
ORIGINAL RESEARCH
published: 26 October 2021

doi: 10.3389/fresc.2021.700780

Frontiers in Rehabilitation Sciences | www.frontiersin.org 1 October 2021 | Volume 2 | Article 700780

Edited by:

Mats Granlund,

Jönköping University, Sweden

Reviewed by:

Zhuoying Qiu,

China Rehabilitation Research

Center/WHO Collaborating Center for

Family International

Classifications, China

Verna Stavric,

Auckland University of Technology,

New Zealand

*Correspondence:

Kendra R. Todd

ktodd03@mail.ubc.ca

Specialty section:

This article was submitted to

Disability, Rehabilitation, and Inclusion,

a section of the journal

Frontiers in Rehabilitation Sciences

Received: 26 April 2021

Accepted: 29 September 2021

Published: 26 October 2021

Citation:

Todd KR, Van Der Scheer JW,

Walsh JJ, Jackson GS, Dix GU,

Little JP, Kramer JLK and Martin

Ginis KA (2021) The Impact of

Sub-maximal Exercise on Neuropathic

Pain, Inflammation, and Affect Among

Adults With Spinal Cord Injury: A Pilot

Study. Front. Rehabilit. Sci. 2:700780.

doi: 10.3389/fresc.2021.700780

The Impact of Sub-maximal Exercise
on Neuropathic Pain, Inflammation,
and Affect Among Adults With Spinal
Cord Injury: A Pilot Study
Kendra R. Todd 1,2*, Jan W. Van Der Scheer 3, Jeremy J. Walsh 1,4, Garett S. Jackson 1,

Gabriel U. Dix 1,2, Jonathan Peter Little 1, John L. K. Kramer 2,5 and

Kathleen A. Martin Ginis 1,2,6,7

1Department of Kinesiology, University of British Columbia, Kelowna, BC, Canada, 2 International Collaboration on Repair

Discoveries, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada, 3 The Healthcare Improvement Studies

Institute, University of Cambridge, Cambridge, United Kingdom, 4Department of Kinesiology, McMaster University, Hamilton,

ON, Canada, 5Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver,

BC, Canada, 6Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia,

Vancouver, BC, Canada, 7Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna,

BC, Canada

Introduction: Persons with spinal cord injury (SCI) often report high levels of neuropathic

pain (NP) and poor well-being, which may result from increased inflammation. This

study examined the impact of sub-maximal aerobic exercise on NP, inflammation and

psychological affect among adults with SCI.

Methods: Eight active adults with tetraplegia (n-4, AIS A-C) and paraplegia (n = 4,

AIS A-C) performed 30-min of arm-crank aerobic exercise and reported their ratings

of perceived exertion (RPE) each minute. Measures of NP, affect, and inflammatory

cytokines (IL-6, IL-10, IL-1ra, TNF-α) were taken pre-(T0), immediately post-(T1), and

90-min post-exercise (T2).

Results: NP decreased between T0 and T1 for tetraplegics (−60%, d = 0.47;

CI = −0.32, 2.02) and paraplegics (−16%, d = 0.15; CI = −0.30, 0.90). Correlations

between change in cytokines and change in NP were medium-to large for tetraplegics

(rs ranged from −0.820 to 0.965) and paraplegics (rs ranged from −0.598 to 0.833).

However, the pattern of correlations between change in cytokines and affect was

inconsistent between groups. Lower baseline levels of IL-1ra predicted greater decreases

in NP immediately post-exercise (r = 0.83, p = 0.01).

Conclusion: Sub-maximal exercise can positively impact NP for some persons with SCI.

Further experimental research should identify the optimal exercise intensity to reduce NP

for persons with SCI, in addition to understanding biomarkers whichmay predict changes

in NP.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03955523.
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INTRODUCTION

Neuropathic pain is caused by a lesion or disease of the
somatosensory nervous system (1) and commonly manifests
as allodynia (pain resulting from a non-noxious stimulus) and
hyperalgesia [heightened response from a noxious stimulus; (2)].
Approximately 75% of persons with spinal cord injury (SCI)
experience neuropathic pain (3), with many reporting pain to
be more debilitating than the injury itself. Individuals with SCI
who experience greater pain also report more negative affect
[instantaneous displeasure that lacks cognitive appraisal; (4)] and
susceptibility to developing mood disorders, such as depression
or anxiety (5).

Current treatment options for neuropathic pain are primarily
pharmaceutical; however, in addition to eliciting debilitating side
effects, pharmaceuticals result in just 50% pain reduction for only
30% of individuals with SCI-related chronic neuropathic pain
(6). Consequently, many individuals who experience neuropathic
pain prefer non-pharmaceutical alternatives (7). In a survey
of 90 adults with SCI, 79% of those who reported on their
preference for neuropathic pain management, preferred non-
pharmaceutical treatments (8). Together, these data demonstrate
the need to identify alternative treatment options to treat
neuropathic pain among individuals with SCI.

One potential treatment to alleviate SCI neuropathic pain,
improve affect, and potentially reduce risk for mood disorders
(9, 10) is exercise. Exercise has been recognized as having positive
effects on neuropathic pain among persons with SCI, despite
the limited quantity and quality of evidence (11). However,
evidence is emerging which indicates that exercise induced
hypoalgesia may exist for persons with SCI. For example,
in a case series, participants with SCI reported decreased
neuropathic pain sensations following at least one of two bouts
of self-selected, community-based exercise performed within
a single week (9). The neuropathic pain-modulating benefits
of acute exercise appear to persist with exercise training,
as 10 weeks of aerobic exercise training led to decreased
neuropathic pain for adults with SCI upon completion of the
intervention (12). Various biological mechanisms underlying
exercise induced hypoalgesia have been explored among able-
bodied individuals, with evidence suggesting an interplay
between the opioid, endocannabinoid, serotonergic and immune
systems (13–15). However, the explanations for why exercise
modulates neuropathic pain among persons with SCI are
currently unknown.

The mechanisms underpinning neuropathic pain
development are not well-understood. Various hypotheses
exist in attempts to explain neuropathic pain development
including structural damage within the central nervous system,
and somatosensory cortex reorganization (16). However,
the nociceptive environment also impacts the presence and
severity of neuropathic pain (17). Pro-inflammatory cytokines
such as interleukin-6 (IL-6), and tumor necrosis factor-alpha
(TNF-α) have been shown to induce hyperalgesia, thereby
increasing levels of neuropathic pain (18). In contrast, a
reduction in these pro-inflammatory cytokines has been shown
to prompt analgesic effects (17, 18). This relationship has also

been demonstrated among persons with SCI using a dietary
intervention. Relative to a control group, participants who
consumed an anti-inflammatory diet for 12 weeks experienced
changes in sensory neuropathic pain as a function of the change
in pro-inflammatory cytokines (19). It is not known whether
exercise can elicit the same effects in people with SCI.

In persons without SCI, research consistently shows that
exercise can lead to increased acute levels of circulating IL-6, and
subsequent rises in plasma concentrations of anti-inflammatory
cytokines IL-1 receptor antagonist (IL-1ra), IL-10, and soluble
TNF receptors (20, 21). However, exercise needs to be performed
at a minimum intensity (>50% VO2max) or duration (>30min)
for the anti-inflammatory response (21), analgesic effects (22)
and improvements in affect (23) to occur. For persons with SCI
above the 6th thoracic vertebrae (T6), the loss of somatic and
autonomic control frequently results in a blunted cardiovascular
response to exercise (24). Additionally, research evidence is
inconclusive regarding the role and extent that the sympathetic
nervous system plays in exercise-related changes in inflammation
(25, 26) and subsequent analgesic effects. Although exercise
can induce analgesia through upregulation of anti-inflammatory
cytokines and reduced microglial activation in the central
nervous system (27), it is unclear whether persons with SCI above
T6 experience an attenuated analgesic response to exercise. Taken
together, it is important to examine if any biomarkers can be used
to predict who may experience exercise-related improvements in
neuropathic pain following SCI.

The debilitating nature of neuropathic pain, coupled with
the bidirectional relationship between pain and affect, highlight
the need for understanding neuropathic pain as having both
physiological and psychosocial contributors. Therefore, the
primary purpose of this study was to test the effect of a
single bout of sub-maximal aerobic exercise on inflammatory
cytokines, neuropathic pain, and affect among individuals with
SCI. Additionally, an exploratory aim of this study was to
assess the relationship between baseline levels of cytokines and
changes in neuropathic pain from pre- to post-exercise. Sub-
maximal aerobic exercise was implemented in order to align
with exercise guideline recommendations for people with SCI
(28). It was hypothesized that a bout of sub-maximal aerobic
exercise would lead to an acute increase in circulating levels of IL-
6 and anti-inflammatory cytokines, decreased neuropathic pain,
and improved affect from pre- to post-exercise among persons
with SCI. Additionally, it was hypothesized that decreased
neuropathic pain would be correlated with increased anti-
inflammatory cytokines and improved affect.

METHODS

Participants
To participate in this study, individuals were required to: (1) have
incurred an SCI > 12 months ago with an injury at the third
cervical level or below (as long as diaphragmatic control and arm
functioning allowed upper-body exercise); (2) experience chronic
below-level of SCI neuropathic pain (>3 months) (at-level of SCI
pain was excluded tominimize the risk of painmisidentification).
Chronic neuropathic pain was an inclusion criterion given that
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neuropathic pain typically persists >3 months for persons with
SCI, and to ensure that pain did not spontaneously resolve
between testing sessions; (3) individuals were required to have the
ability to read/write in English; and (4) routinely achieve at least
the lowest level of the SCI exercise guidelines consisting of 20min
of moderate-to-vigorous intensity aerobic activity two times per
week, and strength training two times per week, consisting of
three sets of 8–10 repetitions of each exercise for each major
muscle group (28). The latter criterion was instated because acute
exercise participation by chronically inactive individuals may
induce pain “flare-ups” (29) and impact inflammatory profiles.

Participants were recruited January–March, 2019 through
advertisements emailed from community organizations
from across British Columbia, and through emails directed
toward individuals who had previously expressed interest
in participating in SCI-studies. After screening, 10 active
individuals with SCI of >1-year duration participated in this
study. Ten individuals were the desired sample size based on
previous case series data (9). This study carried the approval of
the UBC Clinical Research Ethics Board (CREB; H18-03191),
whereby all experiments were performed in accordance with
CREB guidelines and regulations. Participants provided written,
informed consent prior to enrolling in this study.

Procedural Overview
This study is a secondary analysis of case series data
(clinicaltrials.gov registered: NCT03955523; 20/05/2019).

Measures

Inflammatory Cytokines
Blood samples were drawn by a trained phlebotomist from
participants’ most accessible antecubital vein. Samples were
collected in the same clinical laboratory room as the exercise
bout. All biosafety hazard protocols were followed, and JL’s
laboratory held a UBC-approved biosafety permit for this
research space. Samples were placed in EDTA tubes and
centrifuged at 2,000 g for 15min at 4◦C (Eppendorf, Hamburg,
Germany), followed by a subsequent centrifuge at 10,000 g for
10min at 4◦C to remove platelets. The resultant supernatant
was subsequently aliquoted and stored at −80◦C. IL-6, IL-
1ra and TNF-α were analyzed and quantified using the
U-PLEX metabolic group 1 assay kits (K151ACL-1, LOT
289109, Mesoscale, Maryland, USA) according to manufacturers’
instructions, and read using an MSD QuickPlex SQ120 plate
reader (Mesoscale, Maryland, USA). All samples were analyzed in
duplicate. The plate-specific intra-assay coefficients of variation
(CV) were as follows: IL-10 = 10.4%; IL-1ra = 5.91%; IL-6 =

13.73%; TNF-α = 17.84%. The combined CV was 11.97%.

Neuropathic Pain Scale
Participants’ neuropathic pain was measured using a modified
version of the Neuropathic Pain Scale [NPS; (30)]. This 10-item
scale (0= nothing at all, 10=most intense sensation imaginable)
measures pain sensations common to neuropathic pain (e.g.,
“burning,” “dull,” “deep”) in addition to measuring general pain
qualities (i.e., “intensity” and “unpleasantness”). For each item on
the NPS, participants were asked to verbally state how their pain

sensation felt at that very instant. The first author (KRT) recorded
each response. One question regarding the temporal nature of
neuropathic pain was excluded, because it was not meaningful
given the acute nature of the present study. Item scores were
averaged to form a composite pain score at pre-, post- and 90-
min post-exercise. The NPS has been shown to have sensitivity to
detect acute treatment effects (30) and has been validated among
people with various neuropathic pain syndromes (including SCI).

Affect
Hardy and Rejeski’s (31) 11-point, single item Feeling Scale
(FS) was used to measure participants’ overall acute feeling
of pleasure-displeasure (−5 = very bad, +5 = very good).
In addition, Svebak and Murgatroyd’s (32) Felt Arousal Scale
(FAS) measured participants’ perceived activation (1 = low
arousal, 6 = high arousal), whereby “1” indicates feeling bored,
relaxed or calm, and “6” indicates feeling excited, angry or
frustrated. Using the FS alongside the FAS enhances construct
validity by measuring activation in addition to affective valence
[pleasure-displeasure; (33)]. Although the FS and FAS have not
been validated in the SCI population, previous research has
demonstrated the utility of these questionnaires for measuring
affect in individuals with SCI participating in acute exercise
(9, 10).

Protocol

Peak Power Output Graded Aerobic Exercise Test
Upon arriving at the lab, participants were given opportunity
to use the toilet. After 5min of seated rest, resting heart rate
and blood pressure were measured. KRT explained how to
use the Borg Rating of Perceived Exertion [RPE; (34)] (6–
20) scale, adapted for persons with SCI (35). Participants then
began the peak power output exercise test using a wall-mounted
arm ergometer (Lode Angio, Groningen, Netherlands), with the
height adjusted to align with the acromioclavicular joint. If
required, participants’ hands were bound to the handles of the
arm ergometer with elastic tensor bandages. The test began with
a 5-min warm-up at a self- selected cadence. Using a continuous
graded exercise protocol (36), the resistance on the ergometer was
adjusted such that power output was increased by 2 W/min for
tetraplegics (37) and 10 W/min for paraplegics (38). Participants
were asked to maintain a cadence of 55–65 revolutions per min
(RPM) until volitional exhaustion. Within the last 10-s of each
min of exercise, participants reported their RPE. The maximum
wattage achieved during this exercise test was used to calculate
the intensity (60% of maximum) of each participant’s subsequent
sub-maximal intensity aerobic exercise bout (operationalized as
60% peak power output).

Sub-maximal Aerobic Exercise Bout
Prior to arriving at the lab to complete the sub-maximal
exercise bout, participants fasted for 12-h. Upon arrival,
participants rested quietly for 10min. Next, participants
completed their baseline (T0) measurements which consisted of
verbally reporting their NPS, FS, and FAS ratings. Blood samples
(TNF- α, IL-6, IL-1ra, IL-10) were then collected by the trained
phlebotomist. Prior to exercising, KRT reminded participants
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TABLE 1 | Demographic information of the sample (n = 8).

Participant Sex Age Level of injury AIS classification Cause of SCI

1 M 56 T7 AIS A Traumatic

2 M 32 T4-T5 AIS B Traumatic

3 M 36 C6/C7 AIS B Traumatic

4 F 56 T12-L1 AIS C Traumatic

5 M 42 C5-C6 AIS C Traumatic

6 M 35 C6/C7 AIS A Traumatic

7 M 29 C6/C7 AIS C Traumatic

8 M 25 T12/L1 AIS B Traumatic

FIGURE 1 | Graphical representation of sub-maximal exercise protocol.

Questionnaire symbol = neuropathic pain scale, felt arousal scale and feeling

scale; syringe symbol = blood draws.

how to use the “6–20” RPE scale (34, 35). For the exercise bout,
participants performed a 5-min warm-up at a self-selected pace
and then performed 30-min of arm crank exercise at 60% of their
maximum wattage, while maintaining a cadence of 55–65 RPM.
Participants were prompted to report their RPE at the end of
each minute during this exercise bout. If participants reported
their RPE to be above “sub-maximal” (>16), the wattage was
electronically lowered to 50% of participants maximum wattage,
until their RPE recovered to “12–14,” Immediately following
exercise (T1), participants verbally reported their NPS, FS, and
FAS ratings, and provided another blood sample. Participants
were then asked to quietly rest in a room separate from the
testing room, and watch a video [“Planet Earth”; (BBC America)]
for 90min. After 90-min (T2), participants repeated the NPS,
FS, and FAS measures, and their blood was drawn one final
time. The order of administration of the NPS, FS, and FAS
was systematically randomized at each measurement timepoint
to control for presentation biases. See Figure 1 for graphical
representation of study protocol.

Statistical Analyses
One-way repeated measures analysis of variance (ANOVA)
with planned contrasts were conducted to assess change in
neuropathic pain, cytokines and affect from pre- to post-exercise.
Planned contrasts were the appropriate statistical method given
that they allow for comparisons of just two means (of a set
of means >2). The hypotheses of this study were based on
changes in each dependent variable from pre- to post-exercise
(i.e., not T1T2). Therefore, computing planned contrasts allowed
for scientifically sensible comparisons and minimized the risk
of a Type 1 error. Significance was set at p < 0.05. Effect sizes
were calculated as Cohen’s dav(average) with Hedge’s gav correction

applied (39) and interpreted according to Cohen’s conventions
[small= 0.20, medium= 0.50, large= 0.80; (40)].

Simple change scores (1) were calculated for change in
cytokine levels between T0T1 and T0T2. To control for the
correlation between baseline and subsequentmeasures of the self-
reported variables, residualized change scores were computed to
measure change in NPS, FS, and FA scores between T0T1 and
T0T2. Pearson’s correlation coefficients were then computed to
determine: (a) the relationships between change in neuropathic
pain, change in inflammatory cytokines, and change in affect
and arousal at timepoints T0T1, and T0T2, and (b) whether
baseline levels of inflammatory cytokines were related to
change in neuropathic pain at timepoints T0T1 and T0T2.
Two-tailed tests were used. Consistent with Widerstrom-Noga’s
recommendations (41), analyses were conducted separately for
persons with tetraplegia and paraplegia. Cohen’s conventions
(40) were used for interpreting the magnitude of the correlations
(small = 0.1, medium = 0.3, large = 0.5). SPSS version 22.0 was
used for all analyses.

RESULTS

One male participant with tetraplegia withdrew from the study
due to a pressure sore (unrelated to the study protocol).
Additionally, the phlebotomist was unable to obtain blood from
one male participant; his data are not included in the analyses.
Therefore, the following results include data from 8 participants
[4 tetraplegics (all male), and 4 paraplegics (3 male, 1 female)].
The average age of participants was 37.9± 10.9 years, and ranged
between 25 and 56 years. Participants’ average years post-SCI was
17.8± 8.9, and ranged between 3 and 36 years. Three participants
were consuming cannabis at the time of study participation,
however, no participants were taking pharmaceuticals at
the time of study participation. Participant demographics
for the 8 people who completed the study are presented
in Table 1.

Exercise Intensity Manipulation Check
Manipulation checks were used to verify that participants
were exercising at the intended training intensity. MeanRPE
during the exercise bout did not significantly differ between
tetraplegic and paraplegic participants (MRPE tetra = 13.07
± 1.10, MRPE para = 13.73 ± 0.69; t = −1.02, p =

0.35). Similarly, percent change in RPE between T0T1 did
not significantly differ between tetraplegic and paraplegic
participants [%change tetra = 47.6 ± 24.49, %change para =

47.48 ± 35.40; F(1, 6) = 0.702, p = 0.99]. MaxRPE (i.e.,
highest RPE reported during the exercise bout) for tetraplegic
participants ranged from 12 to 15, indicating they were all
exercising at a “somewhat hard to hard intensity” (32). For
the paraplegic participants, MaxRPE ranged from 16 to 20,
indicating that at certain points, they were exercising at
“very hard intensity to exhaustion” (34). Results from an
independent samples t-test indicated that average MaxRPE
values for these two groups were significantly different (Tetra:
M = 14.00 ± 1.4; Para: M = 17.25 ± 1.89; t = −2.71, p = 0.03).
These data indicate that, consistent with the goal of the exercise
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manipulation, tetraplegic participants continuously exercised at a
sub-maximal exercise intensity. However, paraplegic participants
exceeded a sub-maximal intensity during their exercise bout
(see 2-min average RPEs in Figure 2), and at points, may have
exercised closer to maximal intensity.

Direct Effects of Exercise on NPS Scores,
Affect, Arousal, and Inflammatory
Cytokines
Given the small number of participants, results are reported and
interpreted based on the magnitude of the effect sizes. Data are
shown in Tables 2–5.

For persons with tetraplegia, between T0T1 there was some
evidence of clinically meaningful changes in neuropathic
pain [i.e., reductions > 30%; (42)] and improvements in
affect and arousal. Effect sizes for changes in NPS scores,
affect, and arousal between T0T1 were medium-to large
(gav = −0.47, 0.34, and 0.89, respectively). Changes in
inflammatory cytokines between T0T1 were very small
(gav range: 0.02–0.16). Between T0T2, effect sizes for

FIGURE 2 | Average of participants’ RPE at 2-min intervals throughout the

sub-maximal exercise bout.

changes in NPS scores and affect were very-small to small
(0.07 and 0.17, respectively). Effect sizes for arousal did
not change between T0T2. Effect sizes for changes in
inflammatory cytokines between T0T2 were also very-small
(gav range: 0.02–0.09).

For persons with paraplegia, calculation of the effect sizes
provided support for some notable changes in pain, affect,
and cytokine measures at both time points. Between T0T1,

the effect size for change in NPS scores was small (−0.15),
and medium for affect and arousal (−0.51, 0.43, respectively).
Effect sizes for change in inflammatory cytokines between
T0T1 were very-small (0.08–0.17), except for IL-6 which was
medium-large (0.66). Between T0T2, change in NPS scores
were small- to medium (−0.32), and change in arousal
was medium (−0.51). Effect sizes for affect did not change
between T0T2,. Effect sizes for change in T0T2 cytokines were
very small (0.03–0.18), except for IL-6 which was medium-
large (0.66).

Correlations Between Change in
Inflammatory Cytokines and Change in
Neuropathic Pain
For persons with tetraplegia, there were medium-to large,
negative correlations between change in cytokine levels
and change in NPS scores between T0T1 (rs ranged from
−0.82 to 0.49), and T0T2 (rs > −0.67), except for IL-1ra
(r =−0.18; Table 3).

For persons with paraplegia, correlations between change
in T0T1 levels of inflammatory cytokines and change in NPS
scores were medium to large (rs ranged from −0.60 to 0.79;
Table 5) but were not in a consistent direction immediately post-
exercise. However, correlations between change in NPS scores
and change in levels of cytokines between T0T2 were small to
medium (rs ranged from 0.17 to 0.42), except for IL-6 which
was large (r = 0.83).

TABLE 2 | Changes in the study outcome measures among persons with tetraplegia (n = 4).

T0T1 T0T2

Pre-exercise Post-exercise p-value Effect sizesσ 95% CI Pre-exercise 90min

post-

exercise

p-value Effect sizesσ 95% CI

Total NPS 2.60 (1.57) 1.75 (1.01) 0.10 −0.47 (−0.32, 2.02) 2.60 (1.57) 2.75 (1.70) 0.58 0.07 (−0.61, 0.91)

Feeling Scale 2.00 (1.41) 2.5 (0.58) 0.50 0.34 (−1.55, 2.55) 2.00 (1.41) 2.25 (0.50) 0.81 0.17 (−2.75, 3.25)

Felt Arousal Scale 2.50 (0.58) 3.00 (0) 0.18 0.89 (−0.42, 1.42) 2.50 (0.58) 2.50 (0.58) 1.00 —— ————–

IL6 1.72 (2.83) 1.63 (2.75) 0.26 −0.02 (−0.15, 0.33) 1.72 (2.83) 1.45 (1.59) 0.76 −0.09 (−2.35, 2.88)

IL10 0.40 (0.34) 0.33 (0.31) 0.06 −0.16 (−0.00, 0.14) 0.40 (0.34) 0.36 (0.33) 0.11 −0.09 (−0.02, 0.10)

IL1RA 137.4 (124.1) 143.1 (125.9) 0.40 0.03 (−14.50, 25.69) 137.4 (124.1) 143.1

(127.40)

0.33 0.03 (0.45, 10.95)

TNF-a 1.62 (1.31) 1.70 (1.45) 0.54 0.04 (−0.30, 0.46) 1.62 (1.31) 1.59 (1.35) 0.57 −0.02 (−0.12, 0.18)

Data are presented as Mean (SD); σHedge’s gav ; Neuropathic Pain Scale (NPS) values are a composite value of 10 items rated on a numerical rating scale ranging from 0 to 10 (0 =

no pain, 10 = worst pain imaginable). Feeling Scale (FS) is a single item rated on a bipolar scale (−5 = very bad, +5 = very good). Felt Arousal Scale is a 6-item scale rated on a 1–6

numerical rating scale (1 = low arousal, 6 = high arousal).

Cytokines are measured in pg/ml.
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Correlations Between Change in
Neuropathic Pain and Change in Affect
For persons with tetraplegia, as hypothesized, there were
medium- to large, negative correlations between change in NPS
scores, and change in FS and FA scores between T0T1, (rs >

−0.67), and T0T2 (rs > −0.67).
For persons with paraplegia, between T0T1, small- to-medium

positive correlations were observed between change in NPS
scores and change in FS scores (r = 0.22), and FA scores (r
= 0.33). In contrast, between T0T2, small-to medium, negative
correlations were observed between change in NPS scores and FS
scores (r =−0.18) and FA scores (r =−0.53).

Post-hoc Correlations Between Maximum
Ratings of Perceived Exertion and Change
in Neuropathic Pain
The hypotheses of the current study were based on acute
responses to exercise at a sub-maximal intensity. However,
the manipulation check of MaxRPE data revealed tetraplegic
participants were indeed exercising at a sub-maximal intensity,

TABLE 3 | Correlations between changes in pain, changes in affect, changes in

arousal, and changes in cytokines among persons with tetraplegia (n = 4).

T0T1 T0T2

Correlations r p-value r p-value

r 1 NPS/1FS −0.67 0.33 −0.67 0.33

r 1 NPS/1FAS −0.75 0.25 −0.94 0.06

r 1 NPS/1IL6 −0.82 0.18 −0.67 0.33

r 1 NPS/1IL10 −0.40 0.61 −0.97* 0.04

r 1 NPS/1IL1RA −0.62 0.38 −0.18 0.83

r 1 NPS/1TNF-a 0.49 0.52 0.83 0.17

r 1 NPS/MaxRPE −0.91** 0.04 −0.68 0.16

*p < 0.05 (2-tailed); **p < 0.05 (1-tailed). Bonferroni adjusted for multiple comparisons.

but paraplegic participants may have surpassed this sub-maximal
level at certain points in the exercise bout, and approached an
exercise intensity near maximal. As previous research among
chronic pain populations indicates that extremely high exercise
intensities may acutely increase experimentally induced pain
(43, 44), a post-hoc decision was made to compute Pearson’s
correlations between MaxRPE and NPS scores to determine if
the relationship between MaxRPE is different for tetraplegic vs.
paraplegic participants.

For persons with tetraplegia, there were medium-to-large,
negative correlations between MaxRPE and change in NPS scores
between T0T1 (r =−0.91) and T0T2 (r =−0.68).

In contrast, for persons with paraplegia, a medium-to-large
positive correlation was found between MaxRPE and change in
NPS scores between T0T1 (r = 0.63). However, between T0T2,

a large, negative correlation was observed between MaxRPE and
change in NPS scores (r =−0.83).

Correlations Between Baseline Levels of
Cytokines and Change in Neuropathic Pain
A large-sized significant, positive correlation was observed
between baseline levels of IL-1ra and change in NPS scores
between T0T1 (r = 0.833; Table 6; Figure 3). However, this
relationship was not sustained 90-min post-exercise (r =−0.17).
Correlations between baseline levels of all other cytokines and
change in NPS scores were inconsistent in size and direction at
timepoints T0T1 and T0T2 (rs=−0.27–0.55; Table 6).

DISCUSSION

The primary purpose of this study was to test the acute effects
of sub-maximal aerobic exercise on inflammatory cytokines,
neuropathic pain, affect and arousal among individuals with
SCI. Additionally, this study aimed to explore if the baseline
levels of cytokines may be related to exercise-related changes in
neuropathic pain. Consistent with our hypotheses, exercise led to
decreased levels of neuropathic pain, and improved affect, in both
participants with tetraplegia and paraplegia. However, changes

TABLE 4 | Changes in the study outcome measures among persons with paraplegia (n = 4).

T0T1 T0T2

Pre-exercise Post-exercise p-value Effect sizesσ 95% CI Pre-exercise 90min post-

exercise

p-value Effect sizesσ 95% CI

Total NPS 1.83 (1.45) 1.53 (1.39) 0.21 −0.15 (−0.30, 0.90) 1.83 (1.45) 1.28 (1.05) 0.09 −0.32 (−0.16, 1.26)

Feeling Scale 2.75 (1.26) 2.0 (0.82) 0.44 −0.51 (−1.97, 3.47) 2.75 (1.26) 2.75 (1.26) 1.00 —– ————–

Felt Arousal Scale 2.75 (1.26) 3.50 (1.29) 0.32 0.43 (0.28, 1.22) 2.75 (1.26) 2.00 (0.82) 0.06 −0.51 (−0.04, 1.54)

IL6 1.40 (0.13) 1.58 (0.35) 0.39 0.66 (-0.39, 0.75) 1.40 (0.13) 1.30 (0.17) 0.42 −0.66 (−0.26, 0.46)

IL10 0.25 (0.19) 0.21 (0.16) 0.063 −0.17 (−0.01, 0.09) 0.25 (0.19) 0.23 (0.20) 0.29 −0.07 (−0.04, 0.08)

IL1RA 179.7 (90.8) 198.0 (123.9) 0.79 0.12 (−178.6, 215.2) 179.7 (90.8) 161.9 (45.24) 0.53 −0.18 (−61.0, 96.6)

TNF-a 1.15 (0.84) 1.08 (0.81) 0.63 −0.08 (−0.37, 0.51) 1.15 (0.84) 1.11 (0.85) 0.69 −0.03 (−0.28, 0.36)

Data are presented as Mean (SD); σHedge’s gav ; Neuropathic Pain Scale (NPS) values are a composite value of 10 items rated on a numerical rating scale ranging from 0 to 10 (0 =

no pain, 10 = worst pain imaginable). Feeling Scale (FS) is a single item rated on a bipolar scale (−5 = very bad, +5 = very good). Felt Arousal Scale is a 6-item scale rated on a 1–6

numerical rating scale (1 = low arousal, 6 = high arousal).

Cytokines are measured in pg/ml.
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in inflammatory cytokines following exercise participation were
inconsistent in direction. For example, a small-sized acute
decrease in IL-6 was observed for persons with tetraplegia
following exercise participation, whereas a medium-large acute
increase in IL-6 was observed for persons with paraplegia.
Interestingly, lower baseline levels of IL-1Ra were significantly
related to greater acute decreases in neuropathic pain. To the

TABLE 5 | Correlations between changes in pain, changes in affect, changes in

arousal, and changes in cytokines among persons with paraplegia (n = 4).

T0T1 T0T2

Correlations r p-value r p-value

r 1 NPS/1FS 0.22 0.78 −0.18 0.82

r 1 NPS/1FAS 0.33 0.67 −0.53 0.47

r 1 NPS/1IL6 −0.60 0.40 0.83 0.17

r 1 NPS/1IL10 0.79 0.21 0.17 0.83

r 1 NPS/1IL1RA −0.40 0.60 0.32 0.68

r 1 NPS/1TNF-a 0.70 0.30 0.42 0.58

r1 NPS/ MaxRPE 0.63 0.19 −0.83 0.08

Bonferroni adjusted for multiple comparisons.

TABLE 6 | Correlations between baseline levels of cytokines and changes in pain

for all study participants (n = 8).

T0T1 T0T2

Correlations r p-value r p-value

r baseline IL-6/1NP 0.55 0.155 0.24 0.576

r baseline IL-10/1NP −0.27 0.521 0.11 0.793

r baseline IL-1ra/1NP 0.83** 0.010 −0.17 0.687

r baseline TNF-a/1NP 0.004 0.993 0.27 0.52

**p ≤ 0.01 (2-tailed). Bonferroni adjusted for multiple comparisons.

best of our knowledge, this is the first SCI study to evaluate the
effects of exercise on neuropathic pain, inflammatory cytokines
and affect.

The observed positive effects of exercise on neuropathic pain
align with previous SCI research (6, 7, 9–11). However, previous
research suggests that exercise reduces neuropathic pain to a
similar extent for paraplegics and tetraplegics. In our study, these
effects were large for tetraplegics and small for paraplegics. These
differences may be at least partly attributable to the significant
differences in intensity at certain points of the exercise bout, as
reported by tetraplegic vs. paraplegic participants.

Indeed, research in able-bodied individuals suggests that the
analgesic effects of exercise are elicited once exercise exceeds
a threshold of intensity. Moderate- to high-intensity exercise
[but not maximal; (14, 45)], has been shown to lead to greater
reductions in pain compared to lower intensity exercise in other
chronic health populations. However, performing exercise that is
perceived to be “very hard to exhaustive” may increase pain, at
least in the short-term. Paraplegics reported exercising at a “very
hard” subjective intensity at certain points during this exercise
bout, and their neuropathic pain and MaxRPE were positively
correlated immediately post-exercise. The correlation became
negative at 90-min post-exercise, paralleling greater reductions
in neuropathic pain at 90-min post-exercise for this group.
Research suggests that exercise-induced hypoalgesia remains for
≤30min after exercise, but may be impaired in individuals
with chronic pain (14). Therefore, paraplegic participants may
have highly exerted themselves during this bout of exercise,
which inhibited exercise-induced hypoalgesia immediately after
exercise completion. Exercising “near maximal” intensity, may
have conflated paraplegic participants immediate post-exercise
neuropathic pain reports, with muscle soreness. Ninety minutes
of recovery may have allowed for sufficient rest, and for
paraplegic participants to experience the benefits of high-
intensity exercise, such as reduced neuropathic pain. Future
research must continue to examine the impact of exercise
intensity on neuropathic pain in persons with SCI, given the

FIGURE 3 | Scatterplot of baseline levels of IL-1Ra and changes in neuropathic pain between T0T1.
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distinctly different relationships with neuropathic pain when
participants met, vs. exceeded a “hard” (34) exercise intensity in
this study.

Among the able-bodied population, research evidence
indicates that exercise-related changes in IL-6 is intensity
dependent (46), and IL-6 can be sizeably increased compared
to baseline levels following high-intensity exercise (47). Results
from this study support previous findings, given the large
increase in IL-6 that occurred from pre- to post-exercise for
persons with paraplegia (i.e., “very hard”) exercisers. IL-6
is an inflammation-controlling cytokine and stimulates the
exercise-related anti-inflammatory cascade, which suggests that
tetraplegic participants may not have been exercising at a high
enough intensity to initiate increased levels of anti-inflammatory
cytokines. Research evidence also indicates that exercise-related
increases in IL-6, and the subsequent anti-inflammatory
cascade is further responsible for eliciting analgesic effects
(17, 18, 48). However, results from this study do not align with
this evidence, given that a stronger correlation was observed
between IL-6 and neuropathic pain for persons with tetraplegia.
Therefore, conflicting correlations between neuropathic pain and
inflammatory cytokines, coupled with the significant difference
in MaxRPE reported between levels of injury, suggests the
inflammatory etiology of exercise-related changes in neuropathic
pain among persons with SCI may also be impacted by exercise
intensity. Future research should test the mediating effects of
inflammation, by identifying whether specific exercise intensities
lead to decreases in neuropathic pain, through effects on the
inflammatory cascade.

Although impaired autonomic nervous systems may
contribute to the conflicting pattern of correlations observed
for tetraplegic vs. paraplegic participants between neuropathic
pain, affect and arousal, differences in exercise intensity reported
between these groupsmay help further explain these correlations.
The intensity of exercise required to stimulate optimal affective
responses remains highly debated (43, 44, 49). For individuals
with SCI, previous literature demonstrates that acute exercise-
related decreases in pain are correlated with improvements in
feeling states (9, 10). However, the intensity and type of exercise
prescribed within these previous studies were inconsistent. For
persons with tetraplegia, the large, negative correlations between
neuropathic pain, affect and arousal align with previous research
(9, 10). In contrast, for persons with paraplegia, exercise-
related changes in neuropathic pain were positively correlated
with changes in feeling states immediately post-exercise, and
negatively correlated 90min post-exercise. Indeed, moderate vs.
high-intensity exercise has been shown to differentially impact
affective responses and pain sensations in the general population
(43). Future research should be directed toward understanding
the impact of exercise intensity on these constructs among
persons with SCI.

Further, the timepoint of assessments of affective responses
may impact the interpretation of results. For participants with
paraplegia, conflicting affective responses immediately post-
exercise vs. 90-min post-exercise may be explained by the
rebound model (49). High-intensity exercise often stimulates
negative affective responses immediately post-exercise, whereas

these responses become positive after a period of recovery.
Paraplegic participants exercised near maximal intensity and
may have experienced a disruption in physiological homeostasis
immediately post-exercise. However, 90-min of rest may have
been sufficient for paraplegics to recover and experience an
affective “rebound.” While the intensity of exercise and timing
of affective assessments are not presumed to fully explain
participants’ affective response to exercise nor its correlation
with neuropathic pain, they are presented here as potential
exercise protocol characteristics that may partially explain these
relationships. Future psychophysiological SCI-exercise research
should also investigate the impact of additional social-cognitive
and physiological predictors of affective responses to exercise
(e.g., exercise self-efficacy, thermoregulation, and ventilatory
threshold) and their relationship with neuropathic pain.

In addition to its primary purpose, this study provided the
opportunity to assess whether inflammatory cytokines may be
used as predictive biomarkers to determine individuals likely to
benefit from exercise. Lower levels of IL-1ra at baseline were
associated with larger exercise- related reductions in neuropathic
pain. IL-1ra is an anti-inflammatory cytokine which is stimulated
by post-exercise increases in IL-6. Therefore, individuals who
have lower baseline levels of IL-1ra may have a greater capacity
for upregulation of IL-1ra in response to exercise, thereby
inducing anti-inflammatory and subsequent analgesic effects.
Results from this study support previous research among persons
with pain (e.g., knee osteoarthritis), whereby levels of plasma
IL-1ra have been shown to predict response to treatment
(50). Future research, including the RCT associated with this
pilot study (51), should continue to investigate IL-1ra as a
potential predictive biomarker for exercise-related changes in
neuropathic pain among persons with SCI. Better understanding
predictive biomarkers will enhance our knowledge of who may
experience improvements in neuropathic pain following exercise,
and therefore inform patient care decisions (52).

Study Strengths and Limitations
This study has several strengths. First, collecting multiple
measurements and observing possible pathways responsible
for exercise-related changes in pain allowed for a deeper
evaluation of the relationship between exercise and neuropathic
pain among persons with SCI. Results of this study
provide rationale to further examine potential mechanisms
impacting exercise-related changes in neuropathic pain,
such as whether the intensity of exercise leads to decreased
neuropathic pain, through its effects on inflammation
among individuals with SCI. Second, evaluating the effect
of exercise on neuropathic pain among humans with SCI
(rather than animals), allowed for use of clinically relevant
measurement tools and the ability to measure spontaneous
neuropathic pain. Evaluating animal models would have
precluded evaluating psychosocial contributors to neuropathic
pain, given the difficulty of assessing affective measures of
neuropathic pain in pre-clinical research (53). Third, assessing
the concomitant impact of exercise on neuropathic pain,
inflammation and affect allowed for a greater understanding
of the dynamic interaction among physiological (i.e.,
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inflammation) and psychological (i.e., affect) contributors
to neuropathic pain.

Despite these strengths, some limitations must be noted.
First, participants’ individual sub-maximal exercise intensity was
based on their peak power output rather than their VO2peak.
Although we intended for all participants to exercise at 60%
peak power output, there was a significant difference in MaxRPE
reported between tetraplegic and paraplegic participants at
certain points, and paraplegic participants likely exceeded a
sub-maximal exercise intensity. Further, paraplegic participants
approached an “exhaustive” RPE (34) halfway through the
exercise bout, which prompted the research team to decrease
their wattage from 60 to 50% peak power output for 5min
to allow for a brief recovery period. Despite this limitation,
the significantly different MaxRPE reported between tetraplegic
vs. paraplegic participants provided valuable insight into the
potential impact of exercise intensity on neuropathic pain,
inflammatory cytokines, affect and arousal among individuals
with SCI. Second, although International SCI Pain Data Sets
have been introduced to measure neuropathic pain in adults
with SCI (54), we employed the NPS due to its brevity, ease of
comprehension, and ability to assess responses to treatment (30).
Future research should incorporate the International SCI Pain
Data Set in order to ensure proper identification of participants’
pain, and to allow for comparison of results across studies (51).
Third, the FS and FAS have been used extensively in exercise
research to investigate individuals’ affective responses to exercise.
Additional research is needed to assess the validity of the FAS
when used in exercise contexts with persons with SCI. Fourth,
this study included a small number of participants, and only one
female, which is limiting due to the research evidence supporting
sex differences in post-exercise immune and pain responses
(55, 56). While the ratio of male to female participants in this
study is representative of the global SCI population (57), future
SCI research must strengthen recruitment strategies to include
more female participants and enhance the generalizability of
findings. The small sample size may have influenced our results
(in terms of both effect size and lack of statistical significance),
and these results should be interpreted with caution as they
were not all statistically significant. Fifth, this study evaluated
only inflammation as a possible pathway responsible for exercise-
related changes in neuropathic pain. It is understood that many
additional mechanisms (e.g., microglial activation, cortisol levels,
pain catastrophizing) may be responsible for exercise-related
changes in neuropathic pain among adults with SCI. To progress
toward mechanism-based treatment, future SCI research should
investigate further mechanisms that may impact the relationship
between exercise and neuropathic pain. And finally, we did
not employ a control condition against which to evaluate the
effects of the exercise bout. Designing a true control for tests
of pain-reducing interventions is challenging, but should be
considered in future studies to control for the effects of attention,
distraction and other psychological variables on neuropathic pain
and affect.

Conclusion
Taken together, the results of this study suggest that exercise may
reduce neuropathic pain and improve affect in adults with SCI,
and changes in inflammation may be related to these effects.
Additionally, exercise intensity may play an important role in
the exercise related changes in neuropathic pain, inflammatory
profiles, and affect for adults with SCI. Last, levels of IL-1ra may
help determine who experiences exercise-related reductions in
neuropathic pain sensations. Future research should be directed
toward understanding the ideal exercise intensity for decreasing
neuropathic pain among adults with SCI, and the potential role
of inflammatory cytokines and other possible mediators.
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