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Introduction: Achilles tendinopathy (AT) is a chronic musculoskeletal pathology

best evaluated by ultrasound imaging. This cross-sectional study aimed at better

understanding the relationship between musculoskeletal ultrasound biomarkers

(MUBs) of Achilles tendon and localized pain, ankle flexibility, ankle strength, and

functional abilities.

Method: Forty-one participants with unilateral midportion chronic AT had their tendon

images analyzed bilaterally in the longitudinal and transverse planes. The Victorian

Institute of Sport Assessment-Achilles questionnaire (VISA-A) and Lower Extremity

Functional Scale (LEFS) assessed pain and function, respectively, during standing and

walking-related activities. Ankle flexibility was evaluated by weight-bearing lunge tests,

while ankle isometric peak strength was measured using an instrumented dynamometer.

Achilles tendon ultrasonographic images were analyzed using geometric (thickness),

composition (echogenicity), and texture (homogeneity) MUBs. Discriminative validity

was evaluated using paired Student’s t-tests to compare MUBs between symptomatic

and asymptomatic sides. Predictive validity was evaluated by computing the Pearson

product-moment correlations coefficient between MUBs and pain, ankle flexibility, ankle

strength, and function.

Results: Significant differences were found in MUBs between the symptomatic and

asymptomatic sides, confirming the discriminative validity of the selected MUBs. On

the symptomatic side, thickness was found 29.9% higher (p < 0.001), echogenicity

9.6% lower (p < 0.001), and homogeneity 3.8% higher (p = 0.001) when compared

with the asymptomatic side. However, predictive validity was scarcely confirmed,

as most of the correlation coefficients were found negligible for the associations

investigated between MUBs with localized pain, ankle flexibility, strength, and function.

Only 14 statistically significant low to moderate associations were found, with negative

https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/journals/rehabilitation-sciences#editorial-board
https://www.frontiersin.org/journals/rehabilitation-sciences#editorial-board
https://www.frontiersin.org/journals/rehabilitation-sciences#editorial-board
https://www.frontiersin.org/journals/rehabilitation-sciences#editorial-board
https://doi.org/10.3389/fresc.2021.726313
http://crossmark.crossref.org/dialog/?doi=10.3389/fresc.2021.726313&domain=pdf&date_stamp=2021-08-12
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/rehabilitation-sciences#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dany.gagnon.2@umontreal.ca
http://orcid.org/0000-0003-3464-4667
https://doi.org/10.3389/fresc.2021.726313
https://www.frontiersin.org/articles/10.3389/fresc.2021.726313/full


Lalumiere et al. Achilles Tendinopathy Musculoskeletal Ulltrasound Biomarkers

and positive correlations ranging between −0.31 and −0.55 and between 0.34 and

0.54, respectively.

Discussion: Musculoskeletal ultrasound biomarkers have a clinical utility in visualizing

in vivo tendon integrity and diagnosing AT. MUBs should be valued as part of a

comprehensive neuro-musculoskeletal assessment as they complement pain, flexibility,

strength, and function measures. Altogether, they may inform the development and

monitoring of a personalized rehabilitation treatment plan.

Keywords: computer-assisted image analysis, diagnostic imaging, image processing, musculoskeletal –

disorders, rehabilitation, tendinosis, tendinopathy, ultrasonography

INTRODUCTION

Achilles tendinopathy (AT) is a common musculoskeletal
pathology that affects the strongest and largest tendon of
the human body (1–3). AT generally affects either the
midportion of the Achilles tendon or its enthesis on the
calcaneus among both sedentary and athletic individuals (1–
4). The prevalence of AT increases with age, and AT mostly
affects males between 30 and 50 years of age. Although,
the precise etiology of AT remains uncertain, the risk of
injury is mainly associated with a maladaptive response to
overstimulation caused by repetitive plantarflexion and high
forces transmitted through the tendon during functional
activities involving plantarflexion (5). Other factors such as
the presence of common chronic diseases (i.e., diabetes,
rheumatoid arthritis, or hypercholesterolaemia), training errors,
cold environments, or the use of specific medications (i.e.,
corticosteroids, fluoroquinolone, statins) may also increase the
risk of AT (4, 6, 7). AT-related symptoms typically include pain
at rest, pain during or after physical activities, and a feeling of
stiffness of the Achilles tendon after a period of immobility. AT
main impairments include reduced flexibility of the triceps surae
muscles (i.e., gastrocnemius and soleus) and a decrease in both
force and endurance of triceps surae muscles (mostly the soleus)
(5, 8, 9). These symptoms and impairments typically lead to
functional limitations when walking, running, using stairs, and
jumping, leading to decreased social participation and quality
of life (4, 10, 11).

In chronic AT, episodes of excessive mechanical stress cause
pathological changes in the tendon that are visible and distinctive
on ultrasound images (4, 12, 13). Affected tendons typically
present abnormal collagen and extracellular matrix composition
and structure (14). These abnormalities of the Achilles tendon
can be quantified by musculoskeletal ultrasound biomarkers
(MUBs), such as geometric (thickening), composition
(hypoechogenic), or texture (increased homogeneity)
dimensions (15–18). MUBs extracted from ultrasound imaging
have good reliability when characterizing the biological
integrity of the Achilles tendon (19). Furthermore, MUBs allow
differentiating between several pathologies (e.g., partial tear,
bursitis, peritendinitis) when clinical evaluation is not conclusive
(4). Therefore, MUBs are tools frequently used in both clinical
and research settings when characterizing the Achilles tendon
integrity (20–24).

Interestingly, bodies of evidence are conflicting regarding
associations between MUBs and pain, flexibility, strength, and
function (25–32). Some authors found a lack of association
between anatomopathology and symptom severity in cross-
sectional studies (26, 27) or limited structural improvement
of the tendon despite clinical improvement in terms of
pain and function among individuals with midportion AT
during prospective studies (33–35). Inversely, some authors
found a significant association between tendon thickness,
hypoechogenicity, and pain among cross-sectional studies (25)
and prospective studies (36, 37). Consequently, there is no
consensus regarding the association between MUBs and clinical
outcomes among individuals with AT.

The main objective of the study was to gain knowledge and
a better understanding of the relationship between geometric
(i.e., thickness), composition (i.e., echogenicity), and texture (i.e.,
homogeneity) MUBs with localized pain, ankle flexibility, ankle
strength, and standing-related functional abilities (e.g., walking,
hopping, stairs, sports) among individuals with symptomatic
midportion unilateral AT. More specifically, in terms of
discriminative validity, MUBs of symptomatic Achilles tendons
were generally expected to appear on images as thicker (i.e.,
increased thickness), darker (i.e., reduced echogenicity), and
smoother (i.e., increased homogeneity) in comparison with
the asymptomatic Achilles tendons (15). Moreover, in terms
of predictive validity, absolute (i.e., symptomatic tendon) or
relative (i.e., symptomatic/non-symptomatic tendon difference)
MUBs were expected to be, at least, moderately associated
with localized pain, ankle flexibility, strength impairments, and
functional disabilities.

METHOD

Study Design
This validity study builds on a previously published one that
proposed a minimal data set of MUBs to characterize Achilles
tendon health (15). Additional clinical and laboratory measures,
whichmay theoretically relate toMUBs, are now examined to test
the hypotheses formulated above.

Participants
A group of 41 individuals with unilateral midportion chronic AT
participated in the study (Table 1). Out of these 41 individuals,
additional measures [i.e., Lower Extremity Functional Scale
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TABLE 1 | Mean (SD) characteristics of the participants.

Units Group Subgroup p-value*

n = 41 n = 20

Sociodemographic and anthropometric measures

Age years 42.5 (8.6) 42.2 (8.4) 0.911

Sex - male/female n 27/14 13/7 0.949

Height cm 1.74 (0.08) 1.75 (0.09) 0.880

Weight kg 78.2 (15.4) 76.6 (15.3) 0.692

BMI kg/m2 25.7 (4.7) 25.0 (4.6) 0.602

Symptomatic side -

left/right

n 24/17 12/8 0.915

Time since injury months 26.4 (29.9) 24.0 (18.7) 0.740

Time since injury -

range

Min–Max 3–120 3–85 N/A

Pain and functional measures

VISA-A score /100 60.7 (18.6) 59.5 (19.0) 0.810

VISA-A-range Min–Max 13–82 13–82 N/A

Q1 stiffness /10 7.0 (3.2) 6.8 (2.9) 0.791

Q2 stretching /10 6.6 (3.2) 6.0 (3.2) 0.473

Q3 pain walking /10 7.4 (2.6) 7.1 (2.7) 0.642

Q4 pain stairs /10 7.5 (2.7) 7.6 (2.4) 0.903

Q5 pain heel raise /10 6.3 (2.9) 6.6 (2.6) 0.740

Q6 pain hopping /10 4.4 (3.4) 4.5 (3.8) 0.909

Q7 sports level /10 5.8 (2.5) 5.6 (2.7) 0.744

Q8 sport time /30 15.6 (7.8) 19.3 (11.4) 0.147

LEFS /80 N/E 63.9 (10.6) N/A

LEFS - range Min–max N/E 38–78 N/A

BMI, body mass index; VISA-A, Victorian Institute of Sport Assessment-Achilles

Questionnaire; LEFS, lower extremity functional Scale; N/E, not evaluated; N/A,

not applicable.
*Usually by independent bilateral Student’s t-tests; otherwise for sex and symptomatic

side by chi-squared test. Statistical significance set at a level of p < 0.05.

(LEFS) score and peak isometric ankle strength] were collected
for the last 20 participants, as the research protocol was
updated. Hence, these last 20 participants form a distinct
subset of participants (i.e., subgroup). To be included in
the study, potential participants had to report unilateral
and localized pain in the Achilles tendon for more than 3
months (6), experience pain on palpation of the midportion
of the Achilles tendon, and achieve a score below 90 out
of 100 on the Victorian Institute of Sport Assessment-
Achilles Questionnaire (VISA-A) (38). Potential participants
who reported bilateral pain during activities had a body
mass index (BMI) >30 kg/m2 and reported a history of
Achilles tendon rupture, were diagnosed with a metabolic,
neurologic, or systemic inflammatory disease, or had received
any type of injection in the Achilles tendon in the past year
were excluded.

Clinical Evaluations
Clinical evaluations were conducted by two trained experienced
physiotherapists (ML and MJN) using a standardized data
collection protocol.

Sociodemographic, Anthropometric, Pain, and

Functional Assessments
Basic sociodemographic (i.e., age, sex) and anthropometric data
(i.e., height, weight) were collected first before documenting
AT-related information (e.g., the side affected, time since the
first symptom, etc.,). The participants then completed one or
two patient-reported outcome measures depending on when
they entered the study. All the participants filled out the VISA-
A (39). This questionnaire includes eight questions targeting
three dimensions: localized pain in the Achilles tendon, function
in daily life, and participation in sports activities (38–40).
Questionnaire scores range from 0 to 100, with a low score
indicating greater severity of the impact of the AT. The
questionnaire is available in English and French, and it is reliable,
valid, and sensitive to change with a minimal clinically important
difference (MCID) of between 6 and 20 points (38, 41). The LEFS
(42) questionnaire was only completed by the participants in the
subgroup. The LEFS assesses the function of individuals with
orthopedic disorders affecting their lower extremities, such as
AT (42). The LEFS includes 20 questions measuring the level of
difficulty encountered when performing activities of daily living
and sports. The LEFS has a maximum score of 80, with a higher
score confirming a higher functional level (42). The LEFS, which
is also available in English and French, is reliable, valid, and
sensitive to changes with a MCID of 9–12 points (41). The VISA-
A and LEFS were completed either on paper or electronically via
the Lime Survey R© platform in the choice of language (French or
English) of the participants.

Ankle Flexibility
Mono- and bi-articular muscle flexibility tests of the ankle were
performed by the front-limbweight-bearing lunge test to assess the
soleus and the back-limb weight-bearing lunge test with the knee
extended to assess the flexibility of the gastrocnemius muscles
(43, 44). For these two tests, the distance between the tip of the
hallux and the wall was measured in cm. A reduction in flexibility
of the soleus would translate to a decrease in the distance between
the wall and the hallux of the front limb, whereas, reduced
flexibility of the gastrocnemius muscles would translate to a
decrease in the distance between the wall and the hallux of the
back limb.

Isometric Strength
Peak isometric ankle strength, assessed exclusively in the
subgroup, was measured using a Biodex instrumented
dynamometer (Biodex Medical Systems, Shirley, NY,
United States). The participants sat in a multi-position adjustable
chair, with their hip flexed to 135◦, knee extended, and the
ankle firmly attached to a custom-made boot attached to the
dynamometer to isolate ankle movement and prevent the heel
from lifting during plantarflexion (45). The ankle was positioned
at 10◦ plantarflexion during the isometric strength assessment
(46). The physiotherapist (ML), assisted by a physiotherapy
student (SP), instructed the participants to gradually contract
their plantarflexor muscles up to their peak strength then hold
the contraction for about 2 s (a total of∼5 s of contraction), while
standard verbal encouragement was provided to ensure maximal

Frontiers in Rehabilitation Sciences | www.frontiersin.org 3 August 2021 | Volume 2 | Article 726313

https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/rehabilitation-sciences#articles


Lalumiere et al. Achilles Tendinopathy Musculoskeletal Ulltrasound Biomarkers

FIGURE 1 | (A) Positions of the transducer in the longitudinal and transverse

planes used to acquire asymptomatic and symptomatic Achilles tendon

ultrasound images. The green lines correspond to the region of interest (ROI)

used for data analysis for (B) asymptomatic and (C) symptomatic tendon.

effort throughout the tests (47, 48). Two trials were recorded,
and a third one was recorded whenever the difference was
>10% between the first two trials. A 1-min break was allowed
between each trial. Each participant familiarized themselves with
the dynamometer prior to the assessment (47, 49). The same
process was applied for measuring isometric dorsiflexion force,
but with the foot at 20◦ plantarflexion. The mean peak moment
was computed for plantarflexion and dorsiflexion separately for
both the symptomatic and asymptomatic sides. A dynamometer
provided reliable and valid measures to characterize the strength-
generating capability at the ankle (50, 51), and to differentiate
individuals with good tendon health from those with AT (21, 52).

Musculoskeletal Ultrasound Imaging

Image-Acquisition
All the ultrasound images of the Achilles tendon were acquired
in brightness mode using a 5–12 MHz linear array transducer
with a 5-cm wide footprint connected to an HD 11XE 1.0.6
ultrasonography system (Phillips Medical Systems, Bothell, WA,
United States). A previously described standardized protocol
(15, 19) was used for image acquisition. All parameters affecting
image quality (i.e., probe frequency set at 12 MHz; depth =

2 cm; gain = 85; unique focus zone adjusted to 0.5 cm at the
AT level; neutral time gain compensation) remained constant
during each data collection session and across the participants.
In addition, care was taken to align the transducer parallel
to fiber orientation to minimize anisotropy. The most painful
region along the posterior aspect of the symptomatic tendon was
first located by palpation before its location was marked on the
skin and mirrored on the asymptomatic side. The probe was
then positioned at the marked site to view the Achilles tendon
fibers in the longitudinal and transverse planes, respectively

(Figure 1A). Three images were acquired in both the longitudinal
and transverse planes (n = 6 images per side). The probe
was removed after the recording of each image and always
repositioned at the marked site thereafter.

Image-Analysis
All the images were analyzed using a custom interactive
2D viewing and image analysis program developed by the
research team with Image Processing ToolboxTM from MATLAB
(MathWorks Inc., Natick, MA, United States), as used in
previous studies (19, 53). Using this program, a region of
interest (ROI) was manually outlined within the hyperechoic
margins of the tendon (i.e., circumferential epitenon) (Figure 2).
A semi-automatic tracing procedure then selected the lateral
margins of the 1-cm and 0.5-cm wide ROIs in the longitudinal
and transverse planes, respectively (Figures 1B,C). In the
transverse plane, this process also reduces lateral anisotropy
and consequently improves the reliability of MUBs (53,
54). Based on the previously recommended minimal dataset
organized around three dimensions (i.e., geometric, composition,
and texture), MUBs were computed for each ROI taken in
the longitudinal and transverse planes (i.e., mean thickness,
echogenicity, and homogeneity at 90◦ in the longitudinal plane
and multidirectional mean in the transverse plane). MUB
values of the three measurements were averaged for each
plane. Additional details on the various measures are available
elsewhere (19).

Statistical Analyses
Descriptive statistics (e.g., mean, SD, proportion, range)
synthesized the demographics, and the anthropometric clinical
and laboratory outcomes. The normality of the distribution
of outcomes was verified by the Shapiro–Wilk test and using
a graphical method. Differences between the main group (n
= 41) and the subgroup (n = 20) demographic, pain, and
functional measures were compared by bivariate independent
Student’s t-test for parametric data and the chi-squared test for
non-parametric data. Differences between the asymptomatic and
symptomatic sides for clinical (i.e., flexibility and strength) and
ultrasound (i.e., mean thickness, echogenicity, and homogeneity)
measures were assessed by independent paired Student’s t-tests
and Wilcoxon signed-rank tests for normally and non-normally
distributed data, respectively. Effect sizes were also computed
using Hedge’s g (55) to determine the absolute magnitude of
the effect sizes: >0.2 was considered small, >0.5 was considered
medium, and >0.8 was considered large (56). Thereafter, a
difference index (DI) was computed to assess the relative
difference between the symptomatic and asymptomatic sides for
all clinical and ultrasound measures using Equation 1:

Difference Index (%) =

(

Symptomatic− Asymptomatic
)

(

Asymptomatic
) × 100

(1)

Last, the association between the MUBs and the absolute (i.e.,
symptomatic side) and relative (i.e., DI) measures of localized
pain (i.e., VISA-A), ankle flexibility and strength impairments,
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FIGURE 2 | Screenshot of the custom-made program interface used to select the ROI and acquire musculoskeletal ultrasound biomarker (MUB) measures of the

Achilles tendon image. This is an example of a symptomatic tendon in the longitudinal plane with a 1-cm wide ROI.

and functional disabilities (i.e., VISA-A and LEFS) were assessed
using Pearson product-moment correlation and Spearman rank-
order correlation for normally and non-normally distributed
data, respectively. The strength of correlation coefficients was
considered negligible between 0 and .3, low between 0.3 and 0.5,
moderate between 0.5 and 0.7, and high between 0.7 and 0.9 (57).
The threshold for statistical significance was set at 0.05 for all
statistical analyses carried out with the SPSS v25 software.

RESULTS

Characteristics of Participants
A summary of the characteristics of the participants and scores
achieved on the VISA-A and LEFS questionnaires are presented
in Table 1. Participant characteristics were not significantly
different (p = 0.147 to 0.949) between the main group and
the subgroup.

Clinical Measures
A summary of the functional measures is presented in Table 1,
whereas, the clinical measures and MUBs are summarized in
Table 2. Only flexibility measures for the soleus revealed a
significant (p = 0.002) but the small between-side difference
(Hedge’s g of −0.23) in soleus flexibility. The soleus on the
symptomatic side was 7.3% less flexible than the one on the
asymptomatic side. The flexibility of the gastrocnemius (p =

0.245) and the isometric strength of the ankle plantarflexors (p
= 0.182) and dorsiflexors (p = 0.52) were similar between the
asymptomatic and symptomatic sides.

Musculoskeletal Ultrasound Biomarkers
A summary of the MUBs is presented in Table 2. The mean
thickness of the Achilles tendon revealed a significant (p <

0.001) and large between-side difference (g = 0.99 and 0.87),
reaching +29.9 and +25.3% for the symptomatic tendon when
compared with the asymptomatic tendon in the longitudinal
and transverse planes, respectively. The echogenicity of the
tendon revealed a significant (p < 0.001 and p = 0.005) and
medium to small between-side difference (g=−0.51 and−0.35),
reaching −9.6 and −6.4% for the symptomatic tendon when
compared with the asymptomatic tendon in the longitudinal and
transverse planes, respectively. The homogeneity of the tendon
revealed a significant (p < 0.001 and p < 0.001) and large to
medium between-side difference (g = 0.86 and 0.78), reaching
3.8 and 3.7% for the symptomatic tendon when compared with
the asymptomatic tendon in the longitudinal and transverse
planes, respectively.

Associations Between MUBs and Other
Measures
A summary of the associations between the MUBs and
clinical and functional measures is presented in Table 3 and
Figure 3. Overall, the correlation coefficients were found to be
negligible for most of the associations investigated. Only few
statistically significant low to moderate correlations were found
(n = 14, negative and positive correlations ranging between
−0.31 and −0.55 and between 0.34 and 0.54, respectively).
Among the clinical measures, low correlations were found
between the flexibility of the gastrocnemius in both planes
and the absolute thickness-Sympt and echogenicity-Sympt.
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TABLE 2 | Mean (SD) clinical measures, musculoskeletal ultrasound biomarkers

(MUBs), and difference index (DI) between sides.

Asymptomatic Symptomatic DI (%) Effect

size (g)

p-

value*

Clinical measures

Flexibility

Soleus (cm) 11.6 (3.5) 10.8 (3.8) −7.3 −0.23 0.002†

Gastrocnemius

(cm)

70.6 (11.3) 68.5 (10.9) −2.9 −0.18 0.245

Isometric strength – subgroup

Plantarflexion

(N·m)

139.0 (30.3) 133.9 (35.2) −3.7 −0.15 0.182

Dorsiflexion

(N·m)

43.6 (10.6) 42.5 (10.5) −2.5 −0.10 0.520

Musculoskeletal ultrasound biomarkers

Longitudinal plane

Mean thickness

(mm)

5.15 (1.30) 6.69 (1.75) 29.9 0.99 <0.001*

Echogenicity

(/255)

77.0 (15.7) 69.6 (13.3) −9.6 −0.51 <0.001*

Homogeneity at

90◦
0.595 (0.023) 0.618 (0.029) 3.8 0.86 0.001*

Transverse

plane

Mean thickness

(mm)

5.17 (1.13) 6.48 (1.78) 25.3 0.87 <0.001*

Echogenicity

(/255)

83.7 (15.4) 78.3 (14.6) −6.4 −0.35 0.005*

Mean

homogeneity

0.621 (0.025) 0.644 (0.032) 3.7 0.78 <0.001*

*Usually by paired Student’s t-tests; otherwise (†) for soleus flexibility by Wilcoxon signed

ranks tests. Statistical significance set at a level of p < 0.05.

Also, low to moderate correlations were found between the
ankle plantarflexor strength-DI and the echogenicity-DI in the
longitudinal plane and between the ankle dorsiflexor strength-
Sympt and the mean thickness in both planes. Among the pain
and functional measures, the mean thickness of the symptomatic
tendons in both planes was consistently correlated with questions
#7 and #8 of the VISA-A, suggesting higher limitations in
sports level and time as tendon thickness increases. For these
two questions, albeit not as consistently correlated as for
thickness, few echogenicity and homogeneity measures were also
found to be significantly associated. In the longitudinal plane,
homogeneity and question #5 – painful heel raise as well as
between echogenicity and question #6 – pain during hopping.
No significant correlations (i.e., low, moderate, or high) were
observed between the total VISA-A score and MUBs (Figure 3),
or between the LEFS questionnaire and the MUBs.

DISCUSSION

In line with previous research studies, this one further
explored the discriminative ability of MUBs and their predictive
validity with regard to localized tendon pain, ankle flexibility,
ankle strength, and standing-related functional abilities among

individuals with unilateral symptomatic AT. The results confirm
that the discriminative validity of MUBs is high between the
symptomatic and asymptomatic sides, whereas, the predictive
validity of MUBs with patient-reported outcome measures and
clinically related outcome measures are limited and inconsistent
across the assessed clinical outcomes (i.e., pain, flexibility,
strength, and functional abilities).

Discriminative Validity
In agreement with the first hypothesis, significant differences
were found in MUBs between the symptomatic and
asymptomatic Achilles tendons among individuals with
chronic symptomatic unilateral AT, confirming the capacity
of the selected MUBs to discriminate a symptomatic tendon
from an asymptomatic one. Geometric, composition, and
texture MUBs change (mostly at the cellular and structural
level) in response to localized tendon maladaptive changes
as tendinopathy develops (58). In the symptomatic tendon,
abnormal tenocyte morphology and changes in proteoglycan
content typically increase bound water and tendon thickness in
comparison with the asymptomatic tendon (59). In addition,
hydrated components of the extracellular matrix increase, and
fibrillar disorganization progressively develops, resulting in a
reduced quantity of intact collagen fibers and, consequently,
reduction in reflected ultrasounds, and production of a darker
hypo-echogenic image (13). Finally, fibrillar disorganization
triggers changes from type I collagen in favor of type II and
III collagens and alters parallel fiber alignment, resulting in
alteration of the typical white and gray striated tendon pattern
and, thus, smoother texture (i.e., increased homogeneity) (60).
Hence, as anticipated, based on previous studies (61–63),
the MUBs of symptomatic Achilles tendons generally stood
out on the images as being thicker, darker, and smoother in
comparison with the asymptomatic Achilles tendons, showing
high discriminative validity. These findings further support
the conclusions of Matthews et al. (62) who mentioned
that geometric and composition MUBs (i.e., thickness and
echogenicity) represent key MUBs for assessing images of
symptomatic Achilles tendons in clinical and research settings.
These findings also reinforce the clinical utility of quantifying
echogenicity, instead of only subjectively identifying the presence
or absence of hypoechogenic areas (62, 64).

The findings of this study also address a concern raised by
Matthews et al. (62) who confirmed the relevance of texture-
relatedMUBs in characterizing tendonmatrix changes, although,
they are typically lacking in the literature. In that sense, the
findings of this study confirm that homogeneity is a MUB
that allows clinicians to quantify the fibrillary disorganization
of collagen fibers (54) and, as such, may deserve additional
attention in future studies. Conversely, the findings of this study
provide indirect evidence for the use of a contrast measure as
a MUB, since it stands as a relative mathematical inverse of
homogeneity in second-order statistics (19). Finally, to build on
this study confirming that MUBs are valuable in discriminating
a symptomatic tendon from an asymptomatic one (i.e., first
iteration), future studies could focus on the classification of
symptomatic tendons into tendinopathy stages (i.e., second

Frontiers in Rehabilitation Sciences | www.frontiersin.org 6 August 2021 | Volume 2 | Article 726313

https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/rehabilitation-sciences#articles


Lalumiere et al. Achilles Tendinopathy Musculoskeletal Ulltrasound Biomarkers

TABLE 3 | Associations between MUBs and clinical measures for the symptomatic (Sympt) side and DI separately.

Longitudinal plane Transverse plane

Mean thickness Echogenicity Homogeneity at 90◦ Mean thickness Echogenicity Mean homogeneity

Sympt DI Sympt DI Sympt DI Sympt DI Sympt DI Sympt DI

Clinical measures

Flexibility

Soleus - Sympt 0.18 −0.23 0.10 0.17 −0.20 0.12

Soleus - DI 0.21 −0.01 0.26 0.24 −0.09 0.23

Gastroc - Sympt 0.13 –0.32* −0.07 0.15 –0.32* 0.08

Gastroc - DI 0.06 −0.11 0.00 0.05 −0.27 −0.06

Isometric strength - Subgroup

Plantarflexion - Sympt 0.24 −0.06 −0.14 0.12 −0.21 −0.18

Plantarflexion - DI −0.17 0.54* −0.26 0.02 0.23 −0.18

Dorsiflexion - Sympt 0.34 −0.02 0.13 0.25 0.00 0.10

Dorsiflexion - DI –0.49* 0.41 0.03 –0.55* 0.26 −0.20

Pain and functional measures

VISA-A score −0.11 −0.16 −0.10 −0.14 0.03 −0.03 −0.11 −0.03 −0.15 −0.28 0.01 0.05

Q1 stiffness −0.15 −0.07 0.27 0.04 0.05 0.02 −0.07 0.04 0.22 0.15 −0.09 −0.02

Q2 stretching 0.01 −0.23 −0.06 −0.07 0.15 −0.06 0.01 −0.20 −0.06 −0.10 0.05 0.04

Q3 pain walking 0.15 0.03 0.00 −0.17 0.24 0.07 0.13 0.17 −0.07 −0.22 0.16 0.27

Q4 pain stairs 0.20 0.10 −0.22 −0.22 0.23 0.11 0.17 0.16 −0.21 −0.13 0.31 0.19

Q5 pain heel raise 0.29 0.00 −0.23 −0.19 0.34* 0.16 0.25 0.14 −0.20 −0.31 0.21 0.01

Q6 pain hopping 0.19 −0.03 –0.36* 0.03 0.20 0.11 0.16 −0.02 −0.29 −0.15 0.17 −0.09

Q7 sport level –0.36* −0.20 0.03 −0.14 −0.22 −0.04 –0.35* −0.18 0.06 −0.22 –0.33* −0.13

Q8 sport time –0.40* −0.22 −0.02 −0.08 –0.31* −0.20 –0.39* −0.11 −0.13 –0.33* −0.16 0.02

LEFS Score 0.01 −0.29 −0.31 0.04 0.02 −0.26 0.23 0.23 −0.24 −0.04 0.22 0.14

*Usually by Pearson product-moment correlations; otherwise for soleus flexibility by Spearman rank-order correlations. Statistical significance set at a level of p < 0.05.

iteration) as previously attempted (20). In line with this idea,
using emerging machine learning and deep-learning approaches
may further facilitate collaborative image-based decision-making
(65). Achieving such a milestone could add value to the use of
MUBs to support the clinical decision-making process.

Predictive Validity
Contrary to the second hypothesis, the findings of this study
highlight the fact that both absolute and relative MUBs
have only negligible to low associations with localized tendon
pain, ankle flexibility and strength, and functional abilities
among individuals with chronic unilateral AT. In fact, it was
anticipated that the increased thickness, reduced echogenicity,
and increased homogeneity observed at the symptomatic tendon
could lead to a better understanding of the vicious cycle
in which localized tendon pain, reduced ankle flexibility and
strength, and reduced functional abilities and sport performances
interact (66). Hence, substantial uncertainty still exists with
regard to the predictive validity of MUBs (29, 64), and their
added value to support the development of a personalized
rehabilitation intervention treatment plan remains controversial
(67). Moreover, controversies still exist as to whether or not
MUBs can change concurrently to favorable treatment outcomes,
as well as how and to what extent they may do so (26, 34, 35, 68).

Regarding pain-related measures, further reflection is needed
to explain why they are not, at least, moderately associated with

current MUBs in individuals who have chronic unilateral AT.
Part of the answer may relate to the increase in angiogenic
growth factors, resulting in considerable neovascularization,
particularly on the ventral side of the tendon, along with nerve
ingrowths that have been proposed as the origin of tendinopathy-
related nociceptive pain (69). These peripheral adaptations may
increase sensitivity to chemical pain mediators and trigger an
over-activation of nociceptors (70, 71). Hence, the inclusion of
quantitative Doppler-related MUBs may become indispensable
to best capture such adaptions in the future, while also
reinforcing their relevance in composite ultrasonography-based
scoring when coupled with geometric and composition measures
(i.e., thickness and echogenicity) (20, 72). Part of the answer
may also relate to sensitization of the central nervous system
(i.e., central adaptations), commonly associated with chronic
musculoskeletal impairments (73, 74), or psychological factors
affecting pain (e.g., pain catastrophizing and kinesiophobia)
(75–77), which can both evolve independently to peripheral
tendon alterations characterized with MUBs. Another part
of the answer may ultimately relate to coexisting plantaris
tendinopathy and surrounding tissue alterations, as these
conditions affect about one in every 10 individuals with
confirmed midportion AT (78, 79).

As for flexibility, strength, and function-related measures,
despite tendon changes and the presence of pain expected to
alter the loading capacity of the Achilles tendon, only few low
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FIGURE 3 | Correlation (r) of ultrasound biomarker difference index (DI) measures and Victorian Institute of Sport Assessment-Achilles Questionnaire (VISA-A) total

score (Pearson product-moment test).

to moderate associations were found between these constructs.
First, the flexibility of the gastrocnemius on the symptomatic side
pointed out a low association between the changes in flexibility
and extracellular matrix content (i.e., reduced echogenicity)
in both planes. Those results highlight that tendinopathy-
related alterations in the Achilles tendon, characterized via
composition and texture MUBs, do not predict flexibility of the
triceps surae muscles (i.e., gastrocnemius and soleus). Second,
despite a potentially altered loading capacity highlighted with
the MUBs, only the echogenicity-DI was associated with the
isometric strength-generating capability of the plantarflexors-
DI. Such lack of strong and numerous associations may be
explained in part by the fact that no significant difference was
revealed between the symptomatic and asymptomatic sides when
generating plantarflexion strength. Moreover, it is also plausible
that the load generated was insufficient to observe the anticipated
difference and, in the future, may warrant greater loading
(e.g., eccentric tests, heel raises, or hopping) to gain a better
understanding of the association between MUBs and strength
(4, 43, 80). In that sense, the Q5 pain heel raise on the VISA-
A, which coupled heavy load concentric-eccentric contractions,
was associated, to some extent, with MUBs. Similar results
were observed in a recent cross-sectional study investigating
runners with midportion AT, where no significant difference in
strength and endurance was found between the symptomatic
and asymptomatic sides, although, the symptomatic side showed

a significant decrease in plantarflexor strength when compared
with healthy matched controls (9). Finally, for the functional
outcome measures, the Q6 sport level and Q7 sport time on
the VISA-A were predicted, to some extent, by some absolute
and relative MUBs. This remains plausible considering sport
level and maximal sport time may be altered by the loading
capacity of the tendon, which changes as the tendon is altered
by tendinopathy. Altogether, these results point toward potential
central neuroplastic adaptations changing sensory and motor
representations in individuals with a chronic musculoskeletal
condition, such as in the population of individuals with chronic
AT recruited in this study, resulting in bilateral perceptual
changes of body image and motor control (73, 81). Ultimately,
these adaptations may even trigger structural and histologic
changes in the asymptomatic contralateral tendon in individuals
with unilateral tendinopathy, providing further evidence for the
bilateral nature of tendinopathy (30, 82, 83).

On the whole, the complex interactions between tendon
changes and localized tendon pain, ankle flexibility, and strength,
and functional abilities among individuals with chronic unilateral
AT most likely explain the associations found in this study
and definitively warrant further examination (58). Meanwhile,
MUBs should be used in conjunction with clinical findings to
adjust treatment protocol and improve clinical outcomes (75).
Hence, gathering additional information through comprehensive
anamnesis and neuro-musculoskeletal assessment continues to
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be vital for informing rehabilitation professionals in clinical
practice and research environments.

Limitations
Some limitations of this study warrant discussion. First, the
relatively modest sample of participants (n = 41) with AT,
which was further reduced by the fact that ankle strength and
LEFS data were only available for about half of the sample
(n = 20), may have reduced the statistical power, although,
moderate-to-large effect sizes were found for most MUBs
discriminating the symptomatic and asymptomatic tendons (first
hypothesis). Moreover, such sample size may have influenced
data distribution and distorted correlation coefficients (second
hypothesis). Second, the relatively homogeneous sample of
participants with chronic midportion tendinopathy added to
the fact that no specific consideration into the possible co-
existence of plantaris tendinopathy (e.g., differential diagnosis)
was incorporated in the research protocol (84), calls for
cautiousness concerning the generalization of the results of this
study in the context of an acute or insertional AT. Further caution
is also advised if attempting to generalize these findings to other
tendons (e.g., patellar tendon, supraspinatus tendon). Third, the
fact that the asymptomatic tendon (i.e., contralateral tendon)
was used as the denominator (i.e., comparator) to compute
the asymmetry index may have attenuated the magnitude of
asymmetry, as both tendons may be structurally compromised
in individuals with unilateral AT (30). Hence, the inclusion of
healthy matched controls could have enriched the findings (81).
Finally, the addition of MUBs expressing neovascularization (i.e.,
Doppler) or stiffness (i.e., elastography) of the tendon could have
strengthened the results of this study (85).

CONCLUSION

Musculoskeletal ultrasound biomarkers have a clinical utility
in visualizing in vivo tendon integrity. They add valuable
diagnostic information when midportion AT is suspected in
clinical practice and research protocols. However, MUBs among
individuals with chronic AT are at best weakly associated with
pain, flexibility, strength, and functional capacity. In that sense,
MUBs are to be valued as part of a multimodal assessment, as
they complement patient-reported outcome measures targeting
pain and activity limitations and clinically based measures
such as ankle flexibility and strength. These last two types of
measures may provide greater insight into the symptomatology
and functional impacts of chronic AT than MUBs alone and best
inform the rehabilitation treatment plan.
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