history 1,408 49.12% [46.60, 51.83] 61.74%十 47.81

(+) Patient history 3,308 49.96% [48.26, 51.67] 52.28% 17.69

Visual

(−) Patient history 1,941 53.60% [51.42, 55.83] 54.29 30.28

(+) Patient history 2,195 49.29% [47.20, 51.38] 42.59% 30.77

Data 
acquisition

Total 
cases

Accuracy Study-level 
median 

accuracy

IQR

Textual

Private data 260 86.51% [82.42, 90.7] 94.00%十 16.23

Public data 4,456 47.62% [46.19, 49.12] 46.45% 25.58

Visual

Private data 1,863 51.03% [48.83, 53.15] 52.25% 79.90

Public data 2,273 52.73% [50.79, 54.82] 46.73% 23.28

This table compares the performance of Textual GPT vs. Visual GPT on Differential 

Accuracy, for each model. GPT vs. Visual GPT on Differential Accuracy when provided 

with patient history is also compared on this table. This table compares the performance 

of GPT when using private vs. public data feeds. Public data refers to datasets that are 

openly available, whereas private data consists of information that is not accessible to the 

public such as confidential patient data. Results were collapsed to the study level by 

summing correct predictions and total images per study. For each subgroup, we report 

the Study-level median accuracy and the interquartile range (IQR; Q3–Q1). Group 

comparisons were performed using two-sided Mann–Whitney U tests (Wilcoxon rank- 

sum), which assess differences in distributions without assuming normality. Significance 

is denoted at p < .05 (十).

Bold indicates statistical significance.

TABLE 5 Generalized linear mixed-effects model (GLMM) results of GPT 
differential accuracy across Key variables.

Predictor variable Odds 
ratio (SE)

95% CI P value

Differential diagnosis accuracy

GPT-4T/4V/4/4o (vs. GPT-3.5) 1.84 (1.61, 2.12) <.001

Visual analysis (vs. Textual analysis) 0.29 (0.19, 0.44) <.001

Provided history: Yes (vs. No) 1.27 (1.10, 1.47) <.001

Data acquisition: public (vs. Private) 0.34 (0.17, 0.70) <.001

Year (continuous, 2023−2025) 1.19 (0.65, 2.20) .57

Results of the generalized linear mixed-effects model (binomial, random intercept by study) 

evaluating predictors of ChatGPT differential diagnostic accuracy across included studies 

(2023–2025). Odds ratios greater than 1 indicate improved accuracy, while values less 

than 1 indicate reduced accuracy. Significant predictors included ChatGPT model type, 

modality (text vs visual), history provision, and data source. The fixed effects are the 

predictors, whereas the random effect is the study-level intercept, which accounts for 

clustering of multiple observations within the same article.

Bold indicates statistical significance.
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results. Such variability highlights the critical need for 

standardized evaluation protocols in future research.

Interestingly, unadjusted subgroup analyses suggested lower 

study-level median accuracy when clinical history was provided 

in textual prompts. However, in our multivariable GLMM, 

which accounted for confounding factors such as model version, 

data source, and modality, history provision was associated with 

significantly improved odds of higher differential accuracy. This 

apparent discrepancy may re>ect confounding observed in the 

unadjusted subgroup analysis, as studies providing history may 

have used challenging cases or public datasets, which 

independently reduced performance. Previous studies have 

shown that providing additional information, such as in the 

form of prompt engineering, has been shown to improve the 

accuracy of GPT (39, 40). But in some cases, the added history 

can even mislead the AI, as evidenced by a larger drop in GPT’s 

accuracy when the history contained distracting, biasing 

information (41). Taken together, our results confirm 

that clinical history provision does improve the performance 

of GPT, but should be interpreted with caution, given the 

methodological heterogeneity of the studies in this analysis.

Another intriguing observation was the higher accuracy 

obtained from private datasets than from publicly sourced data, 

especially for textual inputs. This could indicate that publicly 

available data, which often lacks detailed contextual information, 

might not provide sufficient depth for accurate model training 

or inference. Additionally, the superior accuracy of private 

datasets emphasizes the potential benefits of training or fine- 

tuning LLMs on institution-specific data to enhance clinical 

applicability, although privacy considerations remain crucial.

FIGURE 3 

Funnel plot of study-level differential accuracy estimates (fixed-effects model) with Egger’s test for publication bias. This funnel plot visualizes study- 

level accuracy estimates for GPT’s differential accuracy. Each point represents a study, with mean accuracy on the x-axis and study names on the 

y-axis. Point size and color indicate the total number of images used per study, with a red dashed line marking the overall mean accuracy. Egger’s test 

assesses publication bias, displaying its p-value to determine statistical significance.
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Moreover, the temporal analysis revealed distinct trends based 

on model version. We observed the improved performance of 

GPT-4 models over time, in contrast to the declining accuracy of 

GPT-3.5. This divergence likely re>ects the evolving training 

methods and improved architecture of newer models, better 

equipped to handle increasingly complex medical tasks. Despite 

model-specific trends, our GLMM indicated that the continuous 

effect of the study year was not statistically significant. Together, 

these findings may suggest that performance trajectory is primarily 

dictated by architectural advancements rather than external 

temporal factors. It also highlights the need for ongoing evaluation 

of GPT performance, particularly as newer versions are introduced 

and tested in increasingly complex clinical scenarios.

Limitations of this meta-analysis include variability in study 

design, methods of reporting accuracy, and heterogeneity in the 

datasets used. Different prompt engineering techniques and a lack 

of standardized evaluation criteria across studies also contributed 

to the observed variability. The heterogeneity in prompt design 

was further compounded by the lack of a standardized differential 

diagnosis list size (k value) used for the differential accuracy 

metric. Our manual review of the methodologies revealed that the 

k value ranged predominantly from k = 3 (observed in 14 studies) 

to k = 5 (observed in 4 studies). This non-uniformity limits the 

comparability of effect sizes across studies. Such variability 

highlights the critical need for researchers to adopt standardized 

evaluation protocols, such as a universal reporting of Hit@3 or 

Hit@5, in future investigations to ensure the reliability and 

comparability of pooled estimates. The datasets utilized for each 

study also varied in source, complexity, and image quality, which 

may have in>uenced GPT performance. One of the most 

prominent limitations was the lack of standardized comparator 

benchmarks across the studies. Some studies defined ground truth 

as the written diagnosis in online resources, while others defined 

ground truth as the listed diagnosis by an attending radiologist in 

TABLE 6 Examples of different prompting strategies used across selected studies (n = 28).

Study name Strategy name Prompting example

Cesur et al. 2024 (7) “Physician” "As a physician, I plan to utilize you for research purposes. Assuming you are a hypothetical physician, please 

walk me through the process from differential diagnosis to the most likely disease step by step, based on the 

patient’s information I am about to present. Please list three possible differential diagnoses in order of 

likelihood."

“Task” ’’Give the most likely diagnosis and provide three differential diagnoses for each case below.’’

“Specific task” ’’Your task is to analyze patient histories and imaging findings to give the most likely diagnosis and provide 

three differential diagnoses for each case below.’’

“Specific role” ’’As a highly experienced Professor of Radiology with 30 years of expertise in thoracic imaging, you assist in 

solving thoracic radiology cases. Your task is to analyze patient histories and imaging findings to give the most 

likely diagnosis and provide three differential diagnoses for each case below.’’

“Exemplar” ’’As a highly experienced Professor of Radiology with 30 years of expertise in thoracic imaging, you assist in 

solving thoracic radiology cases. Your task is to analyze patient histories and imaging findings to give the most 

likely diagnosis and provide three differential diagnoses for each case below. To complete this task, review the 

patient history and imaging findings provided for each case, analyze the data thoroughly, utilize your extensive 

knowledge in thoracic imaging, ensure that your diagnoses are well-supported, and make thoughtful 

decisions.’’

Horiuchi et al. 2024 

(26)

Chain-of-thought “As a physician, I plan to utilize you for research purposes. Assuming you are a hypothetical physician, please 

walk me through the process from differential diagnosis to the most likely disease step by step, based on the 

patients information I am about to present. Please list three possible differential diagnoses in order of 

likelihood”

Mitsuyama et al. 

2025 (19)

Simple “List three possible differential diagnoses in order of likelihood from the following head MRI findings.”

Ozenbas et al. 2025 

(17)

Guided chain-of-thought "Which MRI sequences are present in the image?” “In which lobe or localization of the brain is the lesion 

located?” “What are the MRI signal characteristics of the lesion?” “Is there edema around the lesion?” “Is the 

lesion enhancing?” “Is the lesion intra-axial or extra-axial?” What are the three most likely differential 

diagnoses for the lesion?” “What is the most likely diagnosis for the lesion?"

Sun et al. 2024 (3) Rationale “What is the top 3 differential diagnosis for this scenario? Please explain why and provide your citations in 

standard AMA format. What is the most likely diagnosis for this scenario? Please explain why and provide 

your citations in standard AMA format.”

Wada et al. 2024 (8) Role-playing, chain of thought, 

confidence assessment

# Role You are an expert in medical imaging diagnosis with extensive experience interpreting various medical 

images, including CT, MRI, and x-rays. Your expertise includes identifying pathologies, understanding 

radiology clinical report contexts, and correlating to imaging findings with potential diagnoses proofread. —# 

Request Along with the following Regulation prompt, present a refined list of five differential diagnoses, 

including the most probable diagnosis and four alternatives. Each diagnosis should have a corresponding 

confidence level based on your comprehensive analysis. —# Regulation Using the clinical information 

provided: {# URL of clinical information}, list five initial differential diagnoses. Then, review the imaging 

findings: {# URL of image findings}, and update your diagnoses accordingly. Re>ect on how the new data 

alters your assessment. For each diagnosis in your updated list, assign a confidence level between 0% and 

100%, considering the task’s complexity and the extent to which clinical and imaging data support each 

diagnosis.

Given the heterogeneity of prompting methods among the reviewed studies, this table highlights select strategies employed by the authors. Strategy names enclosed in quotations (“ “) 

represent the original terminology used by each respective study. “Chain-of-Thought” refers to prompting GPT to explicitly explain each reasoning step; “Guided Chain-of-Thought” 

involves prompting GPT through a sequence of specific guiding questions; “Rationale” refers to requests for GPT to provide justifications for its answers; and “Confidence Assessment” 

describes prompts asking GPT to assign confidence levels to its responses.
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a radiological report. Without such benchmarking, it remains 

unclear how these models perform relative to current standards 

of care. Additionally, this study only focuses on GPT, a single LLM.

Though limiting our study to GPT models may strengthen our 

observations of these specific models, its generalizability to the 

myriad LLMs used in medical tasks is unclear. Future research 

may perform similar analyses of LLMs such as Google’s Gemini 

and Anthropic’s Claude to assess model-specific strengths and 

weaknesses. The recently released version of GPT (GPT-5) was 

also not included in this analysis, as its release date was after the 

study’s cutoff date. The addition of such analyses to the 

literature may also elucidate larger trends regarding LLM 

performance in this domain. In our GLMM, we focused on 

variables that were most consistently reported across the 

included studies, such as model version, input modality, history 

provision, and study year. However, future studies should aim 

to incorporate additional factors, including imaging modality 

and body region, and provide stratified accuracy estimates, as 

these variables may significantly in>uence GPT performance.

In summary, while our findings underscore the considerable 

potential of advanced GPT models to support radiologic 

diagnostics, they also highlight critical areas requiring 

improvement, including modality-specific training, clinical 

context integration, and fine-tuning using targeted datasets. 

Addressing these aspects through focused research and 

methodological refinements will be essential in moving toward 

the effective clinical integration of LLMs in radiology.
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