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Objective: To systematically evaluate the diagnostic accuracy of various GPT
models in radiology, focusing on differential diagnosis performance across
textual and visual input modalities, model versions, and clinical contexts.
Methods: A systematic review and meta-analysis were conducted using PubMed
and SCOPUS databases on March 24, 2025, retrieving 639 articles. Studies were
eligible if they evaluated GPT model diagnostic accuracy on radiology cases. Non-
radiology applications, fine-tuned/custom models, board-style multiple-choice
questions, or studies lacking accuracy data were excluded. After screening, 28
studies were included. Risk of bias was assessed using the Newcastle—Ottawa
Scale (NOS). Diagnostic accuracy was assessed as top diagnosis accuracy (correct
diagnosis listed first) and differential accuracy (correct diagnosis listed anywhere).
Statistical analysis involved Mann-Whitney U tests using study-level median
(median) accuracy with interquartile ranges (IQR), and a generalized linear mixed-
effects model (GLMM) to evaluate predictors influencing model performance.
Results: Analysis included 8,852 radiological cases across multiple radiology
subspecialties. Differential accuracy varied significantly among GPT models,
with newer models (GPT-4T: 72.00%, median 82.32%; GPT-40: 57.23%,
median 53.75%; GPT-4: 56.46%, median 56.65%) outperforming earlier versions
(GPT-3.5: 37.87%, median 36.33%). Textual inputs demonstrated higher
accuracy (GPT-4: 56.46%, median 58.23%) compared to visual inputs (GPT-4V:
42.32%, median 41.41%). The provision of clinical history was associated with
improved diagnostic accuracy in the GLMM (OR=127, p=.001), despite
unadjusted medians showing lower performance when history was provided
(61.74% vs. 52.28%). Private data (86.51%, median 94.00%) yielded higher
accuracy than public data (47.62%, median 46.45%). Accuracy trends indicated
improvement in newer models over time, while GPT-3.5's accuracy declined.
GLMM results showed higher odds of accuracy for advanced models
(OR =1.84), and lower odds for visual inputs (OR =0.29) and public datasets
(OR = 0.34), while accuracy showed no significant trend over successive study
years (p=0.57). Egger's test found no significant publication bias, though
considerable methodological heterogeneity was observed.

Conclusion: This meta-analysis highlights significant variability in GPT model
performance influenced by input modality, data source, and model version.
High methodological heterogeneity across studies emphasizes the need for
standardized protocols in future research, and readers should interpret
pooled estimates and medians with this variability in mind.
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Introduction

Interest in artificial intelligence (AI) in radiology has grown in
(CNNs)
showing promise in tasks such as lesion detection, classification,

recent decades, with convolutional neural networks

segmentation, image reconstruction, and natural language
processing (1). More recently, however, large language models
(LLMs) like GPT (OpenAl, San Francisco, California) have
garnered interest within radiology (2). LLMs are AI models that
use transformer architectures to process and generate human
language by learning from vast amounts of text data. These
models understand the context of users’ queries, enabling them to
perform various language-related tasks, including text generation,
translation, and summarization. Unlike CNNs, which are trained
on extensive labeled image datasets, GPT is trained on textual data
using natural language processing. GPT-3.5 could generate
differential

primarily from textual descriptions of imaging findings (3).

diagnoses and management recommendations
However, GPT-4 and subsequent models are multimodal LLMs
capable of processing text and images. This integration enhances
their ability to generate comprehensive responses based on diverse
inputs, for example, generating a differential diagnosis based on a
patient history alongside either radiological images or transcribed
interpretations of those images (3, 4). These GPT models, among
more recently released versions such as GPT-ol and GPT-
03-mini, are widely recognized LLMs that have demonstrated
success in various medically related applications, such as clinical
decision support and medical education (5, 6). Other LLMs,
including Google’s Gemini (Mountain View, California) and
Anthropic’s Claude (San Francisco, California), are also advancing
rapidly. These models, along with GPT, all represent a growing
body of tools with the potential to reshape healthcare through
improved data analysis, language comprehension, and decision-
making capabilities.

Researchers have published numerous examples of GPT’s
ability to generate differential diagnoses. For instance, a recently
published study assessed GPT’s ability to generate differential
diagnoses from transcribed radiologic findings, revealing a
diagnosis accuracy of 66.1% with GPT-4 (3). Another study
evaluated GPT-4’s performance using patient history and imaging
findings from the “Diagnosis Please” quizzes in Radiology. The
results showed a 54% accuracy in generating final diagnoses, with
the highest accuracy in cardiovascular radiology (79%) and the
lowest in musculoskeletal radiology (42%) (4). A separate study
on thoracic radiology demonstrated that GPT-4 achieved a
diagnostic accuracy of 59.7% when using complex, role-specific
prompts, highlighting the importance of prompt engineering in
optimizing model performance (7). Collectively, these findings
suggest that while GPT has the potential to complement
radiologic decision-making, its diagnostic accuracy and clinical
reliability remain areas of active investigation. Further, the wide
range in accuracy performance begs the question of what factors,
such as prompt formulation, case complexity, imaging modality,
and subspecialty, influence GPT’s diagnostic performance.

Given these uncertainties, a comprehensive assessment of
GPT’s strengths, limitations, and areas for improvement is
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essential before considering its integration into radiologic
workflows. In this meta-analysis, we compare the accuracy of
various GPT models in generating differential diagnoses based
on text and visual inputs of radiographic findings and patient
histories to better characterize the strengths, weaknesses, and
overall trajectory of GPT’s diagnostic capabilities.

Methods

Institutional Review Board (IRB) approval was not required
because this meta-analysis used only previously published, de-
identified data and did not involve human subjects or protected
health information.

This meta-analysis was not prospectively registered, and no
formal review protocol was prepared. The study was conducted
in accordance with PRISMA guidelines, and all inclusion/
exclusion criteria, analysis plans, and outcomes were determined
prior to data extraction. The PRISMA diagram of the workflow
can be seen in Figure 1. 639 articles were retrieved from
PubMed (n=322) and SCOPUS (n=317) on 3-24-2025. Search
terminology for PubMed was “ChatGPT” OR “ChatGPT-4” OR
“ChatGPT-3.5> OR “ChatGPT4” OR “ChatGPT40” OR
“ChatGPT-40” OR “GPT” OR “Chat-GPT” OR “large language
model” OR “artificial intelligence chatbots”) AND (“radiology”
OR “radiologic”) AND (“accuracy” OR “diagnostic performance”
OR “diagnose”). Search terminology for SCOPUS was
(“ChatGPT” OR  “ChatGPT-4> OR “ChatGPT-3.5” OR
“ChatGPT4” OR “ChatGPT40” OR “ChatGPT-40” OR “GPT”
OR “Chat-GPT” OR “large language model” OR “artificial
intelligence chatbots”) AND (“radiology” OR “radiologic”) AND
(“accuracy” OR  “diagnostic performance” OR “diagnose”).
Articles evaluating GPT performance on radiological cases with
reported diagnostic accuracy were included. A total of n=28
studies were included in this study after review by n =2 research
personnel with two years’ worth of research experience in the
field of LLMs, followed by review by a board-certified
radiologist (3, 4, 7-32).

Eligibility criteria

Articles initially excluded from analysis were removed due to
duplicates (n =244), resulting in a total of 396 articles for retrieval.
Following that, a total of n=279 articles retrieved were papers
that evaluated the accuracy of GPT in diagnosing non-imaging,
non-radiology-related cases such as dermatological conditions,
simulated clinical scenarios, or clinical vignettes. For example, this
exclusion criterion included articles that provided a clinical
vignette and asked GPT to manage medications, generate
documentation, and/or guide the clinical management of a patient
in a field unrelated to radiology. The remaining 117 articles were
independently assessed for eligibility by two researchers.

Disagreements were resolved through discussion and
consensus, or by involving third research personnel when

consensus could not be reached. 279 retrieved articles were
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Records identified from*:
PubMed (n = 322)
SCOPUS (n = 317)

!

Records screened

(n = 396)
}

Records sought for retrieval

(n = 396)
'

Records assessed for eligibility
(n =396)

Studies included in review
(n=28)

FIGURE 1

Records removed before screening:
Duplicate records removed (n = 244)

Records excluded
(n=0)

Records not retrieved
(n=0)

Records excluded:
Prompts with no imaging-related cases (n = 279)
Board Exam Question Evaluation (n = 65)
LLM other than GPT (n = 2)
Provides multiple choice in prompt (n = 3)
Correspondence (n = 4)
Usage of non-generic GPT (n = 6)
No reported GPT version (n = 2)
Lack of accuracy data (n = 6)
Did not ask for diagnosis from GPT (n = 1)

PRISMA diagram. The search strategy can be found in the Methods section of the manuscript. Records were retrieved from PubMed and SCOPUS.
A total of n = 279 articles retrieved were found not to contain any imaging-related cases used for GPT diagnostic evaluation. A total of n = 65 studies
evaluated GPT performance on board exam questions or questions that mimic board exam question style. A total of n = 6 studies also did not provide
accuracy data that could be used for the subsequent statistical analysis completed in our meta-analysis.

excluded based on the models being tested on basic trivia, general
medical facts, and/or short questions related to radiology, which
do not simulate real scenarios where GPT may be used in a
clinical workflow. Similarly, 3 of the retrieved articles provided
multiple-choice answers in the prompt in the form of either
medical trivia/or board-style exam questions. Two of the
retrieved articles used an LLM other than GPT. Other exclusion
factors included correspondence (n=4) and articles that did not
report the GPT version used (n=2). Interestingly, six articles
used a version of GPT (non-generic GPT) that had been
pre-trained with user-provided datasets. Studies evaluating
fine-tuned GPT models were excluded to focus on publicly and
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commercially available versions. Finally, six retrieved articles did
not report accuracy-level data that could be used in our meta-
analysis. One of the retrieved articles did not explicitly ask GPT
for a clinical diagnosis but instead asked to point out imaging
findings (33).

Data collection

Data extraction was conducted by n=2 research personnel
with two years’ worth of research experience in the field of

LLMs. Data extracted from the n=28 studies include the
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radiology topic being tested by the LLMs, whether patient history
was provided in the context of the radiological case, GPT version,
GPT access date, and whether the images or cases were obtained
were publicly available on the internet or provided from a
private source (such as institutional medical records). Accuracy
was included and reported in two ways: top diagnosis accuracy,
defined as GPT correctly listing the diagnosis as the first entry
in its differential diagnosis, and differential accuracy, defined as
GPT listing the correct diagnosis anywhere within its differential
diagnosis. To identify a potential source of methodological
variation, the size of differential diagnosis list (k) was extracted.

10.3389/fradi.2025.1670517

As the k value could not be confirmed for 13 of the included
studies, no formal moderator analysis was completed; however,
the determined k values are noted in Table 1.

Textual and visual inputs

Among the n =28 studies included, the types of textual and
visual inputs provided to GPT models varied widely depending
on study Textual
descriptions of imaging findings, sourced either from radiology

design. inputs primarily consisted of

TABLE 1 Summary of literature and input types for each study.

Study name

Dataset

Textual input

Visual input

Grading
scheme

k value

Brin et al. 2025 (31) Acquired hospital images/reports None US, CT, XR Differential Undefined
Cesur et al. 2024 (7) Thoracic Society of Radiology Case of the Month | Patient history, imaging | None Differential 3
findings
Dehdab et al. 2024 (30) The Cancer Imaging Archive None CT Differential Undefined
Fink et al. 2025 (29) Created written report findings Imaging findings None Differential Undefined
Hiredesai et al. 2024 (32) | Radiopaedia for 6 common upper extremity bony | None XR, CT, MRI Differential Undefined
pathology
Horiuichi et al. 2024 (26) | “Test yourself” cases from skeletal radiology Patient history, imaging | Used, did not clarify which Both 3
findings modalities were in the dataset
Horiuichi et al. 2024 (27) | Neuropathology case conference cases from Patient history, imaging | Used, did not clarify which Both Undefined
Clinical Neuroradiology findings modalities were in the dataset
Horiuichi et al. 2023 (28) | American Journal of Neuroradiology Case of the Patient history, imaging | None Both Undefined
Month findings
Huppertz et al. 2025 (25) | Acquired hospital images/reports Patient history CT, MRI, Angiography Both Undefined
Kikuchi et al. 2024 (24) American Journal of Neuroradiology Case of the Patient history, imaging | None Differential 3
Month findings
Koyun et al. 2024 (22) Acquired hospital images/reports None MRI Differential Undefined
Koyun et al. 2025 (23) Acquired hospital images/reports None CT Differential Undefined
Li et al. 2024 (20) Radiology Diagnosis Please archive Patient history, imaging | None Differential 5
findings
Li et al. 2025 (21) Radiology Diagnosis Please archive Patient history, imaging | None Differential 5
findings
Mitsuyama et al. 2025 (19) | Acquired hospital images/reports Imaging findings None Both 3
Mohammadi et al. 2024 Acquired hospital images/reports None XR Differential Undefined
(18)
Ozenbas et al. 2025 (17) Acquired hospital images/reports None MRI Both 3
Rau et al. 2024 (16) Created written report findings Patient history, imaging | None Both 3
findings
Reith et al. 2024 (15) Publicly available images from Pediatric Imaging | Patient history XR, Fluoroscopy, US, CT, MRI | Differential Undefined
website
Ren et al. 2024 (14) Acquired hospital images/reports None XR Both 3
Sonoda et al. 2024 (13) Radiology Diagnosis Please archive Patient history, imaging | None Both 3
findings
Sorin et al. 2024 (12) Acquired hospital images/reports Imaging findings None Differential 3
Strotzer et al. 2024 (11) Acquired hospital images/reports None CT, MRI, XR Both 5
Suh et al. 2024 (10) Radiology Diagnosis Please archive Patient history, imaging | XR, CT, US, MRI Differential 3
findings
Sun et al. 2024 (3) Cases from “Top 3 Differentials in Radiology” Imaging findings None Both 3
Suthar et al. 2023 (9) American Journal of Neuroradiology Case of the | Patient history, imaging | None Differential Undefined
Month findings
Ueda et al. 2023 (23) Radiology Diagnosis Please archive Patient history, imaging | None Both Undefined
findings
Wada et al. 2024 (8) American Journal of Neuroradiology Case of the Patient history, imaging | None Both 5
Month findings

Below is a summary table of the » = 28 studies used in the meta-analysis. “Acquired hospital images/reports” signifies that that data (either the images themselves or the radiology report) was
extracted from a hospital system and/or institution. Textual input is defined as additional, textual information that is added into the prompt. Visual input is defined as any image added into
the prompt. Grading Scheme is defined as the grading system employed by the study, which is either differential accuracy (differential), top diagnosis accuracy (top), or both. The k value
refers to the size of differential diagnosis list.

Frontiers in Radiology
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reports within de-identified institutional datasets or from online
resources such as the American Journal of Neuroradiology Case
of the Month series or Radiology: Diagnosis Please cases. Several
studies evaluated the impact of providing clinical context, such
as age, symptoms, or referring physician notes. In contrast,
others tested the model’s ability to generate interpretations
based solely on imaging descriptions without supplementary
history. Visual inputs, when used, included static images (e.g., x-
rays [XR], CT scans [CT], magnetic resonance imaging [MRI],
or ultrasound [US] screenshots), either embedded directly into
the prompting interface (for multimodal-capable models) or
described textually in image captions. A summary of the inputs
can be found in Table 1. The different methodologies by which
the inputs were utilized can be found in Figure 2.

Bias assessment
We assessed risk of bias for each included study using the

Scale  (NOS),
comparability, and outcome domains. This scale has been

Newecastle-Ottawa focusing on  selection,
previously used in a meta-analysis that assessed GPT accuracy in
answering medical queries, which we had adapted to this meta-
analysis in assessing GPT diagnostics (34). Two independent
reviewers assessed all studies based on the NOS framework,
which evaluates risk of bias across three core domains: (1)
selection of study cohorts or designs, (2) comparability of groups,
D1-D4

(Supplementary Figure S1), studies were judged on criteria such

and (3) ascertainment of outcomes. For domains
as the clarity and representativeness of included cases. The
comparability domain D5-D6 (Supplementary Figure S1) assessed
how well studies controlled for potential confounders, such as
model version or input modality. The outcome domain D7-D9

10.3389/fradi.2025.1670517

(Supplementary Figure S1) is the appropriateness of outcome
measurement. Each criterion (D1-D9) was scored as follows: none
(0 points), unclear (0.5 points), and yes (1 point). The results
from both reviewers were summed to produce an overall score
for each study (maximum total=18). Based on the total NOS
scores, studies were categorized into high (dark red, 0-6 points),
moderate (dark yellow, 7-12 points), or low risk of bias (dark
green, 13-18 points). The risk of bias ratings was factored into
our interpretation of pooled results and heterogeneity.

Statistical analysis

Data from the included radiology studies were analyzed using R
(version 4.2.2). Descriptive statistics were used to summarize the
evaluated radiologic topics and the GPT models’ diagnostic
performance across tasks. Accuracy was calculated for both top
diagnosis (correct diagnosis listed first when GPT provides a
differential diagnosis) and differential diagnosis (correct diagnosis
listed anywhere in the list), reported as proportions with 95%
confidence intervals (CI) derived from standard errors under
binomial distribution assumptions. The first scheme is defined as
top diagnosis accuracy, and the second is defined as differential
accuracy. Across the n =28 studies, a correct diagnosis is defined
as a diagnosis that matches the ground truth. In studies using
(e.g., the of
Neuroradiology or Radiology: Diagnosis Please), the correct
diagnosis was typically defined as the official answer provided by

publicly available cases American Journal

the source. In studies using de-identified institutional datasets, the
ground truth was defined as the attending radiologist’s final
diagnosis documented in the official radiology report. This meta-
analysis relied on each study’s reported accuracy values and did
not re-evaluate model predictions independently.

w

l li ‘l ' ‘i t‘
Extract image/patient
history/image findings

Dataset ——

(+/- patient history)

Extractimage/patient

| findi
history/image findings mege Tncings

(+/- patient history)

Dataset

FIGURE 2

engineering was applied to format inputs according to individual study

Prompt Engineering

. N Ny )
= 1[5 -

Workflow of inputs and outputs for GPT across the included studies: this figure illustrates the various methodologies used by visual or textual inputs
across the studies. Researchers employed public or private datasets to extract selected images and relevant patient history or findings. Written image
findings were used for textual inputs; the actual images were submitted for visual inputs. The inclusion of patient history varied by study. Prompt

generated by GPT models were either a list of potential diagnoses or a single most likely diagnosis.

s

List of multiple,
possible/likely
diagnoses

List of multiple,
possible/likely
diagnoses

protocols or based on previously established literature. The outputs
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To account for clustering of multiple cases within each study,
we collapsed results to the study level by summing the number
of correct predictions and total cases for each article, stratified
by GPT model, input modality, history provision, and data
source. From these counts, we calculated study-level accuracy
proportions (both top diagnosis and differential diagnosis). For
descriptive reporting, we summarized pooled accuracy as well as
the study-level median accuracy and interquartile range (IQR)
across included studies. Between-group comparisons (e.g., GPT-
3.5 vs. GPT-4 family models, textual vs. visual inputs, history
provision, and public vs. private datasets) were assessed using
two-sided Mann-Whitney U tests (Wilcoxon rank-sum), which
compare distributions without assuming normality.

To evaluate predictors of diagnostic accuracy while adjusting
for potential confounders, we constructed a generalized linear
mixed-effects model (GLMM). The dependent variable was
correct vs. incorrect diagnosis at the case level, expanded from
study-level counts. Fixed effects included GPT model type
(GPT-4 family vs. GPT-3.5), input modality (textual vs. visual),
history provision (yes vs. no), data source (public vs. private),
and study year (continuous). A random intercept for each study
was included to account for within-study clustering. Model
results were expressed as odds ratios (OR) with 95% confidence
intervals, where OR > 1 indicates higher odds of accuracy.

A funnel plot was generated using a fixed-effect model to assess
publication bias, and Egger’s regression test was applied. All
statistical tests were two-sided, with significance defined as p < 0.05.

Results

The search strategy yielded 639 records from PubMed
(n=322) and SCOPUS (n=317). After removing duplicates
(n=244), 396 articles remained for screening. Following a
detailed assessment for eligibility, 28 studies were included in
the final analysis (Figure 1; Table 1).

The included studies evaluated various radiology subspecialties,
most frequently neuroradiology (60.71%), musculoskeletal radiology
(42.86%), and chest radiology (25.00%). Other notable areas included
(17.86%), imaging (21.43%),
cardiovascular imaging (17.86%), genitourinary imaging (17.86%),

breast imaging gastrointestinal
and pediatric radiology (14.29%). We found that several studies
(14.29%) did not specify the radiology subspecialty tested (Table 2).
A total of n = 8,852 radiological cases (whether the images themselves
or the radiological image described in text) were evaluated across all
the included n = 28 studies. In the meta-analysis data, GPT-4 was the
most tested GPT model with n = 2,662 radiological cases, followed by

GPT-4V with n =2,306 radiological cases (Table 3).

Model performance comparison

The accuracy of GPT models varied significantly, especially in
the context of the GPT model being employed. A total of n=13
studies provided the top diagnosis accuracy, whereas all n =28
studies provided differential accuracy. GPT-4 outperformed

Frontiers in Radiology
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TABLE 2 Stratification of radiology topics tested.

‘ Tested radiology topics Frequency (%)

Neuroradiology 17 60.71
Musculoskeletal 12 42.86
Chest 7 25.00
Gastrointestinal 6 2143
Breast 5 17.86
Cardiovascular 5 17.86
Genitourinary 5 17.86
Pediatric 4 14.29
Not reported 4 14.29
Head and neck 3 10.71
OB/GYN 3 10.71

A table showing a list of all the different radiology topics that were reported in review of all
published papers. This table only displays radiology topics more than n=2 times. Also
displays the frequency which is that number divided by n=28 total studies. Not
Reported signifies the number of studies that did not report the radiology topic.

GPT-3.5 in both top diagnosis (57.1% vs. 51.1%) and differential
accuracy (56.5% vs. 37.9%) at a statistically significant level.
Accuracy was even higher for GPT-4T (72.0%) and GPT-40
(57.2%) for differential The
differential accuracy across all GPT models was 50.92% (study-

accuracy (Table 3). overall
level median accuracy: 47.21%) (Table 3). Because all the n =28
studies provided differential accuracy, this metric of accuracy
was used as the accuracy metric for subsequent analysis.

Textual vs. visual analysis

Comparing textual and visual modalities, GPT-4T achieved 94%
accuracy with textual input but only 67% with visual input, based on
a single study. GPT-40 performed slightly better with visual (59.6%)
than textual (49.4%) inputs, though not significantly. GPT-4’s textual
accuracy was 56.5%, and GPT-3.5 reached 37.9%; visual data were
unavailable for these models (Table 4).

Impact of patient history provision

Among the studies, some included pertinent patient clinical
information for the radiological case in the user-inputted
prompt of GPT, whereas others did not. As such, we sought to
tabulate the impact this provision had on the GPT differential
accuracy. Providing patient history for textual inputs reduced
overall accuracy (from 61.7% median to 52.3% median, p <.05).
For visual inputs, accuracy also declined (from 54.3% to 42.6%),
although not at statistical significance (Table 4).

Public vs. private data sources

It is well known that GPT models are trained based on information
provided on the Internet, with some models even having access to the
Internet, such as GPT-4o. During this analysis, we found that
differential accuracy differed by data source. For textual inputs,
private datasets achieved much higher accuracy (86.5%) than public

frontiersin.org



Nguyen et al. 10.3389/fradi.2025.1670517

TABLE 3 Average accuracy table of GPT-4, GPT-40, and overall for Top diagnosis vs. differential diagnosis.

GPT model Differential accuracy

Accuracy [95% C.I]

Top accuracy

IQR IQR

Accuracy [95% C.1]

Study-level
median accuracy

Study-level
median accuracy

GPT-3.5 150/293 (51.21%) [45.47, 56.91] 55.92% 0.00 | 636/1680 (37.87%) [35.53, 40.17] 36.33% 12.62
GPT-4 614/1075 (57.1%) [55.63, 63.01] 57.82% 50.82 | 1514/2662 (56.46%) [54.57, 58.34] 56.65% 1 10.58
GPT-4T 414/751 (55.12%) [51.56, 58.58] 55.21% 27.69 | 577/801 (72.00%) [68.95, 73.59] 82.32%1 11.72
GPT-4V 343/1023 (33.53%) [30.63, 36.42) 33.33% 20.88 | 976/2306 (42.32%) [40.30, 44.34] 41.41% 30.97
GPT-40 146/368 (39.67%) [34.68, 44.67) 35.35% 14.81 | 803/1403 (57.23%) [54.64, 59.82] 53.75% |- 14.52
Overall 1667/3510 (47.50%) [45.84, 49.18] 48.36% 4506/8852 (50.92%) [49.95, 51.47] 47.21%

This table presents the average accuracy of GPT-3.5, GPT-4, GPT-4V, GPT-4T, GPT-4o0, and overall performance for top diagnosis vs. differential diagnosis. Accuracy is calculated as the
number of correct cases divided by the total number of cases used, alongside the 95% confidence interval in brackets. Results were collapsed to the study level by summing correct predictions
and total images per study. For each subgroup, we report the Study-level median accuracy and the interquartile range (IQR; Q3-Q1). A Mann-Whitney test is also reported to compare

accuracy (either Top Accuracy or Differential Accuracy) performance between GPT-3.5 vs. the other GPT models, which displays significance at p <.05 ().

Bold indicates statistical significance.

datasets (47.6%, p < .05). No significant differences were seen for visual
inputs (private 51.0% vs. public 52.7%) (Table 4).

Accuracy trends over time

GPT performance demonstrated variability over the years.
Notably, GPT-4 accuracy increased from 57.49% in 2023 to
70.91% in 2025, while GPT-3.5 showed declining performance
over time from 38.77% in 2024 to 26.10% in 2025. GPT-4T
achieved a high accuracy of 94% in 2025, marking an
improvement from 66.97% in 2024 (Supplementary Table S2),
although this was just reported for one study.

Generalized linear mixed-effect model
analysis

We conducted a generalized linear mixed-effect model
(GLMM) to identify key diagnostic accuracy predictors and assess
how variables such as model version, input modality, data source,
and study year influenced performance outcomes. More advanced
GPT versions (GPT-4T/4 V/4/40) were more likely (OR=1.84,
p<.001) to provide accurate diagnoses compared to GPT-3.5.
Visual analysis had lower accuracy odds than textual analysis
(OR=0.29, p<.001). Public data sources had significantly lower
odds of accuracy than private data (OR=0.34, p <.001). Cases
with patient history provided vyielded a higher differential
accuracy compared to those without (OR=1.27, p=.001). There
was no statistically significant difference over successive study
years (OR=1.19 per year, p<.001) (Table 5). We also removed
n=3 studies that were noted to have a moderate risk of bias as
demonstrated in Supplementary Figure S1 (14, 23, 30), where we
found that the results remained unchanged in direction or
significance (Supplementary Table S2).

Heterogeneity assessment

To assess the presence of publication bias, we conducted a
funnel plot visualization and applied Egger’s regression test. The
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funnel plot (Figure 3) visualized study-level differential accuracy
estimates, plotting mean accuracy along the x-axis and
individual studies along the y-axis. The Fixed-Effects Model
with n=28 studies resulted in an average accuracy of 54.75%
(95% CI: 53.78, 55.72%). While moderate heterogeneity was
observed across studies (Q=1206.80, p<0.001; 12 =97.76%),
Egger’s regression test revealed no statistically significant
asymmetry (p=0.9192), suggesting no substantial publication
bias in the included literature.

Discussion

In this meta-analysis, we provided essential insights into the
diagnostic capabilities of various GPT models when applied to
GPT  models
significantly higher diagnostic performance compared to earlier

radiological ~ cases.  Newer demonstrated
versions. This improvement aligns with advancements in
multimodal capabilities, suggesting that continual refinement of
transformer-based architectures significantly boosts their clinical
utility (35). This pattern indicates that future iterations of LLMs
may become increasingly reliable adjuncts to radiologists,
particularly if their accuracy continues to evolve at a similar
pace. However, caution is warranted as our analysis revealed
widespread fluctuations in performance that vary between studies.

Although not statistically significant, the analysis revealed
modality-specific strengths and weaknesses. GPT-4T excelled in
textual inputs, achieving exceptionally high accuracy, whereas its
performance notably declined with visual inputs. However, this
result was based on only n=50 cases from a single study. With
limited sample sizes and potential selection bias, these cases may
not represent the full scope of radiology diagnostics. On the
other hand, GPT-40 demonstrated stronger diagnostic accuracy
from visual inputs compared to textual descriptions. Previous
studies have shown consistently poorer visual input performance
than textual inputs (4, 36, 37). The observed discrepancy in
GPT-40’s visual performance compared to the literature may be
influenced by the broad methodological variability across studies
included in this meta-analysis. Factors such as differences in
data sources (public vs. private), year of model use, and
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TABLE 4 Comparison of textual GPT versus vs. GPT differential accuracy.

GPT Total Accuracy Study-level IQR

functionality cases [95% C.I] median
accuracy

GPT-3.5

Textual 1,680 | 37.85% [35.45, 40.17] 35.40% 12.63

Visual NA NA NA NA

GPT-4

Textual 2,662 | 56.46% [54.57, 58.34] 58.23% 10.52

Visual NA NA NA NA

GPT-4T

Textual 50 | 94.00% [87.45, 100.00] 94.00% 0.00

Visual 751 | 66.97% [63.61, 70.34] 70.60% 0.00

GPT-4V

Textual NA NA NA NA

Visual 2,306 | 42.32% [40.30, 44.34] 38.95% 30.92

GPT-40

Textual 324 | 49.38% [43.93, 54.82] 49.40% 0.00

Visual 1,079 | 59.59% [56.66, 62.59] 56.30% 16.46

Textual vs. Total Accuracy Study-level

visual cases median
accuracy

Textual

(-) Patient history | 1,408 | 49.12% [46.60, 51.83] 61.74% 1 47.81

(+) Patient history | 3,308 | 49.96% [48.26, 51.67] 52.28% 17.69

Visual

(—) Patient history | 1,941 | 53.60% [51.42, 55.83] 54.29 30.28

(+) Patient history | 2,195 | 49.29% [47.20, 51.38] 42.59% 30.77

Data Total Accuracy Study-level

acquisition | cases median
accuracy

Textual

Private data 260 86.51% [82.42, 90.7] 94.00% |- 16.23

Public data 4,456 | 47.62% [46.19, 49.12] 46.45% 25.58

Visual

Private data 1,863 | 51.03% [48.83, 53.15] 52.25% 79.90

Public data 2273 | 52.73% [50.79, 54.82] 46.73% 23.28

This table compares the performance of Textual GPT vs. Visual GPT on Differential
Accuracy, for each model. GPT vs. Visual GPT on Differential Accuracy when provided
with patient history is also compared on this table. This table compares the performance
of GPT when using private vs. public data feeds. Public data refers to datasets that are
openly available, whereas private data consists of information that is not accessible to the
public such as confidential patient data. Results were collapsed to the study level by
summing correct predictions and total images per study. For each subgroup, we report
the Study-level median accuracy and the interquartile range (IQR; Q3-Ql). Group
comparisons were performed using two-sided Mann-Whitney U tests (Wilcoxon rank-
sum), which assess differences in distributions without assuming normality. Significance
is denoted at p <.05 ().

Bold indicates statistical significance.

variability in prompt engineering likely confounded these results,
emphasizing the need for standardized methodologies in future
investigations. Nonetheless, our GLMM results revealed that
visual inputs had lower odds of accuracy than textual inputs.
This difference in performance might reflect ongoing challenges
with visual recognition and interpretation, as evidenced by the
literature (2, 36). The observed distinction in performance may
be attributed to the fundamental differences in how LLMs
process these modalities. Textual prompts are handled via
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TABLE 5 Generalized linear mixed-effects model (GLMM) results of GPT
differential accuracy across Key variables.

Predictor variable Odds 95% Cl | P value

ratio (SE)

Differential diagnosis accuracy

GPT-4T/4V/4/40 (vs. GPT-3.5) 1.84 (1.61,2.12) | <.001
Visual analysis (vs. Textual analysis) 0.29 (0.19, 0.44) <.001
Provided history: Yes (vs. No) 1.27 (1.10, 1.47) <.001
Data acquisition: public (vs. Private) 0.34 (0.17, 0.70) <.001
Year (continuous, 2023—2025) 1.19 (0.65, 2.20) .57

Results of the generalized linear mixed-effects model (binomial, random intercept by study)
evaluating predictors of ChatGPT differential diagnostic accuracy across included studies
(2023-2025). Odds ratios greater than 1 indicate improved accuracy, while values less
than 1 indicate reduced accuracy. Significant predictors included ChatGPT model type,
modality (text vs visual), history provision, and data source. The fixed effects are the
predictors, whereas the random effect is the study-level intercept, which accounts for
clustering of multiple observations within the same article.

Bold indicates statistical significance.

token-based transformer architectures optimized for language
inputs, whereas visual inputs rely on separate encoders (38). In
current models, this vision-language integration remains limited.
Unlike textual prompts, which often already provide structured
summaries of the imaging findings, visual prompts require the
model to extract raw spatial features, for which GPT may not
be optimized.

GPT-based models in radiological applications exhibited
several distinct categories, or “types” of mistakes. One of the
most prevalent issues reported in the literature is hallucination,
where the model fabricates findings or diagnoses without any
basis in the actual image data. For instance, GPT-4V has been
shown to generate diagnoses and conclusions unsupported by
the underlying images (25, 31). Even when prompted to provide
up to five differential diagnoses, GPT-4T demonstrated a 29.4%
misdiagnosis rate (221/751 cases), where the correct diagnosis
was not included in its top five suggestions (8). Another study
highlighted that while GPT models could detect the presence of
intracranial hemorrhages, they struggled to accurately classify
the hemorrhage type or localize them within the brain (23). The
errors observed in GPT-based models underscore the critical
need for further research, particularly given the potential risks
that hallucinations and diagnostic inaccuracies pose if such
systems are integrated into clinical practice.

Despite the absence of significant publication bias detected by
Egger’s test, our analysis revealed heterogeneity across included
studies, reflecting considerable differences in methodologies,
radiological cases, diagnostic criteria,
approaches, and evaluation standards. The heterogeneity likely
reflects the influence of additional unmeasured factors, most

prompt engineering

notably variations in prompt design. Prior studies have shown
that prompt engineering can significantly enhance GPT’s
diagnostic performance (39). However, the included studies in
our meta-analysis employed at least 10 distinct and non-
overlapping prompting strategies (Table 6), making their
inclusion as covariates difficult due to concerns of model
overfitting. This methodological diversity significantly impacts
the ability to generalize findings and directly compare study
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FIGURE 3

Funnel plot of study-level differential accuracy estimates (fixed-effects model) with Egger’s test for publication bias. This funnel plot visualizes study-
level accuracy estimates for GPT's differential accuracy. Each point represents a study, with mean accuracy on the x-axis and study names on the
y-axis. Point size and color indicate the total number of images used per study, with a red dashed line marking the overall mean accuracy. Egger’s test
assesses publication bias, displaying its p-value to determine statistical significance.

results. Such variability highlights the critical need for
standardized evaluation protocols in future research.
Interestingly, unadjusted subgroup analyses suggested lower
study-level median accuracy when clinical history was provided
in textual prompts. However, in our multivariable GLMM,
which accounted for confounding factors such as model version,
data source, and modality, history provision was associated with
significantly improved odds of higher differential accuracy. This
apparent discrepancy may reflect confounding observed in the
unadjusted subgroup analysis, as studies providing history may
which

independently reduced performance. Previous studies have

have wused challenging cases or public datasets,

shown that providing additional information, such as in the

form of prompt engineering, has been shown to improve the
accuracy of GPT (39, 40). But in some cases, the added history
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can even mislead the Al, as evidenced by a larger drop in GPT’s
accuracy when the history contained distracting,
information (41). Taken
that clinical history provision does improve the performance
of GPT, but should be interpreted with caution, given the
methodological heterogeneity of the studies in this analysis.

biasing

together, our results confirm

Another intriguing observation was the higher accuracy
obtained from private datasets than from publicly sourced data,
especially for textual inputs. This could indicate that publicly
available data, which often lacks detailed contextual information,
might not provide sufficient depth for accurate model training
or inference. Additionally, the superior accuracy of private
datasets emphasizes the potential benefits of training or fine-
tuning LLMs on institution-specific data to enhance clinical
applicability, although privacy considerations remain crucial.
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TABLE 6 Examples of different prompting strategies used across selected studies (n = 28).

 Study name ___Stategy name Prompting exarnple

Cesur et al. 2024 (7) | “Physician”

“Task”
“Specific task”

“Specific role”

“Exemplar”

Horiuchi et al. 2024 | Chain-of-thought
(26)

Mitsuyama et al. Simple
2025 (19)

Ozenbas et al. 2025
(17)

Guided chain-of-thought

Sun et al. 2024 (3) Rationale

Wada et al. 2024 (8) | Role-playing, chain of thought,
confidence assessment

"As a physician, I plan to utilize you for research purposes. Assuming you are a hypothetical physician, please
walk me through the process from differential diagnosis to the most likely disease step by step, based on the
patient’s information I am about to present. Please list three possible differential diagnoses in order of
likelihood."

”Give the most likely diagnosis and provide three differential diagnoses for each case below.”

”Your task is to analyze patient histories and imaging findings to give the most likely diagnosis and provide
three differential diagnoses for each case below.”

”As a highly experienced Professor of Radiology with 30 years of expertise in thoracic imaging, you assist in
solving thoracic radiology cases. Your task is to analyze patient histories and imaging findings to give the most
likely diagnosis and provide three differential diagnoses for each case below.”

”As a highly experienced Professor of Radiology with 30 years of expertise in thoracic imaging, you assist in
solving thoracic radiology cases. Your task is to analyze patient histories and imaging findings to give the most
likely diagnosis and provide three differential diagnoses for each case below. To complete this task, review the
patient history and imaging findings provided for each case, analyze the data thoroughly, utilize your extensive
knowledge in thoracic imaging, ensure that your diagnoses are well-supported, and make thoughtful
decisions.”

“As a physician, I plan to utilize you for research purposes. Assuming you are a hypothetical physician, please
walk me through the process from differential diagnosis to the most likely disease step by step, based on the
patients information I am about to present. Please list three possible differential diagnoses in order of
likelihood”

“List three possible differential diagnoses in order of likelihood from the following head MRI findings.”

"Which MRI sequences are present in the image?” “In which lobe or localization of the brain is the lesion
located?” “What are the MRI signal characteristics of the lesion?” “Is there edema around the lesion?” “Is the
lesion enhancing?” “Is the lesion intra-axial or extra-axial?” What are the three most likely differential
diagnoses for the lesion?” “What is the most likely diagnosis for the lesion?"

“What is the top 3 differential diagnosis for this scenario? Please explain why and provide your citations in
standard AMA format. What is the most likely diagnosis for this scenario? Please explain why and provide
your citations in standard AMA format.”

# Role You are an expert in medical imaging diagnosis with extensive experience interpreting various medical
images, including CT, MRI, and x-rays. Your expertise includes identifying pathologies, understanding
radiology clinical report contexts, and correlating to imaging findings with potential diagnoses proofread. —#
Request Along with the following Regulation prompt, present a refined list of five differential diagnoses,
including the most probable diagnosis and four alternatives. Each diagnosis should have a corresponding
confidence level based on your comprehensive analysis. —# Regulation Using the clinical information
provided: {# URL of clinical information}, list five initial differential diagnoses. Then, review the imaging
findings: {# URL of image findings}, and update your diagnoses accordingly. Reflect on how the new data
alters your assessment. For each diagnosis in your updated list, assign a confidence level between 0% and
100%, considering the task’s complexity and the extent to which clinical and imaging data support each
diagnosis.

Given the heterogeneity of prompting methods among the reviewed studies, this table highlights select strategies employed by the authors. Strategy names enclosed in quotations (* )

represent the original terminology used by each respective study. “Chain-of-Thought” refers to prompting GPT to explicitly explain each reasoning step; “Guided Chain-of-Thought”

involves prompting GPT through a sequence of specific guiding questions; “Rationale” refers to requests for GPT to provide justifications for its answers; and “Confidence Assessment”

describes prompts asking GPT to assign confidence levels to its responses.

Moreover, the temporal analysis revealed distinct trends based

to the observed variability. The heterogeneity in prompt design

on model version. We observed the improved performance of
GPT-4 models over time, in contrast to the declining accuracy of
GPT-3.5. This divergence likely reflects the evolving training
methods and improved architecture of newer models, better
equipped to handle increasingly complex medical tasks. Despite
model-specific trends, our GLMM indicated that the continuous
effect of the study year was not statistically significant. Together,
these findings may suggest that performance trajectory is primarily
dictated by architectural advancements rather than external
temporal factors. It also highlights the need for ongoing evaluation
of GPT performance, particularly as newer versions are introduced
and tested in increasingly complex clinical scenarios.

Limitations of this meta-analysis include variability in study
design, methods of reporting accuracy, and heterogeneity in the
datasets used. Different prompt engineering techniques and a lack
of standardized evaluation criteria across studies also contributed
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was further compounded by the lack of a standardized differential
diagnosis list size (k value) used for the differential accuracy
metric. Our manual review of the methodologies revealed that the
k value ranged predominantly from k =3 (observed in 14 studies)
to k=5 (observed in 4 studies). This non-uniformity limits the
comparability of effect sizes across studies. Such variability
highlights the critical need for researchers to adopt standardized
evaluation protocols, such as a universal reporting of Hit@3 or
Hit@5, in future investigations to ensure the reliability and
comparability of pooled estimates. The datasets utilized for each
study also varied in source, complexity, and image quality, which
may have influenced GPT performance. One of the most
prominent limitations was the lack of standardized comparator
benchmarks across the studies. Some studies defined ground truth
as the written diagnosis in online resources, while others defined
ground truth as the listed diagnosis by an attending radiologist in
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a radiological report. Without such benchmarking, it remains
unclear how these models perform relative to current standards
of care. Additionally, this study only focuses on GPT, a single LLM.

Though limiting our study to GPT models may strengthen our
observations of these specific models, its generalizability to the
myriad LLMs used in medical tasks is unclear. Future research
may perform similar analyses of LLMs such as Google’s Gemini
and Anthropic’s Claude to assess model-specific strengths and
weaknesses. The recently released version of GPT (GPT-5) was
also not included in this analysis, as its release date was after the
study’s cutoff date. The addition of such analyses to the
literature may also elucidate larger trends regarding LLM
performance in this domain. In our GLMM, we focused on
variables that were most consistently reported across the
included studies, such as model version, input modality, history
provision, and study year. However, future studies should aim
to incorporate additional factors, including imaging modality
and body region, and provide stratified accuracy estimates, as
these variables may significantly influence GPT performance.

In summary, while our findings underscore the considerable
potential of advanced GPT models to support radiologic
they highlight

including modality-specific

diagnostics, also critical areas requiring

improvement, training, clinical
context integration, and fine-tuning using targeted datasets.
these

methodological refinements will be essential in moving toward

Addressing aspects through focused research and

the effective clinical integration of LLMs in radiology.
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