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Accounting for the valley of
recovery during post-stroke
rehabilitation training via a
model-based analysis of
macaque manual dexterity
Jun Izawa1*, Noriyuki Higo2 and Yumi Murata2*
1Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan,
2Neurorehabilitation Research Group, Human Informatics and Interaction Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

Background: True recovery, in which a stroke patient regains the same
precise motor skills observed in prestroke conditions, is the fundamental
goal of rehabilitation training. However, a transient drop in task
performance during rehabilitation training after stroke, observed in human
clinical outcome as well as in both macaque and squirrel monkey retrieval
data, might prevent smooth transitions during recovery. This drop, i.e.,
recovery valley, often occurs during the transition from compensatory skill
to precision skill. Here, we sought computational mechanisms behind such
transitions and recovery. Analogous to motor skill learning, we considered
that the motor recovery process is composed of spontaneous recovery and
training-induced recovery. Specifically, we hypothesized that the interaction
of these multiple skill update processes might determine profiles of the
recovery valley.
Methods: A computational model of motor recovery was developed based on
a state-space model of motor learning that incorporates a retention factor
and interaction terms for training-induced recovery and spontaneous
recovery. The model was fit to previously reported macaque motor
recovery data where the monkey practiced precision grip skills after a lesion
in the sensorimotor area in the cortex. Multiple computational models and
the effects of each parameter were examined by model comparisons based
on information criteria and sensitivity analyses of each parameter.
Result: Both training-induced and spontaneous recoveries were necessary to
explain the behavioral data. Since these two factors contributed following
logarithmic function, the training-induced recovery were effective only
after spontaneous biological recovery had developed. In the training-
induced recovery component, the practice of the compensation also
contributed to recovery of the precision grip skill as if there is a significant
generalization effect of learning between these two skills. In addition, a
retention factor was critical to explain the recovery profiles.
Abbreviations

MP, metacarpophalangeal; IP, interphalangeal; AIC, akaike information criterion; GAP-43, growth-
associated protein-43; tDCS, transcranial direct current stimulation; GABA, γ-aminobutyric acid; LTP,
long-term potentiation; TMS, transcranial magnetic stimulation; CRMP2, collapsin response mediator
protein 2; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic-acid
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Conclusions: We found that spontaneous recovery, training-induced recovery,
retention factors, and interaction terms are crucial to explain recovery and recovery
valley profiles. This simulation-based examination of the model parameters provides
suggestions for effective rehabilitation methods to prevent the recovery valley, such
as plasticity-promoting medications, brain stimulation, and robotic rehabilitation
technologies.

KEYWORDS

computational neurorehabilitation, state-space model, generalization, spontaneous recovery,

use-dependent recovery
1. Background

Motor training for impaired motor skills is a fundamental

component of rehabilitation therapy. However, the

mechanisms behind how motor skills are improved with

rehabilitation training remain ambiguous. One critical issue

for a mechanistic understanding is the distinction between

true recovery and compensation. True recovery refers to

recovery that achieves the same motor pattern as the

prestroke movements with the recruitment and reorganization

of undamaged perilesional regions, whereas compensation

refers to an alternative movement pattern (1) to accomplish a

given motor task, which is often categorized as a different

type of motor skill (2).

For instance, in Murata 2008 (3), after macaques received

damage in the primary motor cortex that disrupted digit

representation, when performing a task of retrieving food

rewards with the thumb and index fingers, the monkeys

initially exhibited a compensation strategy where only the

index finger was extended and flexed while keeping the

thumb finger flexed; subsequently, true recovery of the

precision grip using flexion of both the index and thumb

fingers appeared. Notably, in the course of the transition from

using the compensatory grip to using the precision grip, the

monkeys’ performance exhibited a significant drop in the food

retrieval success rate (4), as if there is a “valley of recovery”

existing between compensation and true recovery. This

puzzling phenomenon, observed also in squirrel monkey

rehabilitation training (5, 6), has been recognized in clinical

trials, where patients were encouraged to use more effortful

original motor skills and reducing the use of easy

compensatory skills becomes a central issue (7). When the

presented skill was switched, the patients often exhibited a

drop in the success rate (7, 8). Why this valley of recovery

occurs and how the brain moves beyond this valley of

recovery are unclear.

After stroke, enhanced long-term potentiation (LTP) and

homeoplastic mechanisms in the perilesional region lead to

remodeling of the motor map (9–11). In addition to

functional reorganization in the peri-infarct motor cortex,

training-induced (i.e., use-dependent) plastic changes occur in
02
remote, intact, cortical areas (12) such as the premotor cortex

(13, 14) and motor areas in the intact hemisphere (10, 15).

Notably, training-induced plastic changes in the motor

representation in both the perilesional region and the other

cortical areas are also caused by the repetition of

compensatory motor skills (16, 17). These simultaneous

plastic changes underlying true motor recovery and

compensation suggest that true recovery and compensation

might compete for the limited neural resources in the cortex

post stroke (18). If such competition exists, recovery should

be taken over by one initially selected motor skill, which

should prevent escaping the recovery valley. However, in

Murata et al. (3), the recovery valley was eventually overcome,

and there was a successful transition between the two skills.

Thus, one possible hypothesis regarding the mechanisms

supporting the overcoming of the recovery valley is that

training with a compensatory skill may generalize to the

acquisition of precision skills in the same way that learning

generalization across different motor skills (19) rather than

interference (18), occurs.

To test this hypotheses, we adopt a computational modeling

approach that has been used in studies of motor skill learning

(20). In this framework, the formed motor skill is represented

by state variables (11), and motor skill learning is modeled as

the update of these states in each trial, by which the

properties of motor skill learning of the human participants

were quantitatively examined after estimating learning

parameters from the measured behavioral data (21, 22). In

this framework, our hypothesis of the generalization factor

between two motor skills was implemented as an interaction

term between two skills. This implementation is reasonable if

we consider two overlapping motor primitives for two skills

(1, 19). Since a population coding with cosin tuning functions

for fingers was found in the primary motor cortex where the

activation of the thumb partially activated the index finger

(23), and since the compensatory grip uses mainly the index

finger and the precision grip uses both the index and the

thumb finger, the motor primitives of the precision grip is

partially shared with that of the compensatory grip. Thus, this

approach elucidated interactions in the update processes

between two motor skills (19) and the spontaneous recovery
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of the skill update without the experience of task errors (24).

Thus, we considered that this approach provides a

mechanistic understanding of the interplay among the

development of precision skills, that of compensatory skills,

and spontaneous recovery. To determine crucial factors for

neurorehabilitation of motor skills, we fit different types of

state-space models to previously published monkey motor

recovery data that exhibited this overcoming the recovery

valley (3) and identified the latent structures and the interplay

among factors contributing to the recovery process. Note that

the scope of our modeling in this paper is to elucidate the

process of how the two motor skills recover with interacting

each other while the choice of the two skills were changed
FIGURE 1

Overview of the task. (A–C) Schematic drawings of the Klüver board (A) an
containing cylindrical wells of five different diameters was used in both tr
strategies, precision (B) and compensatory grips (C), during recovery from m
2008. (D) Motor command space and reward function defined for the mode
spanned between 0 and 1 which was normalized by each skill’s ideal moto
and the ideal achievement is denoted by 1. The motor command is gen
performance level of the skill and s2

a is the variance of the skill. The rewa
+w2. The success probability was counted by how many times the stochas
area of the motor command distribution: p(successja, w). Copyright at JNP ht
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during the recovery assuming that the decision-making policy

was updated in that way. Thus, we did not model the

decision-making process and used the measured skill selection

probability as an input to the model of skill recovery.
2. Materials and methods

2.1. Behavioral experiments and data

Previously published data from the last author and

colleagues (3) with monkeys that received lesions in the digit-

related areas in the motor cortex were reanalyzed for this
d monkey hand postures during grasping (B,C). (A) The Klüver board
aining and test sessions. (B,C) The monkeys used two different grip
otor cortex damage. Reproduced from Figures 1, 8 of Murata et al.,
ling. The skill motor command ua of each skill’s space a ¼ {p, c} was
r commands such that zero achievements of skill are denoted by 0,
erated colored by the motor noise, ua � N(ma , s

2
a ), where ma is the

rd area was set at the ideal motor command 1.0 with the well-size
tic motor commands reach the reward region, which was the shaded
tps://journals.physiology.org/author-info.permissions.
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FIGURE 2

Choiceofgraspingbehaviors formonkey-R. (A) Probabilityof selecting theprecisiongrip in the test sessionsoverdays foreachwell size. Thisprobabilitywas
used to compute the estimated total number of uses each day between test sessions. The red line indicates the presentedwell size in the training sessions.
(B) The probability of success in the test sessions over days for eachwell size. (C) The averageof the action selection probability of precision grip (i.e., action
policy) was plotted for the smallest and the largest well. (D) The average success rate was plotted for the smallest and the largest well. (E) The estimated
development of skill level mc , mp from the selected computational model. The yellow line denotes the precision grip, and the blue line denotes the
compensatory grip. (F) The predicted success rate for the largest well (the long dashed), the smallest well (the short dashed), and average sized well
(solid). Copyright at JNP https://journals.physiology.org/author-info.permissions.
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study. All experimental protocols were approved by the

National Institute of Advanced Industrial Science and

Technology Animal Care and Use Committee, as stated in the

previously published paper (3). After the preferred hand was

identified and received enough training (longer than 10 days)

for the precision grip task, the monkeys received lesion in the

hand areas in the primary motor cortex. Then, the monkeys

were trained with a Klüver board to retrieve food pellets from

a well over consecutive days. In the training sessions, the well

size was fixed for a particular day, and it was progressively

changed from the largest well to the smallest well across days;

when the cumulative number of pellets retrieved from a given

well size exceeded 1,000, the well size was changed to the next

smaller size the following day. Meanwhile, two sets of test

sessions were given each day, where 25 pellets were placed

pseudo-randomly into the well, five in each of the five wells

of different sizes. These test and training sets were delivered

5 days per week, starting 6–10 days after the lesion. Numbers

of training trials and probabilities of successful food taking for
Frontiers in Rehabilitation Sciences 04
each well size during the test were counted and calculated

manually.

The video footage of the grip skill performance in these test

sessions was visually investigated frame-by-frame, and behavior

in each trial was manually categorized as either precision grip or

compensatory grip. A precision grip was defined as a grip

movement that exhibited flexion and extension of all the

thumb and index finger joints to pinch the pellet by the tips

of these fingers (i.e., terminal opposition). A compensatory

grip was defined as a grip movement that predominantly used

the index finger extension and flexion, kept the thumb joint

unused and pinched the pellet with the tip of the index finger

and the dorsum of the thumb. These two grips were classified

based on frame-by-frame visual inspection of recorded video

images. We had the recorded video image data for three

trained monkeys reported in (3), but only two out of three

monkeys’ data (Monkey-R and Monkey-N) were clear enough

to visually classify these two grips: The camera position was

too far away in one monkey. Here, we reanalyzed these two
frontiersin.org
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(Monkey-R and Monkey-N) monkeys’ selection probability of

the two skills and the success probability of pellet retrieval for

each well size. These two monkeys’ lesions were around the

hand digit areas, but the two lesion sizes were slightly

different: That of Monkey-N was broader than that of

Monkey-R, covering wrist and forearm areas. Thus, the

recovery profiles of these two monkeys were slightly different

(Figures 2,4).

Monkey-R received postlesion training over 45 days. Ten

days of the test sessions were carefully selected to capture the

transition between the two skills and the recovery valley. To

this end, many days were selected from the period that

exhibited the valley, whereas a small number of days were

selected from the period that exhibited the stable reward

probability. The selected days of Monkey-R were days 12, 16,

21, 24, 31, 33, 34, 35, 38, and 44. Monkey-N received training

over 60 days. The ten days of test sessions that were selected

were days 10, 20, 32, 37, 38, 39, 40, 41, 53, and 61.

For the model examination described below, we used action

selection probabilities and success counts for each well of

selected days that were analyzed from video recordings. In

addition, for all training and test sessions that did not have

video records, we used the total trial number of each training

session, and the success counts for each well of those sessions.

We assumed that the action selection probability was constant

between the selected days.
2.2. Computational models

2.2.1. General framework and the model of
success probability

In the framework of the state-space model developed to

analyze motor learning processes in neurotypical individuals

(21) and in individuals with chronic stroke (25), as well as

motor skill learning in individuals with chronic stroke (26),

the motor memory of skill is presented by the state variable

(e.g., x). To apply this framework to analyze the retrieval

profile, we hypothesized that the development of the

representation of each skill updated by the training is

represented by the state variable: xp for the precision grip and

xc for the compensatory grip. These state variables take zero

at the start of the postlesional training and increase over days

as the two skills develop. This formed skill representation is

latent to the experimenter but can be estimated through the

motor skill executed in the test sessions denoted by [up, uc].

We assumed that the executed motor commands [up, uc] are

generated by the skill performance [mp, mc] which are

generated by the training-induced skill memory in the

perilesional cortical region [xp, xc] corrupted by noise (27):

u[p,c] � N(m[p,c], s
2
[p,c]), m[p,c] ¼ x[p,c], where s[p,c] are the

standard deviations of the motor execution noise that

characterize the different accuracies of grip skills between the
Frontiers in Rehabilitation Sciences 05
precision and the compensatory grips. A somewhat redundant

notation for the skill level m[p,c] and the internal

representation x[p,c] is to extend this model for more complex

model described in the below section. We formulated the skill

execution problem as the problem to bring the motor

command [up, uc] to a certain target value. Here, the center

of the target for the skill movement is set to 1 for simplicity.

Our interest is processes of formation of skill representations

(xp, xc). The success probability is proportional to how likely

the executed skill hit the target centered at 1 with the width w

scaled by the motor execution noise (SD ¼ s[p,c]), which is

modeled as the cumulative probability of the normal

distribution that enters the goal area (i.e., exceeding 1� w2,

erf function shown in Figure 1):

p(successja, w) ¼ 1� 1

sa
ffiffiffiffiffiffiffiffiffi
(2p)

p
ð1�w=2

�1
e(�(t�ma)

2)=(2s2
a)dt

 !
,

(1)

where a takes either p or c depending on the monkey’s action

selection between the precision and the compensatory grips.

The well size w takes a value proportional to the given well size

in the experiment (13, 12, 11, 10.5, and 10 mm) scaled by a

parameter w0 such that w ¼ w0 � [13, 12, 11, 10:5, 10] mm.

Since, according to the Equation 1 and Figure 1D, the task

performance is determined by a balance between the task

demand w0 and the size of the motor noise s[p,c], we supposed

that this task demand w0 is constant for two grip skills and set

only s[p,c] as free parameters. By checking goodness of fit

(likelihood) described below, w0 was adjusted manually and in

the end, w0 ¼ 0:001. This manual search of a reasonable task

demand scale helped reduce the number of free parameters.
2.2.2. The model for training-induced recovery
without spontaneous recovery (training only)

Training-induced plasticity and corresponding increases in

motor skill level (mp, mc) are modeled as the update of the

state variables (xp, xc) by a single trial experience of using each

skill on a training trial k. In this model, the motor commands

up, uc are the function of the motor skill level mp, mc which are

generated by the training-induced update of state variable xp, xc:

x(kþ1)
p ¼ apx(k)p þ bpuse

(k)
p þ bintuse

(k)
c ,

x(kþ1)
c ¼ acx(k)c þ bintuse

(k)
p þ bcuse

(k)
c ,

(2)

mp ¼ xp, mc ¼ xc,

up � N(mp, s
2
p),

uc � N(mc, s
2
c ),

(3)

where [ap, ac] (a[p,c] � 1) represents the retention (forgetting)

rate between two trials and [bp, bc](0 � b[p,c] � 1) represents
frontiersin.org
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the update rate for the single experience of the training with the

use of each skill (28, 29). Here, we count each trial with usea ¼ 1

when the monkey performs either precision or the compensative

grip. Thus, a single trial experience of the skill increases the skill

level, while the absence of experience decreases it. The estimated

interaction term of the training effects between two skills is

denoted by bint .

On days when monkeys did not receive any training,

memories were not updated, but decayed following:

x(dayþ1)
p ¼ apx

(day)
p , x(dayþ1)

c ¼ acx
(day)
c .

The parameters u ¼ [ap, ac, bp, bc, bint, sp, sc] were

estimated to maximize the likelihood of the data measured in

the test sessions regarding the success and failure of the

selected grasping skill movements. This estimation was

conducted independently for each monkey.

2.2.3. Model for spontaneous-recovery
enhanced training-induced recovery

The alternative mechanism of motor recovery is

spontaneous recovery by which the skill ma(a ¼ {p, c})

develops across days after the lesion (day) independent of

training and use. In this model, the training-induced memory

update equation is the same as that of the training only

model (Equation 2). The contribution of day dependent effect

is plugged into the motor output equation (Equation 3). The

spontaneous recovery caused by endogenous plasticity is likely

to be nonlinear as a function of the postlesional periods (30).

Nonlinearly, this might follow an inverse exponential-like

function (31), which is still unclear. To account for this

nonlinearity and to examine the type of nonlinearity, the

model is categorized by six sub-models, depending on how

this factor is implemented.

Multiplicative logarithmic function [*log(day)]:

sp ¼ log (day),

m[p,c] ¼ x[p,c] � ksp sp
max (sp)

,

u[p,c] � N(m[p,c], s
2
[p,c]):

(6)

Additive logarithmic function [+log(day)]:

sp ¼ log (day),

m[p,c] ¼ x[p,c] þ ksp
sp

max (sp)
,

u[p,c] � N(m[p,c], s
2
[p,c]):

(7)

Multiplicative linear function(*day):

sp ¼ day,

m[p,c] ¼ x[p,c] � ksp sp
max (sp)

,

u[p,c] � N(m[p,c], s
2
[p,c]):

(8)
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Additive linear function (+day):

sp ¼ day,

m[p,c] ¼ x[p,c] þ ksp
sp

max (sp)
,

u[p,c] � N(m[p,c], s
2
[p,c]):

(9)

Multiplicative exponential function (*exp(day)):

sp ¼ exp (day),

m[p,c] ¼ x[p,c] � ksp sp
max (sp)

,

u[p,c] � N(m[p,c], s
2
[p,c]):

(10)

Additive exponential function (+exp(day)):

sp ¼ exp (day),

m[p,c] ¼ x[p,c] þ ksp
sp

max (sp)
,

u[p,c] � N(m[p,c], s
2
[p,c]):

(11)

Therefore, for these models accounting for spontaneous

recovery effects, parameters to estimate are u ¼ [ap, ac, bp,

bc, bint , sp, sc, ksp].
2.3. Parameter estimations and
comparison of models

The parameters were estimated by the maximum likelihood

method. A simulation of each model was run using the actual

sequence of well sizes presented to each monkey during the

training sessions. Each simulation run generated the sequence

of the memory xa, skill level ma and p(successja, w) across the
postlesional training period. This sequence of

pdaya,w ¼ p(successja, w) over the training days predicts the

probability of each action’s success for each well size. From

pdaya,w and the action selection probability for the precision grip

p(p) and for the compensation grip p(c), we can compute the

marginalized success probability over two actions:

pdayw ¼ p(p)pdayp,w þ p(c)pdayc,w .

For all test days, we had success counts for each well size sdayw

out of the ten test trials for each well. Thus, the log-likelihood

function of the binomial distribution (32) with the

marginalized success probability pdayw for each well-size and

each day, when a model parameter is u, is represented as

follows:

lNV (u)dayw ¼ log [C(10, s)(pdayw )
s
(1� pdayw )

(10�s)
],

where C(n, s) denotes the number of s-combinations from a
frontiersin.org
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FIGURE 3

Sensitivity analysis. Top row. Reward probability profiles with
perturbations of the precision grip learning rate bp. The simulation
was conducted by changing the best-fitted parameter multiplied
by 2, 1, and 0 while other parameters except bp remained
constant. Second row. Reward probability profiles with
perturbations of the compensatory grip learning rate bc . The
simulation was conducted by changing the best-fitted parameter
multiplied by 2, 1, and 0 while other parameters except bc

remained constant. Third row. Reward probability profiles with
perturbations of the interaction term bint. The simulation was
conducted by changing the best-fitted parameter multiplied by 2,
1, and 0 while other parameters except bint remained constant.
Forth row. Reward probability profiles with perturbations on the
interaction term ap , ac. The simulation was conducted by
changing the best-fitted parameter multiplied by 1.02, 1, and 0.98
while other parameters except ap , ac remained constant. Bottom
row. Reward probability profiles with perturbation of the
spontaneous recovery term ksp. The simulation was conducted by
changing the best-fitted parameter multiplied by 1.1, 1, and 0.9
while other parameters except ksp remained constant. Copyright
at JNP https://journals.physiology.org/author-info.permissions.
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given set of 10 elements and NV stands for “no-video”,

described below.

For critical days exhibiting recovery valleys, we had the

analyzed data of video footage composed of the selection

count ndaya,w and the success count for each action, each well,

and each day. The log likelihood function of the binomial

distribution with success probability pdaya,w is

lV (u)daya,w ¼ log [C(n, s)(pdaya,w)
s
(1� pdaya,w)

(n�s)
],

where V indicates the data from the video footage.

Parameter set u was estimated to maximize the sum of the

log-likelihood over actions, well sizes, and analyzed test days:

L(u) ¼Pday[NV

P
w

P
a l

NV (u)dayw þPday[V

P
w

P
a l

V (u)dayw .

To find the best fit u, we used the nonlinear optimization

routine of matlab (fmincon). The 95% confidence interval of

the estimated parameter was approximated by

CI ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag{H�1}

p
where H is the Hessian matrix of the log-

likelihood evaluation at the maximum.

To compare the predictability of the models, the Akaike

information criterion (AIC) was computed by the formula

AIC ¼ 2k� 2L(u), where k is the number of estimated

parameters (size of u).
3. Results

3.1. Monkey-R

3.1.1. Behavioral data
Monkey-R (weight: 5.8 kg, dominant hand: left) received a

lesion disrupting the grasping representation in M1 of the

right hemisphere by injection of ibotenic acid after receiving

prelesion training for 13 days. The probability of selecting

either the precision grip or compensatory grip in the test

session changed over the training sessions such that the

monkey initially selected the compensatory grip and switched

to the precision skill after the day 30 (Figures 2A,C). The

well size had less influence on this skill selection in the test

sessions, as shown in the overlapped plots in the probability

of action selection among the largest well, the smallest well,

and the average of all well sizes shown in Figure 2C. The skill

switching started around day 20 when the well size in the

training session (shown by the red line) started to change

with the lowest demand well (larger on the vertical axis of

Figure 2A) to the highest demand well (smaller on the

vertical axis). Then, skill switching was accelerated after the

well size was kept at the 2nd most demanding well at day 30.

The success rate increased over the training. However, it

dropped immediately after day 20 and day 30 (Figures 2B,D),

where the action selection probability changed, and we refer

to this as the recovery valley.
frontiersin.org

https://journals.physiology.org/author-info.permissions
https://doi.org/10.3389/fresc.2022.1042912
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


FIGURE 4

Choice of grasping behaviors for monkey-N. (A) Probability of selecting the precision grip in the test sessions over the days for each well size. The red line
indicates the sizeof thewells presented in training sessions. (B) The probability of success in the test sessions over days for eachwell size. (C) The averageof
the action selection probability of precision grip (i.e., action policy)was plottedwith it for the smallest and the largest well. (D) The average success ratewas
plottedwith it for the smallest and the largestwell. (E) The estimated development of skill performancemc , mp from the selected computationalmodel. The
yellow line denotes the precisiongrip, and the blue linedenotes the compensatory grip. (F) The predicted success rate for the largestwell (the longdashed),
the smallest well (the short dashed), and average sized well (solid). Copyright at JNP https://journals.physiology.org/author-info.permissions.
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3.1.2. Model comparisons
To examine the contributions of training-induced recovery

and spontaneous recovery in Monkey-R’s recovery profiles, we

evaluated the model predictability based on AIC (Table 1).

The model with the lowest AIC has a logarithmic

spontaneous recovery, which influences performance

multiplicatively. This model’s AIC was considerably different

from that of the other model. Thus, we concluded that the

contribution of the spontaneous recovery was crucial in

Monkey-R’s recovery valley.

TABLE 1 AIC values of each model for Monkey-R.

Model Training
only

AIC 463.10

Model *log (day) +log
(day)

*day +day *exp +exp

AIC 298.91 452.21 499.77 514.61 9.808*105 470

AIC of the selected model was shown by the bold text.
3.1.3. The estimated performance of Monkey-R
Figure 2E shows the estimated recovery profiles of grip

performance, which were latent from the observed behavioral

data. Figure 2F shows the predicted success rates over the

training days that replicated the recovery and recovery valleys

generated from the simulation with the multiplicative

logarithmic spontaneous recovery model. The estimated values
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and the 95% confidence interval (CI) of the parameters are

summarized in Table 2.

For the constant scaling factor of well size, the motor noise

size that indicates the accuracy of the precision grip was higher

than that of the compensatory grip (sp � sc). Thus, the

estimated result reasonably captures the accuracy of the

precision grip and the inaccuracy of the compensatory grip.

Because the precision grip training-induced recovery rate

(bp) was higher than the compensatory grip training-induced
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TABLE 2 The estimated parameter values for Monkey-R.

Parameter Role Estimated value CI

ap Retention rate of the precision grip 0.8466 ±0.0110

ac Retention rate of the compensatory grip 0.9135 ±0.1018

bp Update rate of the precision grip 0.8176 ±0.3601

bint Interaction term of two skills 0.4085 ±0.2198

bc Update rate of the compensatory grip 0.5038 ±0.2198

sp Motor noise size of the precision grip 0.0158 ±0.0110

sc Motor noise size of the compensatory grip 0.0740 ±0.0327

ksp Spontaneous recovery 0.2175 ±0.0532
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recovery rate (bc), the use-dependent learning ability of the

compensatory grip was more impaired than the precision

grip. Nevertheless, the motor skill level of the compensatory

grip recovered faster than that of the precision grip

(Figure 2E). This is because the action selection probability at

the initial stage of training was much higher for the

compensatory grip than for the precision grip; thus, monkey

R had a large chance to train the compensatory grip.

Even though the skill level of the precision grip was lower

than that of the compensatory grip, Monkey-R switched from

using the compensatory grip to the precision grip after Day

20 (Figure 2C). Thus, switching from behavior with a higher

skill level, i.e., the compensatory grip, to other behavior, i.e.,

the precision grip, caused an initial drop in the success rate

(Figures 2D,F). This explains why the recovery valley

appeared. Furthermore, the second drop after Day 30 was also

explained by an abrupt increase in use of the precision grip

after Day 30 (Figures 2D,F).

Because of the positive interaction term between the two

skills (bint), the recovery processes for the two skills were

complementary such that the preceding recovery of the

compensatory grip facilitated the subsequent recovery of

the precision grip. Thus, although the opportunity for training

the precision grip is very small initially, the skill performance

level of the precision grip increased from the outset. Then,

when the monkey switched from using the compensatory grip

to using the precision grip after the compensatory

grip recovered, training-induced plasticity for the precision

grip was enhanced by the preceding recovery associated with

the compensatory grip. Then, the precision grip skill level

converged to that of the compensatory grip (Figure 2E).

Thus, Monkey-R succeeded in escaping from the recovery

valley in the last stages of training.

There was also a significant contribution of the spontaneous

recovery effect on performance (ksp). Following a certain period

after the lesion, precision grip skill was updated by training-

induced recovery. In contrast, the spontaneous recovery

provided a basis for training-induced recovery to influence
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executed skill performance (Equation 6), which might also

have led to overcoming the recovery valley.
3.1.4. Sensitivity analysis
To examine each model factor’s contribution to the recovery

valley, we performed a sensitivity analysis regarding how the

identified computational model’s parameters influenced the

recovery profile. Specifically, we examined the effect of the

learning rates for the precision and compensatory grips, bp

and bc, and the interaction terms of the training-induced

performance update, bint . Additionally, we examined the

effect of the retention factor ap, ac and the effect of the

spontanous recovery ksp.

When the precision grip’s learning rate was set twice as

large as what it was estimated to be (�2), the second valley of

the success probability disappeared, while the first valley

around day 25 remained the same (Figure 3, top row). In

contrast, when it was set to zero (�0), the success probability

decreased drastically after day 30. On the other hand, when

the compensatory grip’s learning rate was set twice as large as

what it was estimated to be (�2), the success probability

quickly increased in the initial phase of the training, while it

decreased slowly and exhibited the recovery valley (Figure 3,

2nd row). When it was set to zero, the success probability

remained at zero until day 35 and then started to gradually

increase. Thus, the skill update learning rates for both the

precision grip and compensation grip influenced the profile of

success probability such that larger learning rates generated

faster evolution of the success probability, although the

recovery valley was still evident. In contrast, when the

interaction term was set twice as large as what it was

estimated to be (�2), the recovery valley disappeared for both

the 1st and the 2nd drops (Figure 3, 3rd row). Additionally,

when it was set to zero (�0), the recovery valley became

significantly deeper for both drops. Thus, the interaction term

was the most influential in characterizing the recovery valley

phenomenon. Meanwhile, the retention factor characterized

the speed and asymptotic level of success probability
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TABLE 3 The estimated parameter values for Monkey-N.

Model Training only

AIC 1326.2

Model *log +log *day +day *exp +exp
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drastically (Figure 3, fourth row). Thus, the retention factor is

critical to explain the recovery profile. In addition, the

spontaneous recovery influences the success rate (Figure 3,

bottom row), while the recovery valley is present even though

the contribution was set larger (�1:1) or smaller (�0:9).

AIC 1254.5 969.6 1270.6 1270.7 2284.9 1326.2

AIC of the selected model was shown by the bold text.
3.2. Monkey-N

3.2.1. Behaviors
Similar to Monkey-R, Monkey-N (weight: 6.8 kg, dominant

hand: left) received a lesion disrupting the grasping

representation in M1 of the right hemisphere by injecting

ibotenic acid after receiving prelesion training for 13 days.

Based on the same analysis conducted with Monkey-R, the

probability of selecting either the precision grip or

compensatory grip in the test session changed across training

sessions such that the monkey initially selected the

compensatory grip (Figures 4A,C). After the start of the

training, this monkey immediately started using both skills,

and the well size largely influenced grip selection probabilities.

Interestingly, the backlash after the action selection transition

to using the precision grip was observed around day 40

(Figure 4C). At the same time, the success rate drastically

dropped (Figure 4D). Subsequently, success rate recovered,

which was followed by an increase in the precision grip

selection probability.
3.2.2. Model comparisons
We evaluated the model predictability based on AIC

(Table 3).

In terms of the model’s predictability, the additive

logarithmic spontaneous recovery model was the preferred

and selected model. That is, both Monkey-R and Monkey-N

had the similar logarithmic function of day for spontaneous

recovery contribution while how it influence the motor

performance were different.
3.2.3. The estimated performance of Monkey-N
Figure 4E shows the estimated recovery profiles of grip

performance using the additive logarithmic spontaneous

recovery model. Figure 4F shows the predicted success rates

across the training days, which replicated the recovery and

recovery valley. The best-fit parameters are summarized in

Table 4.

Like Monkey-R, motor noise magnitude was smaller for the

precision grip than for the compensatory grip (sp � sc). There

was also a significant contribution of the update rate of the

precision grip (bp . 0), the compensatory grip (bc . 0), and

the interaction term (bint . 0), which was also the same as

for Monkey-R. The contribution of spontaneous recovery was

also significant (ksp . 0).
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Skill levels for both grips were large from the initial stage of

training, likely due to the additive effect of the spontaneous

recovery. This is reasonable since the success probability is

relatively high from very initial stage of training (days 6–10)

with respect to Monkey R. Nevertheless, since the precision

grip’s recovery preceded that of the compensatory grip

(Figure 4E), switching from the use of both grips on day 32

back to the dominant use of the compensatory grip on day 37

reduced the success rate between days 37 and 39 (Figure 4D,

F). Thus, as with monkey R, the recovery valley seemed to be

caused by the difference in skill level between two skills and a

switch between these skills. The reason why the recovery of

the precision grip and the recovery of the compensatory grip

(Figure 4E) even though the speeds of the update of the

precision grip and the compensatory grip are more or less the

same (Table 4) was related to the fact that the interaction

term was non-zero (Table 4) and the use of compensatory

grip in the early phase (Figure 4C).
3.2.4. Sensitivity analysis
As seen with Monkey-R, the recovery valley with Monkey-N

was caused by the difference in the recovery levels between the

two skills at the time of the skill switching. This difference in the

recovery levels between the two skills should be influenced by

the interaction terms. Thus, we performed a sensitivity

analysis for each parameter of skill recovery for Monkey-N

using the same parameters selected for Monkey-R.

Specifically, we examined the effect of the learning rates of

precision and compensatory grips, bp and bc, and the

interaction term of the training-induced performance update,

bint . Additionally, we examined the effect of the retention

factor ap, ac.

In contrast to Monkey-R, increasing the precision grip

learning rate erased the initial drop of the success rate

(Figure 5, top). Then, the increase of the compensation grip

learning rate erased the second drop (Figure 5, second) and

the increase of the interaction term erased the initial drop

(Figure 5, third). Although the contribution of these update

rates to each valley was different from those of Monkey R,

this sensitivity analysis strongly suggests that these values

(bp, bc, bint) contributed to the recovery from the drop. In

addition, the retention factor was very sensitive to the

recovery profile (Figure 5, fourth). While the spontaneous

recovery ksp influences the success rate (Figure 5, bottom),
frontiersin.org

https://doi.org/10.3389/fresc.2022.1042912
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


TABLE 4 The estimated parameter values for Monkey-N.

Parameter Role Estimated value CI

ap Retention rate of the precision grip 0.9961 ±0.0003

ac Retention rate of the compensatory grip 0.9960 ±0.0003

bp Update rate of the precision grip 0.0035 ±0.0004

bint Interaction term of two skills 0.0039 ±0.0003

bc Update rate of the compensatory grip 0.0037 ±0.0004

sp Motor noise size of the precision grip 0.0017 ±0.0029

sc Motor noise size of the compensatory grip 0.0184 ±0.0141

ksp Spontaneous recovery 0.0684 ±0.0447
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while the recovery valley is present even though the

contribution was set larger (�1:1) or smaller (�0:9).

According to the fact that the estimated ap, ac were large

and other parameters were small (Table 4) with respect to

these values of Monkey-R (Table 2) and the fact that the

result was susceptible to the change of ap, ac in the sensitivity

analysis (Figure 5), we suggest that Monkey-N’s recovery

profile was dominated by these retention factors.
4. Discussion

To elucidate the computational mechanisms underlying the

valley of recovery that has been recognized in clinics (7), we

analyzed macaque monkeys’ motor recovery of grip skills after

stroke. We examined which computational model might

reconstruct the changes in reward probabilities. Across two

monkeys, both training-induced and spontaneous biological

recoveries are necessary to explain the behavioral data. This

suggests that the training became effective in improving the

performance of grip skills after spontaneous biological

recovery was established. This observation is along with the

result of skill selection in the previous literature where the

untrained monkey (i.e., spontaneous recovery only) exclusively

relied on the compensatory grip during the test session (3).

Based on the sensitivity analyses of the estimated parameters,

both the interaction term and the retention factor were also

essential to explain the success probability profile and were

influential on the recovery valley profiles. For both monkeys,

setting the interaction term at higher levels was effective to

avoid the recovery valley. Thus, the dynamics of the memory

associated with grip skills and the extent of the generalization

of these memories are crucial for overcoming the recovery

valley.

In theory, the interaction term facilitates the generalization

of learning one skill to performing the other skill. Such a

generalization of motor learning has been a central issue in

computational motor learning studies (1, 19, 22). Motor
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learning experiences generalize across postures (33), limbs

(34), and movement directions (35). This generalization of

learning is mediated by the interaction between two different

sensorimotor primitives engaged by executed movements (1,

22). For example, when a certain sensory experience (e.g., skill

A) activates corresponding motor primitive neurons, a

different sensory experience (e.g., skill B) may also partially

activate the same primitives because the representation of two

primitives overlap. As a result, an experience of B leads to a

partial memory update of A, and then the learning of B

generalizes to the learning of A (1, 21, 22). Such overlapping

representations of motor primitives appear in the population

coding of motor commands in the motor cortex (36) where

the gains of neural activities were tuned as a function of the

movement direction of the hand: the experience of direction

A partially activated the neurons for direction B. A similar

population coding was found for finger and wrist movements.

For instance, the neurons in the motor cortex with a preferred

direction on the thumb finger were partially activated by

index finger movements (23). Thus, when a learning

experience of the index finger was accumulated via

compensatory grip training, this training effect should

generalize to the coordinated movements of the thumb and

index fingers for the precision grip movement since these two

skill primitives were likely to overlap. Accordingly, the

generalization abilities of the two grip skills are determined by

the condition of the motor representations, such as the

overlap in the two skills in the peri-infarct cortex or the

amount of intact neural resources related to these skills. Such

different conditions in the motor cortex may have caused two

different generalization abilities in the two monkeys that we

analyzed in this paper. Notably, the neuron groups associated

with movement (index finger and thumb fingers) areas active

for the two grip tasks can dramatically change across tasks,

since these skill switches change the contextual input to the

motor systems. Thus, some neurons are only active for one of

the two skills, which was illustrated in a drastic change in M1

neuron activity between two contexts: posture vs. reaching
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FIGURE 5

Sensitivity analysis. Top row. Reward probability profiles with perturbations of the precision grip learning rate bp. The simulationwas conducted by changing
the best-fitted parameter multiplied by 2, 1, and 0 while other parameters except bp remained constant. Second row. Reward probability profiles with
perturbations of the compensatory grip learning rate bc . The simulation was conducted by changing the best-fitted parameter multiplied by 2, 1, and 0
while other parameters except bc remained constant. Third row. Reward probability profiles with perturbations of the interaction term bint . The
simulation was conducted by changing the best-fitted parameter multiplied by 2, 1, and 0 while other parameters except bint remained constant. Forth
row. Reward probability profiles with perturbations on the interaction term ap , ac. The simulation was conducted by changing the best-fitted parameter
multiplied by 1.02, 1, and 0.98 while other parameters except ap , ac remained constant. Bottom row. Reward probability profiles with perturbation of the
spontaneous recovery term ksp. The simulation was conducted by changing the best-fitted parameter multiplied by 1.1, 1, and 0.9 while other
parameters except ksp remained constant. Copyright at JNP https://journals.physiology.org/author-info.permissions.

Izawa et al. 10.3389/fresc.2022.1042912
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(37). This partial overlap may explain partial learning of the two

motor skills (38). Such a partial transfer of the learning skills

between the index and thumb fingers may be more than

simple interaction term since it actually generates very

complex profiles of the valley and recoveries and slightly

different profiles between the two monkeys. Note here that

our modeling relies on the conventional theory of M1

function for representing motor commands (39). The modern

theory of the function of M1 focuses on the likely

contribution of the dynamical aspect (40) to the feedback

control loop (41, 42). Thus, the latent variables of our model

m[p,c] could be the performance level of the motor policy

rather than the feedforward component of the executed

movements. Since we focused on the recovery level of skill

representation, we excluded the effects of optimization and

strategy, which are also important for performance of the skill

(20). These limitations of our modeling may have caused the

estimation error in the recovery profiles (Figures 2F,4F).

However, since both monkeys received a lesion focally in the

motor cortex, considering only the skill execution, excluding

the optimization and strategy considered in the higher motor

area or prefrontal area seems reasonable. At least, the bottom-

line conclusion from this model-based analysis is that

dynamics of the interaction between two motor skills

represented in the motor cortex is crucial for generating the

recovery valley.

The restoration of blood flow and resolution of edema within

the penumbra, i.e., the area of reversibly damaged tissue

surrounding the irreversibly damaged core, is thought to

underlie spontaneous recovery after stroke (43). In the

monkeys whose data were reanalyzed in the present study,

however, these changes in the penumbra were not the primary

cause of spontaneous recovery because the neurons in the

motor cortex had been directly destroyed by ibotenic acid

without affecting blood flow. Therefore, plastic changes in

neuronal structure and function were probably involved

in spontaneous and training-induced recovery in the monkeys

in the present study. The expression of growth-associated

genes, which is important in structural changes of neurons, is

known to increase in the region surrounding brain damage

(44) and is suggested to be involved in spontaneous recovery.

Upregulated gene expression was mainly observed several

weeks after brain damage and therefore is thought to be

involved in plasticity during the acute phase of brain damage.

However, most of the previous studies were performed in

rodent models of brain damage, and further investigations are

needed to understand the time course of gene expression

changes after damage in the primate brain. Moreover, some of

the growth-associated genes are constantly expressed in the

normal adult brain. For example, the expression of growth-

associated protein-43 (GAP-43), whose expression has been

correlated with axonal sprouting (45), is most abundant during

the developmental period, but a certain level of expression has
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been found in monkey neocortical areas and the hippocampus

(46–48). The constant expression of growth-associated genes

may underlie spontaneous recovery after the acute phase.

Although our computational model of motor recovery

explained the recovery dynamics of motor skills, we found

that the most critical problem for causing the recovery valley

was anti-optimal decision-making from the compensatory grip

to the precision grip (Figures 2C,E). This skill selection

mechanism between the grips during training and the reason

why it was anti-optimal still remain unclear. The precision

grip, which uses the pad of the thumb and the pad/side of the

index finger, is the most frequently used grip type when

monkeys manipulate small objects, whereas the compensatory

grip that we observed in the early phase of recovery is not

commonly used in healthy macaque monkeys (49, 50). Thus,

the preference for the use of the precision grip after recovery

is reasonable. Particularly, due to the interaction term of the

skill development, after the compensation grip training

facilitated the precision grip’s recovery, the use of the

precision grip resulted in successful food retrieval, which

increased motivation for using the precision grip. If the

interaction term is not influential, skill switching results in a

drop in the success rate, which discourages the sustainable use

of the precision grip. This switching scenario between

precision and compensatory grips is analogous to learned

nonuse, where stroke patients exhibit excessive reliance on the

unaffected limb compared to the paralyzed limb after stroke

(51). A computational model of learned nonuse has been

theorized with a reinforcement learning model (52). In this

model, the value representation of each skill is updated to

maximize the expectation of value by a reinforcement learning

algorithm. In fact, arm choice in humans is determined by

the learned values and efforts (53). Additionally, in stroke

patients, the performance of the limb measured immediately

after therapy may predict the long-term improvement in arm

use (54). Based on these results of learned nonuse, the

macaque’s selection of two grip skills that we examined in the

present paper might also be mediated by the value-based

reinforcement learning algorithm. However, to examine this

idea, a further experiment where we manipulate the quantity

and quality of rewards and examine decision-making

responses with reward changes is necessary.

Our modeling study and simulations may suggest several

clinical applications. Based on our sensitivity analyses,

increasing interaction terms may avoid the drop in

performance during recovery. Thus, clinical interventions that

increase the interaction term between two skills and between

two limbs is expected to prevent the recovery valley and

achieve efficient rehabilitation for precision. As discussed above,

the generalization effect of motor learning is generated by

overlaps in the neural representations of two motor primitives.

Thus, somehow extending the overlap of representations of the

two skills or virtually replicating such a wider overlap should
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enhance the interaction effects. According to motor adaptation

theory, generalization patterns are characterized by the profile

of the tuning function of the receptive fields (22). For instance,

applying transcranial direct current stimulation (tDCS) to the

cortical motor cortex increases potentiation of a synapse (55)

by reducing γ-aminobutyric acid (GABA) concentrations (56),

which may modulate the reciprocal connections of neurons

that are crucial for motor learning (57). Thus, tDCS on the

motor area may enhance interaction terms between the ideal

motor skill and the compensatory motor skill. Indeed, applying

tDCS on the motor cortex increases generalization across

motor learning movements (58). Another possibility for

realizing such an expansion of the overlap between two motor

primitives is that when the compensatory motor skill is selected

in the early phase of the rehabilitation, the primitive for the

ideal motor skill could be stimulated along with the movement

of the compensatory motor skill. For instance, when the

compensatory grip is selected where only the index finger’s

motion is initiated, if the thumb is moved compulsorily by an

assistive robot for the grip movement such as (59), the

proprioceptive input to the sensorimotor primitive of the

thumb forms a sensory experience of the precision grip

resulting in a corresponding stimulation of the precision grip

primitive. This would replicate the interaction between the two

grip skills and may lead to a generalization of skill learning

from the compensatory grip to the precision grip.

In addition, the present study suggests that enhancing the

retention factor will be a key strategy to increase the effects of

training and to prevent the recovery valley. Previous studies

have demonstrated that activity-dependent neural plasticity,

such as LTP, is essential for the long-term retention of

learned motor skills (60, 61); therefore, interventions to

upregulate activity-induced plasticity are thought to enhance

this parameter. A line of studies has suggested that

neuromodulation techniques such as transcranial magnetic

stimulation (TMS) and tDCS increase the magnitude of LTP

(62). A recent study reported that the collapsin response

mediator protein 2 (CRMP2)-binding compound edonerpic

maleate facilitated experience-driven synaptic glutamate

α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic-acid

(AMPA) receptor delivery and accelerated training-induced

motor function recovery from brain damage in mice and

monkeys (63). These reports suggest the clinical validity of

neuromodulation- and medication-mediated interventions to

accelerate the effects of rehabilitative training. An important

next step will be to explore how these intervention

technologies affect this parameter. The information will be

clinically useful in estimating the effect size of the

interventions on each patient’s outcome.

There are some limitations in our modeling study. First, since

the days that we had video recording data were limited, we

analyzed the action selection only for these data. Thus,

we assumed that the action selection probability between these
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days was constant. We considered this assumption reasonable

since the action selection probability shifted gradually over the

training periods (Figures 2,4C). Second, since the two

monkeys’ lesion areas are slightly different, the two monkeys

exhibited very different recovery profiles (Figures 2,4C,D).

Nevertheless, our model-based analysis derived a common basis

between these two monkeys: the contributions of both

spontaneous and training-induced recoveries and the

importance of the interaction between the two skills. Whereas

there was randomness in the recovery profile of the Monkey-N

(Figure 4D), the computational model filtered such

randomness out and captured the recovery valley (Figure 4F).

Such a large lesion in Monkey-N made the difference in the

recovery and the choice profiles between the two grip skills

unclear: Monkey-N selected the precision grip from the initial

stage of the training exhibiting a certain success rate. Thus, our

model estimated the skill level between the two grips to be

more or less the same. Third, in our modeling, we focused

only on skill recovery when the choice of skills was changed

during the training without modeling the decision-making

process. For instance, although, in Monkey-R, the recovery rate

of the precision grip is higher than that of the compensatory

grip, and thus it might be reasonable to select the precision

grip to increase its performance, this monkey-R initially

selected the compensatory grip. However, our modeling does

not answer for the elucidation of this process. Since this

decision-making process is important for understating

the rehabilitation process, we would like to continue to study

this problem for our future work. Fourth, the model was

examined only for the monkey model of the stroke where the

lesion was made focally in the hand area in the primary motor

cortex. Thus, this model does not capture heterogeneous

phenomena that happen in human stroke recovery; thus, the

generalization of our conclusion has a significant limitation.

Fifth, the estimated contribution of spontaneous recoveries was

very different between the two monkeys: Whereas Monkey-R’s

spontaneous recovery was estimated as contributing

multiplicatively, Monkey-N’s was estimated as additively. This

difference leads to very different profiles of the recovery of skill

levels. More importantly, the interpretation of the effect of

spontaneous recovery is very different. We speculate that there

are two different roles in spontaneous recovery: One is a

spontaneous biological recovery where the spontaneous

reorganization of neural systems forms a basis to re-learn

representations of the skills, which thus contributes

multiplicatively, and the other is a spontaneous skill learning

where the previous experience of the skill was formed in an

off-line manner which was added onto the use-dependent skill

recovery. Since Monkey-N’s lesion was large, the spontaneous

recovery for forming the basis of the representation might not

be successful. Sixth, we assumed that the motor noise values

were constant thought the training days. Although it is possible

that the motor noise magnitude changed over training, our
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system modeling approach does not allow changing these values

while estimating the hidden representation of skills. Thus, this is

a significant limitation of our study.
6. Conclusion

The present study explored computational mechanisms

underlying a transient drop in task performance and the

emergence of compensatory grips that differed from those

used before lesion induction that was observed in macaque

monkeys (3), which have also been shown in the squirrel

monkey model of primary motor cortex lesions (5, 6). We

found that spontaneous recovery, training-induced recovery,

retention factors, and interaction terms are crucial to

explaining profiles of recovery and recovery valleys through

model selection, parameter estimation, and sensitivity

analyses. Furthermore, the simulation-based examination of

the model parameters provided clues for effective

rehabilitation techniques, including effective medications,

brain stimulation, and robotic rehabilitation technologies.
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