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Background: Large language models (LLMs) appear to be capable of 

performing a variety of tasks, including answering questions, but there are 

few studies evaluating them in direct comparison with clinicians. This study 

aims to compare the performance of artificial intelligence (AI) models and 

clinical specialists in informing patients about varicocele embolization. 

Additionally, we aim to establish an evidence base for future hybrid 

informational systems that integrate both AI and clinical expertise.

Methods: In this prospective, double-blind, randomized controlled trial, 25 

frequently asked questions about varicocele embolization (collected via 

Google Search trends, patient forums, and clinical experience) were answered 

by three AI models (ChatGPT-4o, Gemini Pro, and Microsoft Copilot) and one 

interventional radiologist. Responses were randomized and evaluated by two 

independent interventional radiologists using a valid 5-point Likert scale for 

academic accuracy and empathy.

Results: Gemini achieved the highest mean scores for both academic accuracy 

(4.09 ± 0.50, 95% CI: 3.95–4.23) and higher expert-rated scores for empathetic 

communication (3.54 ± 0.59, 95% CI: 3.38–3.70), followed by Copilot (academic: 

4.07 ± 0.46, 95% CI: 3.94–4.20; empathy: 3.48 ± 0.53, 95% CI: 3.33–3.63), 

ChatGPT (academic: 3.83 ± 0.58, 95% CI: 3.67–3.99; empathy: 2.92 ± 0.78, 95% 

CI: 2.70–3.14), and the comparator physician (academic: 3.75 ± 0.41, 95% CI: 

3.64–3.86; empathy: 3.12 ± 0.82, 95% CI: 2.89–3.35). ANOVA revealed 

statistically significant differences across groups for both academic accuracy 

(F = 6.181, p < 0.001, η2 = 0.086) and empathy (F = 9.106, p < 0.001, η2 = 0.122). 

Effect sizes were medium for academic accuracy and large for empathy.

Conclusions: AI models, particularly Gemini, received higher ratings from 

expert evaluators compared to the comparator physician in patient education 

regarding varicocele embolization, excelling in both academic accuracy and 

empathetic communication style. These preliminary findings suggest that AI 

models hold significant potential to complement patient education systems in 

interventional radiology practice and provide compelling evidence for the 

development of hybrid patient education models.
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Introduction

The rapid advancement of artificial intelligence (AI) technologies 

has initiated significant evolution in medical practice, particularly in 

patient education and consultation processes (1). Large language 

models (LLMs) such as ChatGPT, Gemini, and Copilot, demonstrate 

remarkable performance in generating detailed and coherent 

responses to medical inquiries (2, 3). These advancements 

significantly enhance physician–patient communication, enabling 

more informative and effective interactions (4). Through the 

contributions of LLMs, healthcare professionals can improve the 

clarity of shared information, thereby allowing patients to make 

more informed decisions about their health and participate more 

actively in diagnostic and therapeutic processes (5). However, their 

performance in terms of medical accuracy, reliability, and empathetic 

communication—especially within the context of specialized 

interventional procedures—remains insufficiently explored (3).

Varicocele embolization has emerged as a minimally invasive 

approach for the treatment of varicocele, one of the leading causes 

of male infertility (6). Compared to surgical approaches, this 

treatment provides lower morbidity, shorter recovery times, and 

higher technical success rates (7). However, public awareness and 

the accessibility of the procedure remain limited (8). Patients 

frequently present with numerous questions regarding the 

treatment; therefore, accurate and comprehensible patient education 

is essential to enhance patient satisfaction, ensure treatment 

adherence, and improve clinical outcomes (9).

Traditional patient examination and information delivery 

methods face considerable limitations due to physicians’ heavy 

workload, limited time, and inconsistencies in information transfer 

(10). AI-assisted patient education systems may provide innovative 

solutions to these challenges by offering continuous accessibility, 

up-to-date and standardized information, multilingual support, and 

consistent responses regardless of physician fatigue or availability (11).

Patient education processes consist of several critical components. 

Among these, academic accuracy and empathy stand out as the most 

important. Academic accuracy refers to the provision of information 

that is current, scientifically validated, and aligned with clinical 

guidelines (12). Empathy, in contrast, involves addressing patients’ 

emotional needs, offering reassurance, and fostering supportive 

communication (13). These two elements are crucial for patient 

satisfaction, treatment adherence, and favorable clinical outcomes, 

forming the foundation of modern patient-centered care (14).

This study aims to objectively compare the AI models and the 

physicians in varicocele embolization patient education with 

respect to academic accuracy and empathy, thereby 

systematically evaluating the potential advantages and limitations 

of AI-assisted patient education.

Materials and methods

Study design and ethics

This prospective, double-blind, randomized controlled analysis 

was designed to evaluate responses to patient questions with respect 

to varicocele embolization education provided from different 

sources. This study was conducted in accordance with the principles 

of the Declaration of Helsinki. Comprehensive randomization and 

blinding protocols were implemented to minimize pattern bias and 

assessor-related bias.

Question selection and categorization

Twenty-five frequently asked questions about varicocele 

embolization were identified through the following: a systematic 

literature review, patient forum analyses, the most common queries 

from Google searches, and a decade of clinical experience. The 

complete list of 25 questions, the exact prompts used for the AI 

models, and the full verbatim responses from all four sources are 

available in both Turkish and English in the Supplementary Material. 

The questions were categorized into five evidence-based domains: 

• General Information and Treatment Options (Q1–Q5): 

Efficacy, advantages/disadvantages and comparisons with 

alternative treatments

• Procedural Details (Q6–Q10): WorkAow, anesthesia, pain 

management, and preparation protocols

• Efficacy and Outcomes (Q11–Q15): Success rates, sperm 

quality, testosterone levels, and fertility outcomes

• Risks and Complications (Q16–Q20): Potential risks, adverse 

effects, safety profile, and contraindications

• Recovery Process (Q21–Q25): Post-procedure care, follow-up 

protocols, and lifestyle recommendations

Response sources and standardization

Responses were collected from four distinct sources using 

standardized protocols. ChatGPT-4o (OpenAI), Gemini Pro 

(Google), and Microsoft Copilot generated the answers, while the 

comparator physician is a board-certified interventional radiologist 

with five years of experience, performing more than 40 varicocele 

embolizations annually. All AI models were queried using identical 

prompt formats, and responses were transcribed verbatim 

without modifications.

The comparator physician, a board-certified interventional 

radiologist with five years of experience, was instructed to answer the 

25 questions based on their clinical expertise and general knowledge, 

without consulting external resources or guidelines. This was 

designed to simulate a typical, real-time patient consultation scenario. 

No time constraints were imposed on the physician for generating 

the responses.

Randomization and blinding protocol

A multilayered randomization protocol was implemented to 

minimize bias. For each question, four answers were randomized 

as options A, B, C, and D, with evaluators blinded to their sources. 

Each source appeared approximately equally across all positions 

(A–D), and unique randomization was applied to each question. 

Both evaluators and the statistician were blinded to response 

Genc and Tabakci                                                                                                                                                    10.3389/fradi.2025.1682725 

Frontiers in Radiology 02 frontiersin.org



sources. The randomization table was stored separately and kept 

concealed until the analysis phase.

Evaluation criteria and validation

Each response was independently evaluated across two domains 

—academic accuracy and empathy—using a 5-point Likert scale 

(15). For academic accuracy, a score of 5 indicated completely 

accurate, guideline-consistent, and comprehensive responses; 4 

denoted mostly accurate responses with minor omissions; 3 

reAected partially accurate responses with some errors; 2 

indicated largely inaccurate responses with significant omissions; 

1 represented completely inaccurate responses containing 

potentially harmful information. For empathy, a score of 5 

indicated highly empathetic, reassuring, and supportive 

communication; 4 represented empathetic and understanding 

interaction; 3 denoted a neutral approach with moderate 

empathy; 2 indicated limited empathy and cold communication; 1 

reAected robotic, unsympathetic, and impersonal responses.

Evaluators and reliability

Evaluations were conducted by two independent interventional 

radiologists, each with over 5 years of experience and having 

performed more than 30 varicocele embolizations annually. Both 

evaluators received prior orientation with detailed definitions and 

examples of the Likert scale categories to ensure consistency in 

scoring. The study methodology is summarized in Figure 1.

Statistical analysis

Data were analyzed using SPSS 28.0. The sample size was 

determined via power analysis assuming α = 0.05, β = 0.20, and a 

medium effect size (f = 0.25). Statistical methods included descriptive 

statistics (mean, standard deviation, median, interquartile range, and 

95% confidence intervals), normality testing (Shapiro–Wilk and 

Kolmogorov–Smirnov); homogeneity of variances (Levene’s and 

Brown-Forsythe tests), group comparisons (one-way ANOVA and 

Welch’s ANOVA), post hoc analyses (Tukey’s HSD and Games 

Howell); pairwise comparisons (independent-samples t-tests and 

Mann–Whitney U-tests); effect size calculations (eta-squared [η2] 

and Cohen’s d); and reliability analyses (Pearson correlation 

coefficient and intraclass correlation coefficients [ICC]). A p-value 

<0.05 was considered statistically significant, with Bonferroni 

corrections applied for multiple comparisons.

Results

Participant characteristics and descriptive 
statistics

A total of 100 responses (25 questions × 4 sources) were 

evaluated. Each source provided 25 responses, and a 

comprehensive statistical analysis was performed. Detailed 

descriptive statistics are presented in Table 1.

Statistical comparisons and hypothesis 
testing

Normality and homogeneity of variances
The Shapiro–Wilk tests indicated deviations from normality in 

some groups (p < 0.05). Levene’s test confirmed the homogeneity 

of variances (academic accuracy: p = 0.795; empathy: p = 0.948). 

Considering the robustness of ANOVA and the central limit 

theorem, parametric analyses were conducted.

ANOVA Results: One-way ANOVA revealed statistically 

significant differences among the groups with respect to both 

academic accuracy (F(3, 196) = 6.181, p < 0.001, η2 = 0.086) and 

empathy scores (F(3, 196) = 9.106, p < 0.001, η2 = 0.122). Full 

statistical comparisons are presented in Table 2.

A detailed comparison of academic accuracy and empathy 

scores across sources is illustrated in Figure 2.

Post hoc analyses and pairwise 
comparisons

Following significant ANOVA results, Tukey HSD post hoc 

tests were conducted, and after Bonferroni correction, several 

pairwise comparisons reached statistical significance. In terms 

of academic accuracy, post-hoc tests revealed that Gemini 

(p < 0.001) and Copilot (p = 0.002) scored significantly higher 

than the comparator physician. Gemini also scored 

significantly higher than ChatGPT (p = 0.021). A similar trend 

was observed for empathy, where Gemini (p < 0.001) and 

Copilot (p = 0.001) significantly outperformed the comparator 

physician. Gemini also scored significantly higher than 

ChatGPT (p < 0.001) and the comparator physician (p < 0.001). 

Copilot also scored significantly higher than ChatGPT 

(p < 0.001) and the comparator physician (p = 0.001). Overall, 

these findings demonstrate Gemini’s superior performance as 

rated by expert evaluators in both academic accuracy 

and empathy.

Inter-rater reliability and consistency

Analyses of inter-rater agreement revealed the Pearson 

correlation coefficient was not significant for academic accuracy 

(r = 0.038, p = 0.773, 95% CI: −0.235 to 0.307), and showed 

borderline significance was observed for empathy (r = 0.249, 

p = 0.056, 95% CI: −0.007 to 0.477). The intraclass correlation 

coefficient (ICC) values indicated poor agreement for academic 

accuracy (ICC = 0.032, 95% CI: −0.156 to 0.218) and 

modest agreement for empathy (ICC = 0.256, 95% CI: 0.021 to 

0.467). These results suggest notable differences in 

evaluators’ perspectives.
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Category-based performance analysis

In the category-based analysis, Gemini ranked first in general 

information, efficacy and outcomes, and recovery process, second in 

procedural details, and second to the comparator physician in the risks 

category. Overall, Gemini led in four of the five categories, confirming 

its overall superior performance as rated by expert evaluators.

Discussion

A significant finding of this study is that AI models, 

particularly Gemini, received higher ratings from expert 

evaluators compared to the comparator physician in both 

academic accuracy and empathetic communication style 

regarding varicocele embolization patient education. Supported 

FIGURE 1 

Flowchart of study methodology.
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by large effect sizes (Cohen’s d > 0.8), these results are consistent 

with an emerging body of evidence (16, 17) comparing AI and 

clinical specialist performance in medical communication. They 

suggest that AI-assisted systems may herald a significant 

evolution in patient education, with the potential to transform 

traditional physician–patient communication.

Gemini’s superior performance may be attributed to several 

factors. Google’s access to vast and diverse datasets, including a 

significant corpus of medical literature, likely provides a robust 

knowledge base. Furthermore, its underlying architecture, such 

as the Pathways Language Model 2 (PaLM 2), is designed for 

advanced reasoning and nuanced language understanding, 

which may contribute to its higher scores in both academic 

accuracy and generating responses perceived as empathetic by 

experts (18).

This finding, while notable, is consistent with an emerging 

body of evidence suggesting that AI can generate responses that 

are rated as highly empathetic by human evaluators (11, 17). 

This study adds to the findings of recent research (17), which 

also reported high ratings for AI in empathetic communication, 

suggesting that our results confirm a growing trend in the 

literature. This suggests that the concept of empathy in patient 

education may require redefinition. Several theoretical 

explanations can be proposed: AI models can consistently 

provide empathetic responses that are unaffected by fatigue or 

stress. They employ communication strategies optimized for 

patient-centered care, including empathetic expressions. 

Moreover, unlike humans, they are free from unconscious biases 

that may reduce empathetic engagement with certain patient 

groups (19–21).

A notable finding is the low inter-rater reliability for both 

academic accuracy and empathy. This discrepancy may stem 

from the inherent subjectivity in evaluating communication, 

particularly empathy. Despite the orientation session, individual 

evaluators may have different internal standards and 

interpretations. For instance, one evaluator might prioritize a 

reassuring tone, while another might focus on the technical 

completeness of the answer. This highlights the challenge of 

standardizing the assessment of qualitative metrics in medical 

communication and suggests that future studies could benefit 

from more rigorous calibration methods or the inclusion of a 

third evaluator to adjudicate disagreements.

The superior academic accuracy of AI models holds substantial 

implications for patient counseling. This advantage may stem from 

their access to the comprehensive medical literature, their ability to 

rapidly synthesize up-to-date knowledge, and their immunity to 

human error (22). Gemini’s performance, in particular, reAects 

Google’s strategic investments in healthcare-focused AI, including 

the development of specialized medical models such as Med- 

PaLM (23).

Previous comparative studies have demonstrated substantial 

variability in the performance of large language models 

depending on the medical domain. Consistent with the findings 

of Demir et al. in their keratoconus study (24), our results 

confirm that performance differences exist among models and 

are inAuenced by domain specificity.

Although interventional radiology often achieves outcomes 

comparable to or superior to surgical procedures, it remains 

relatively underrecognized among patients (25). Through 

minimally invasive techniques, interventional radiology offers 

shorter recovery times, lower complication rates, and higher 

patient satisfaction (26). In this context, AI-assisted patient 

education systems may play a critical role by offering evidence- 

based and unbiased information, preventing referrals exclusively 

to surgical specialties, supporting informed decision-making, 

and enhancing public awareness of interventional radiology.

The integration of artificial intelligence (AI) into patient 

education raises a set of ethical and practical issues, including 

the preservation of the human element within the physician– 

patient relationship; the limitations of current technologies that 

cannot replace uniquely human capacities such as empathy and 

the interpretation of nonverbal cues; and the question of 

accountability when erroneous or incomplete information is 

TABLE 1 Source-based descriptive statistics.

Source Academic accuracy Empathy

Mean ± SD Min–Max Med IQR 95% CI Mean ± SD Min–Max Med IQR 95% CI

Gemini 4.09 ± 0.50 3.0–5.0 4.0 3.5–4.5 3.95–4.23 3.54 ± 0.59 2.0–4.5 3.5 3.0–4.0 3.38–3.70

Copilot 4.07 ± 0.46 3.0–5.0 4.0 3.5–4.5 3.94–4.20 3.48 ± 0.53 2.5–4.5 3.5 3.0–4.0 3.33–3.63

ChatGPT 3.83 ± 0.58 2.5–5.0 4.0 3.5–4.5 3.67–3.99 2.92 ± 0.78 1.5–4.0 3.0 2.25–3.75 2.70–3.14

Comparator Physician 3.75 ± 0.41 2.5–4.5 3.5 3.0–4.0 3.64–3.86 3.12 ± 0.82 1.0–4.5 3.0 2.5–3.5 2.89–3.35

SD, standard deviation; Med, median; IQR, interquartile range; CI, confidence interval.

TABLE 2 Results of statistical comparisons.

Analysis Academic accuracy Empathy

ANOVA

F value 6.181 9.106

Degrees of freedom 3, 196 3, 196

p value <0.001* <0.001*

95% CI for F 2.65–9.71 4.12–14.10

Effect size

η2 (Eta-squared) 0.086 0.122

95% CI for η2 0.02–0.17 0.04–0.21

Effect level Medium Large

Power analysis

Observed power 0.95 0.98

Levene’s test

W value 1.245 2.156

p value 0.295 0.095

*p < 0.05 considered statistically significant.
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produced, which underscores the need for clear legal and 

regulatory frameworks. In addition, the privacy, security, 

ownership, and consent surrounding the sensitive health data 

generated by AI interactions; inequities arising from differences 

in digital literacy, language, and access to technology; biases 

inherent in models trained on specific populations; and the 

expansion of informed consent to explicitly cover the role, 

limitations, and error potential of AI are priority domains that 

demand transparent communication.

From the perspective of professional autonomy and 

competence, excessive reliance on AI may increase the risk of 

deskilling, whereas appropriately designed systems can reduce 

routine workload and free time for clinical reasoning and 

patient interaction; striking the balance is essential. Patients 

accustomed to receiving “instant and comprehensive” responses 

from AI may also develop unrealistic expectations, potentially 

straining the physician–patient relationship. Accordingly, hybrid 

models of care—anchored in human oversight, transparency, 

continuous quality and safety monitoring, bias mitigation, and 

clearly delineated lines of responsibility—should be pursued. 

Robust ethical guidelines and professional standards, reinforced 

by ongoing dialogue among clinicians, ethicists, policymakers, 

and patients, will ensure that AI augments rather than replaces 

compassionate, person-centered, and individualized care.

AI-driven pre-consultation systems carry transformative 

potential for the future of healthcare. By generating personalized 

pre-visit reports that include patient history, concerns, and 

complex unresolved questions, these systems can reduce the 

time physicians spend on routine questioning, thereby allowing 

them to focus more on empathetic communication and patient- 

centered evaluations.

Based on our findings, we propose a hybrid three-phase hybrid 

model for patient education. In the first phase, patients use AI 

systems to address basic pre-procedure questions, with 

comprehension and satisfaction measured, while complex or 

atypical concerns are escalated to physicians. In the second 

phase, the physician addresses unresolved questions, evaluates 

the patient’s individual context, and finalizes clinical decision- 

making. In the third phase, post-procedure queries are managed 

by AI, with escalation protocols in place for emergencies.

The proposed approach offers several advantages, including 

24/7 accessibility, consistent quality of information and 

empathy, improved time efficiency, and cost-effectiveness. 

However, risks such as the potential dissemination of incorrect 

FIGURE 2 

Source-based comparison of academic accuracy and empathy scores. Bar chart showing mean scores with standard deviation error bars for AI 

models (Gemini, Copilot, ChatGPT) and the comparator physician across academic accuracy and empathy metrics.
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information, diminished physician–patient rapport, and possible 

oversight of complex cases must be considered. To mitigate 

these risks, continuous content updates, hybrid implementation 

strategies, and structured escalation protocols are recommended.

While this study provides valuable insights, its findings are 

primarily situated within the context of interventional radiology 

and varicocele embolization. The principles of AI-assisted 

patient education may be applicable to other procedural 

specialties such as cardiology, oncology, or general surgery. 

However, the specific content and communication style would 

need to be adapted and validated for each clinical domain. 

Therefore, the direct generalizability of these findings to other 

areas of medicine requires further investigation.

Future projections and the strategic importance of interventional 

radiology may be an important points to acknowledge. Given the 

challenges of limited patient awareness and accessibility, AI- 

assisted patient education systems may be strategically vital for 

interventional radiology. They have the potential to enhance 

specialty visibility, facilitate equitable access to treatment options, 

and provide unbiased, evidence-based education.

Study limitations and future directions

This study has several important limitations. First and foremost, 

this study did not involve real patients. The evaluation of academic 

accuracy and empathy was conducted by expert radiologists, and 

their ratings may not reAect the actual patient experience, 

satisfaction, or comprehension. This represents a significant 

limitation. Second, our comparison involved a single comparator 

physician. This limits the generalizability of our findings to the 

broader clinician population, as communication style and 

knowledge can vary significantly among individuals. Third, the 

study was conducted using Turkish-language responses, which 

may limit the generalizability of the findings. The performance of 

LLMs and the perception of empathy can vary significantly across 

different languages and cultural contexts. The scope of the 25 

selected questions may not capture the full range of patient 

concerns regarding varicocele embolization. The focus on a single 

specialty, reliance on only two evaluators, and potential inAuence 

of cultural factors due to the use of Turkish-language assessments 

may limit generalizability. Furthermore, the absence of real 

patient interaction means that the laboratory setting may not fully 

reAect clinical practice.

Future studies should prioritize prospective, multicenter 

designs involving actual patients to directly measure patient 

satisfaction, understanding, and clinical outcomes. To enhance 

reliability, a larger and more diverse panel of pre-calibrated 

evaluators should be used; when necessary, scoring discrepancies 

should be resolved by a third evaluator. To test the 

generalizability of findings, similar protocols should be applied 

in different languages and healthcare systems, as well as in other 

specialties such as cardiology, oncology, and neurology. Long- 

term follow-up and cost-effectiveness analyses should be added 

for a more robust measurement of clinical impact. In the 

current study, responses were not evaluated by actual patients in 

terms of empathy and comprehensibility; we plan to address this 

gap with patient-based evaluations in our future studies.

Conclusion

This study demonstrated that AI models, particularly Gemini, 

received higher expert ratings than the comparator physician in 

patient education for varicocele embolization in terms of both 

academic accuracy and empathetic communication style. These 

preliminary findings indicate that we are witnessing a significant 

evolution in patient education, with AI-assisted systems poised 

to play a transformative role in medical practice.

AI-based pre-consultation systems should be regarded as an 

innovative, evidence-based advancement in both patient 

education and clinical decision support, particularly in 

specialties such as interventional radiology, where patient 

awareness remains limited despite high clinical efficacy.

Hybrid models appear to be the most suitable approach, 

combining the proven advantages of AI with the indispensable 

human touch, thereby ensuring both efficiency and 

compassionate care. The widespread adoption of AI in patient 

education is expected in the near future. Throughout this 

process, patient safety, ethical principles, and clinical 

effectiveness must remain top priorities. With ongoing research 

and development, the full potential of these technologies can be 

realized, ultimately resulting in systematic improvements in with 

respect to the quality of patient care.
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