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The acquisition of daily handrim wheelchair propulsion skill as a multi-layered

phenomenon has been studied in the past. Wheelchair racing, however, is considerably

different from daily handrim wheelchair propulsion in terms of propulsion technique, as

well as the underlying equipment and interface. Understanding wheelchair racing skill

acquisition is important from a general motor learning and skill acquisition perspective,

but also from a performance and injury prevention perspective. The aim of the current

lab-based study was 2-fold: to investigate the evolution of racing wheelchair propulsion

skill among a sample of novices and to compare them with an experienced wheelchair

racer under similar conditions. A convenience sample of 15 able-bodied novices (8

male, 7 female) completed a standardized three-week submaximal uninstructed practice

protocol (3 weeks, 3 sessions per week, 3x4 min per session) in a racing wheelchair

on an ergometer. Required wheeling velocity was set at 2.78 m/s (10 km/h) and a

rolling friction coefficient of 0.011 (resulting in a mean target load of 21W) was used.

For comparison, an experienced T54 Paralympic athlete completed one block of the

same protocol. Kinetics, kinematics, and physiological data were captured. A mixed

effects regression analysis was used to examine the effect of practice for the novices,

while controlling for speed. All participants finished the protocol successfully. However,

not all participants were able to achieve the target speed during the first few sessions.

Statistically significant improvements over time were found for all outcome measures

(i.e., lower metabolic strain, longer push and cycle times) with the exception of mean

power and torque per push. The athlete used a significantly greater contact angle and

showed “better” outcomes on most metabolic and kinetic variables. While the athlete

used a semi-circular propulsion technique, most participants used a double looping over
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technique. Three weeks of uninstructed wheelchair racing practice significantly improved

efficiency and skill among a group of novices, in line with previous studies on daily handrim

wheelchair propulsion. The comparison with an experienced athlete expectedly showed

that there is still a large performance (and knowledge) gap to be conquered.

Keywords: wheelchair racing, wheelchair athletics, motor learning, propulsion technique, kinematics, physiology,

kinetics

1. INTRODUCTION

Wheelchair racing was part of the first international wheelchair
sporting competition for people with disabilities in 1952 (1).
Since then, wheelchair racing and racing wheelchairs have greatly
evolved, the latter now consisting of a long-base three-wheel
lightweight configuration with one large wheel in the front and
two large rear wheels with relatively small handrims in order to
reach and maintain high speeds (2). Races are organized for field
and track events and include sprints, middle-long distances, and
long distances, including themarathon. Athletes compete in their
own class to ensure that athletes with similar impairment race
against each other (3). Involvement in sports, such as wheelchair
racing after rehabilitation has a positive influence on physical
(4) and psychological health and well-being (1, 5). Therefore,
it is important that patients with lower-limb impairments get
involved in new (adapted) sports, such as wheelchair sports,
during, and after rehabilitation. This requires them to learn new
propulsion (and game) skills, which is especially thought to be
required for wheelchair racing where the wheelchair design and
interface require for different postures and propulsion technique.
Although there is existing knowledge on skill acquisition during
daily wheelchair propulsion (6–8), mechanisms of learning
wheelchair racing are still unclear.

To become more proficient in wheelchair racing, an athlete
either needs to increase the physical work capacity or become
more efficient (1). Experienced wheelchair racing athletes have
been studied to gain insight in their propulsion technique and
corresponding mechanical efficiency. Compared with regular
handrim wheelchair propulsion, athletes use a larger contact
angle of approximately 180◦ and start at 20◦ past the top-
dead center of the handrim (9, 10). Starting further on the
handrim allows athletes to be in a more horizontal position in the
racing wheelchair, reducing air resistance. Moreover, wheelchair
racers use gloves as coupling is infeasible at racing speeds.
During racing conditions, as segmental velocities increase, the
push is performed as a stroke against the rims. Whereas,
during regular handrim wheelchair propulsion one can grab the
handrims, making push-pull action possible (11). To increase
wheelchair racing performance, athletes need to learn this
new movement, requiring different movement patterns and
adaptations in both physiology and technique. Yet, little scientific
research has focused on the acquisition of wheelchair racing skill
thus far.

The acquisition of daily wheelchair propulsion skill has
been extensively studied for regular handrim wheelchairs in
wheelchair users (12) and (novice) able-bodied participants
(6–8). These studies generally examined steady-state submaximal

performance at low speeds, using gross mechanical efficiency
as the primary outcome measure (13). Experienced participants
are said to have a higher mechanical efficiency, meaning they
are able to produce the same amount of external power output
at a lower energetic cost. This is in line with the framework
of Sparrow and Newel (14, 15) and Almåsbakk et al. (16),
where cyclic movement patters are thought to emerge through
the interaction of different constraints, with metabolic energy
as an optimization parameter. The increase in mechanical
efficiency can be due to improvements in propulsion skill and/or
physiological adaptation (12). A high mechanical efficiency
in wheelchair propulsion was linked to increased wheeling
proficiency, expressed as greater contact angles and a decreased
push frequency, which is especially beneficial as this is thought to
improve mobility and reduce risk of injury (17, 18).

A better technique and higher efficiency are also beneficial to
racing performance (9, 10) and could reduce injury sensitivity.
However, racing and regular handrim wheelchair propulsion
skill are distinct and there is no information available on the
acquisition of wheelchair racing skill. One challenge specific
to wheelchair racing is to maintain extreme high velocities.
Smaller sized handrims help to meet the required speeds
to some extent, since linear hand speed can be kept lower
with smaller rim diameters which was shown to be more
efficient and less straining in experienced wheelers (19). Yet,
the majority of wheelchair racing performance probably still
comes down to underlying coordination and skill. Like regular
handrim wheelchair propulsion, wheelchair racing can be
approached as a cyclical skill where motor learning can be
quantified as a decrease in energy expenditure (8, 14). As
such, mechanical efficiency is expected to increase, as mastering
this task should result in more optimal kinetic and kinematic
solutions (7, 16).

The current study focused on the initial motor learning
process of three weeks of lab-based uninstructed wheelchair
racing propulsion practice in inexperienced able-bodied
participants on a wheelchair ergometer. More specifically,
it examines the gross mechanical efficiency as the primary
outcome measure for motor learning and the concomitant
kinetic and kinematic solutions of the participants. Able-bodied
participants were chosen as they are full novice to the task
and form a relatively homogeneous group (similar age, lack of
wheelchair experience, and no comorbidities), minimizing the
inter-individual variation which allows to better isolate the effect
of uninstructed learning on the outcomes of the motor learning
process (20). Additionally, an experienced athlete performed a
similar protocol to provide a reference for skilled wheelchair
racing propulsion.
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FIGURE 1 | Overview of the protocol: participants were tested on 9 occasions spread over three weeks with three blocks of practice each. Data were captured during

all sessions, but kinematics were only recorded during the first- and last (pre and post) session.

2. MATERIALS AND METHODS

2.1. Participants
The current study used a convenience sample of 15 inexperienced
able-bodied participants (7 female/8 male, 22.0 (±1.35) years
old, 69.3 (±9.87) kg). The sample size was based on previous
studies with a similar design in regular handrim wheelchairs
(8, 21, 22). Participants were eligible for inclusion if they
had no previous experience with wheelchair propulsion and
no contraindications for exercise [PARQ, (23)]. Additionally,
one high-level T54 middle-distance athlete, was included for
comparison (male, 67 kg). All participants provided written
informed consent after receiving detailed information about the
study. The study was approved by the local ethical committee of
the Center for Human Movement Sciences, University Medical
Center Groningen, University of Groningen.

2.2. Study Design
Participants received a total practice load of 108-min consisting
of nine sessions (three sessions per week for three weeks)
of 3x4 min of submaximal manual racing wheelchair exercise
(Figure 1) on an instrumented wheelchair roller ergometer
[Lode, Groningen, The Netherlands, (24)]. This practice load
was shown to be sufficient to achieve a learning effect in regular
handrim wheelchair propulsion (6, 20, 25). They received no
advice on propulsion technique prior to the experiment and no
feedback during the sessions, resulting in a “natural” learning
process (26). Before the start of an exercise block, the sole
instruction was to propel at a required speed of 2.78 m/s (10
km/h) and to hit/push the handrimwith the soft hand gloves. The
required velocity was based on a pilot determining a feasible, yet
fast enough, speed for untrained participants. A computer screen
in front of the participants provided visual feedback on the actual
and target speeds (21).

2.3. Equipment
2.3.1. Wheelchair

All tests were performed in the same experimental Amasis racing
wheelchair (Wolturnes, Nibe, Denmark) with 0.71 m (28-inch)
wheels and 0.38 m (15-inch) handrims on the roller ergometer.
The wheelchair was not individually accommodated. Participants
used soft hand gloves to push the handrim. The athlete performed

in his personal racing wheelchair with 28-inch wheels and 37 cm
diameter handrim. Tire pressure of the rear wheels was set at 800
kPa (8 bar) before every session.

2.3.2. Physiology

Metabolic data were collected using a K5 Cardio-Pulmonary
Exercise Testing (CPET) spirometer (COSMED, Rome, Italy) in
breath-by-breath mode. Turbine, room air, reference gas, and
delay calibrations for the spirometer were performed before each
session. Heart rate was measured with a Garmin HRM Dual
(Garmin International Inc, Kansas, USA) connected with the
CPET. Participants were asked to rate their perceived exertion on
a 6-20 Borg scale (27).

2.3.3. Kinetics

Force and velocity data were collected with an Esseda (Lode
BV, The Netherlands) wheelchair ergometer at 100 Hz [for a
technical description see (24)]. The ergometer was calibrated
to account for static and dynamic friction before each session.
For a demonstration of this process see (28). A rolling friction
coefficient of 0.011 was set, resulting in a theoretical power output
of 21W at the mean body weight of the novice participants in this
study. The coefficient was based on eight coast-down tests (29)
with two athletes at the outdoor athletics track at the Olympic
Training Center Papendal. The athlete, originally part of another
study, performed at a power output of 28 W.

2.3.4. Kinematics

Finally, an active cluster marker was placed on the right-
hand glove and tracked by an optoelectronic camera system
(Optotrack, Northern Digital, Waterloo, Canada) at 100 Hz. The
cluster was used to determine the location of second and fifth
metacarpal (M2 and M5) during propulsion.

2.4. Analyses
All analyses were performed in Python [The Python Foundation,
(30)] using a custom package available on the Python Package
Index (31). To examine the motor learning process over time, all
blocks were included and the last minute of each block was used,
assuming steady-state propulsion. Finally, the mean of the three
blocks per session were used for statistical analysis. Pre-processed
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A B

FIGURE 2 | Swarmplot of the ability of individual participants to match the target speed ±5% (A) and the respiratory exchange ratio (RER) <1.0 (B) during each

session (n=15).

data are available as a supplementary material file in a comma
separated values (.csv) format (32).

2.4.1. Physiology

Heart rate, respiratory exchange ratio (RER), and energy
expenditure (EE) were obtained from the CPET system. Gross
mechanical efficiency (GME) was calculated from the EE and the
external power output (PO) obtained from the ergometer:

GME(%) = EE ∗ PO−1 ∗ 100 (1)

GME for sessions where the mean RER was higher than 1.0 were
discarded, which was the case for three samples (Figure 2).

2.4.2. Kinetics

Kinetic data (force on the roller) from the ergometer were first
filtered using a 15 Hz 4th-order zero-phase Butterworth filter.
Propulsion technique variables (contact angle, push & cycle time,
mean & peak torque and power per push, and work per push)
were then determined based on the speed and force data from the
ergometer for the left and the right side. Afterwards, the mean of
the left and right side was used for further (statistical) analysis.

2.4.3. Kinematics

The last fifteen s of the M2 virtual marker location were plotted
for each block of the first- and last session. Three raters (GJ,
RK, and PW) qualitatively rated the propulsion technique using
the definitions of Boninger et al. (33): Arcing (ARC), double
looping over propulsion (DLOP), semicircular (SC), and single
looping over propulsion (SLOP). Participants using the ARC
pattern follow the pushrim closely for a small arc during the
push and recovery phase. The DLOP pattern is characterized
by the hands starting above the pushrim, then following the
handrim, and then going over, crossing, and going under the
pushrim during the recovery phase. In the SC pattern the hand

dips under the handrim in a circular or elliptic motion and in
the SLOP pattern the hand passes over the handrim during the
recovery phase (33). The most frequent technique among blocks
was identified as the session technique. In the case of a tie, the
observed technique of the last block was used, this was done
for each rater individually. Finally, the most frequent technique
among raters was determined and reported.

2.5. Statistics
2.5.1. Physiology and Kinetics

A linear mixed effects analysis of the effect of time (session 1–9)
was performed using R [RCore Team, (34)] and the lme4 package
(35). Time and speed (without interaction term) were included in
the model as fixed effects. Speed was added as not all participants
were able to achieve the target velocity during the first sessions
(Figure 2). Separate random intercepts and slopes were added
for participants for the effect of time. The final model was
defined as:

outcome ∼ session+ speed + (1+ session|subject) (2)

There were no obvious deviations in the residual plots with
regards to homoscedasticity or normality. P-values were obtained
with a likelihood ratio test of the full model vs. a model without
the effect of time. Data from the last session were compared with
the athlete using a one-sample t-test. An alpha of 0.05 was used
for all statistical tests.

2.5.2. Kinematics

Fleiss’ Kappa was calculated to determine the agreement
between raters with regards to the propulsion technique and
were interpreted based on the suggestions of Landis and
Koch (36). A contingency table was produced to describe
the development of propulsion technique, but no further
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FIGURE 3 | (A–F) Outcomes for six metabolic and kinetic parameters aggregated (mean and standard deviations, n=15) by session (⋆=athlete). All variables shown

significantly changed over time. The athlete scored significantly “better” on all parameters shown, except for cycle time (D).

statistical analysis was performed due to the sparsity of
the data.

3. RESULTS

All participants completed the experiment successfully. Yet, not
all novices were able to achieve the desired velocity (±5%)

during the first three sessions (Figure 2). Resultingly, speed
and power output significantly increased between subsequent
sessions as participants were increasingly able to achieve the
target speed (Figure 2). Concomitantly, the average respiratory
exchange ratio was higher than 1.0 during the first two sessions
for some of the participants (2/15 in session 1 and 1/15
in session 2).
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TABLE 1 | Outcomes: last minute of each block aggregated by session and reference data of a single wheelchair athlete with mixed effects regression and one-sample t-test results (n=15).

Variable Session Statistics

1 2 3 4 5 6 7 8 9 Aa Speedc Timec χ
2 pd te p

Protocol

Speed 2.34 (0.39) 2.53 (0.27) 2.68 (0.15) 2.76 (0.08) 2.78 (0.08) 2.79 (0.09) 2.81 (0.08) 2.79 (0.14) 2.84 (0.08) 2.78 n.a. 2.45 (0.07) 13.987 <0.001 2.60 0.02f

Power 19.7 (4.49) 21.6 (3.55) 22.7 (3.15) 23.6 (3.2) 23.6 (3.04) 23.7 (3.03) 23.8 (2.97) 23.7 (3.20) 24.1 (2.97) 28.4 n.a. 0.43 (0.09) 13.195 <0.001 -5.50 <0.001f

Physiological

RPE (6-20) 15.2 (1.8) 14.3 (2.14) 13.6 (1.85) 13.2 (2.09) 12.4 (2.03) 12.2 (1.98) 11.8 (2.23) 11.6 (1.77) 11.4 (1.60) 8.0 -2.04 (0.47) -0.36 (0.05) 22.937 <0.001 8.20 <0.001

HR (BPM) 141 (19.5) 142 (20.7) 132 (20.2) 130 (20.5) 126 (19.8) 124 (12.9) 119 (14.3) 120 (14.1) 120 (12.8) 101 2.36 (4.95) -3.21 (0.56) 19.128 <0.001 6.04 <0.001

EE (W) 552 (152) 543 (115) 544 (134) 522 (123) 510 (105) 482 (72.7) 451 (71.1) 445 (61.4) 450 (58.2) 426 112 (31.4) -21.7 (3.71) 19.105 <0.001 1.52 0.06

GME (%)b 3.88 (0.78) 4.06 (0.76) 4.37 (0.94) 4.68 (0.93) 4.75 (0.81) 4.96 (0.63) 5.36 (0.77) 5.4 (0.94) 5.39 (0.60) 6.66 0.74 (0.32) 0.18 (0.83) 18.276 <0.001 -8.20 <0.001

Kinetics (per push)

Contact angle (deg) 70.0 (20.4) 78.2 (15.0) 86.8 (13.5) 91.3 (17.7) 96.2 (15.7) 98.7 (14.6) 103 (18.8) 106 (19.3) 108 (20.7) 165 28.7 (4.80) 3.12 (0.84) 10.216 <0.01 -10.4 <0.001

Push time (s) 0.17 (0.04) 0.17 (0.03) 0.18 (0.03) 0.19 (0.04) 0.19 (0.03) 0.20 (0.03) 0.21 (0.04) 0.21 (0.04) 0.21 (0.04) 0.37 0.003 (0.001) 0.006 (0.002) 8.9818 <0.01 -15.4 <0.001

Cycle time (s) 0.75 (0.23) 0.88 (0.22) 0.94 (0.21) 1.02 (0.26) 1.10 (0.25) 1.18 (0.32) 1.18 (0.34) 1.2 (0.32) 1.26 (0.39) 1.26 0.32 (0.07) 0.04 (0.01) 8.8434 <0.01 0.00 0.50

Mean torque (Nm) 6.76 (2.31) 7.1 (2.39) 7.15 (2.08) 7.56 (2.44) 7.79 (2.48) 8.07 (2.92) 7.55 (1.75) 7.69 (1.85) 7.73 (1.87) 6.17 0.0242 0.87 3.22 0.03

Peak torque (Nm) 12.4 (3.85) 12.9 (3.97) 13.2 (3.92) 13.9 (4.24) 14.4 (4.58) 15.1 (4.93) 14.6 (3.76) 15.0 (4.44) 15.0 (4.10) 13.0 2.35 (0.81) 0.24 (0.10) 4.8888 0.03 1.89 0.04

Work (J) 8.59 (3.73) 10.2 (3.85) 11.3 (3.68) 12.7 (5.21) 13.7 (5.00) 14.5 (5.8) 14.2 (4.71) 14.9 (4.87) 15.3 (5.41) 18.3 6.25 (1.01) 0.49 (0.16) 7.5477 <0.01 -2.07 0.03

Mean power (W) 51.0 (23.7) 57.2 (22.8) 60.3 (19.1) 65.5 (22.1) 68.0 (22.8) 70.5 (26.0) 66.5 (16.0) 67.2 (17.2) 68.6 (17.2) 48.1 0.0768 0.78 4.61 <0.001

Peak power (W) 93.0 (40.0) 104 (38.4) 111 (36.3) 120 (38.5) 126 (42.1) 132 (44.3) 128 (34.0) 131 (40.7) 133 (37.7) 102 54.8 (7.07) 2.06 (0.85) 5.2618 0.02 3.26 <0.01

a, athlete, single block at higher resistance; b, cases with respiratory exchange ratio (RER) < 1.0; c, unscaled estimates ± standard errors; d, p-value from likelihood ratio test; e, one-sample t-test (df=14); f, two-sided p-value; RPE,

respiratory exchange ratio; HR, heart rate; BPM, beats per minute; EE, energy expenditure; GME, gross mechanical efficiency.
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A B

C D

E

FIGURE 4 | Typical kinematics examples of the last fifteen seconds of the M2 virtual marker position displayed by different participants (each subplot shows one): (A)

arcing, (B) double looping over, (C) semicircular, (D) single looping over propulsion, (E) semicircular, athlete. All data are from the last block of the last session with the

exception of panel (A).

3.1. Physiology and Kinetics
Physiological and kinetic aggregates and statistical outcomes
are displayed in Figure 3 and Table 1. A statistically significant
improvement (i.e., higher GME, lower metabolic strain, higher
push and cycle times) over time was found for all outcome
measures with the exception of mean power and mean torque
per push. Moreover, the perceived exertion also significantly
lowered over time from “hard” to “fairly light.” The athlete
showed significantly better outcomes (i.e., less straining) on most
metabolic and kinetic variables.

3.2. Kinematics
Results of the qualitative assessment of propulsion technique
during the pre- and post-test are displayed in Figure 4 and
Table 2. Agreement among the three raters was “substantial”
during the pre-test κ=.790, p< 0.001 and “almost perfect” during
the post-test κ=.813, p < 0.001. Most participants started with
a SLOP (53%) technique, but the majority gravitated toward a
DLOP technique in the post-test (73%). The athlete used an SC
propulsion technique.

4. DISCUSSION

This is the first study to examine the acquisition of wheelchair
racing propulsion skill within the first three weeks of practice of
inexperienced able-bodied participants. In general, participants
became more proficient in wheelchair propulsion in a racing
wheelchair on a wheelchair ergometer, which was reflected in
the successful completion of the practice bouts in terms of

speed and power output, and the significant improvements in
propulsion skill and corresponding reductions in metabolic cost
and perceived exertion. However, the novice participants still had
a significantly different propulsion technique compared to the
professional athlete.

Lower heart rates and energetic cost suggest that
the propulsion technique became less strenuous for the
inexperienced participants over time, which is corroborated by
the decrease in perceived exertion (RPE).While these lower heart
rates may have been the result of improved cardiorespiratory
fitness, the American College of Sports Medicine (ACSM)
states that 150 min of moderate exercise, or 75 min of vigorous
exercise per week are required (37). Since these requirements
are not met with 108 min of exercise and as energy expenditure
also decreased, the lower heart rates were more likely caused
by improvement in neuromuscular coordination and thus a
reduction in cardiometabolic requirements with improved
coordination and skill level (20). Accordingly, gross mechanical
efficiency follows an inverse pattern, increasing from 3.9 to 4.5%
(+39%). However, this is relatively low compared to other studies
in regular handrim wheelchair propulsion (6–8, 12, 20, 21),
which is unexpected considering the relatively high power
output requirements of wheelchair racing propulsion (22, 38).
Experienced wheelchair racing athletes generally have a more
efficient propulsion technique (10), as was the case in the current
study. Yet, the results of the experienced athlete were not similar
to those of experienced wheelchair racing athletes in previous
studies (9, 10, 39). However, the speed and power output of
the current study (2.78 m/s) were also much lower than those
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TABLE 2 | Contingency table of propulsion technique during the first and last session n(%).

Before

ARC DLOP SC SLOP Total

A
ft
e
r

ARC 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

DLOP 3 (20%) 2 (13%) 0 (0%) 6 (40%) 11 (73%)

SC 0 (0%) 0 (0%) 2 (13%) 0 (0%) 2 (13%)

SLOP 0 (0%) 0 (0%) 0 (0%) 2 (13%) 2 (13%)

Total 3 (20%) 2 (13%) 2 (13%) 8 (53%) 15 (100%)

Arcing (ARC), double looping over propulsion (DLOP), semicircular (SC), and single looping over propulsion (SLOP).

of previous studies (3.60–7.20 m/s), which could explain the
difference in mechanical efficiency (9, 39).

Coordination of wheelchair racing propulsion is complicated
due to the use of gloves, a small hand rim and a fast spinning
wheel (40). Coupling happens outside of the visual field which
makes it harder to start the push with the same hand velocity
compared to the wheel velocity (21). As a result of practice,
participants were able to increase their contact angle and decrease
their push frequency, which is in line with previous studies in
regular handrim wheelchairs (6–8, 12, 20, 21) and the longer-
slower hypothesis as proposed by Sparrow and Newell (15).
The latter states that changes in the timing of movement
might be linked to reduced metabolic loads, in line with the
increased muscle contraction efficiency at optimum speeds in
Hill’s muscle model (41). The current study adds to the body of
evidence relating control parameters and metabolic expenditure.
In contrast to the other parameters, mean power per push did not
significantly change. However, using the same mean power on
a longer push means that the participants were able to increase
the amount of work delivered per push. The wheelchair athlete
used an even larger contact angle, resulting in an even longer
push time. Even though the athlete performed at a higher external
power output, this still allowed for a lower mean and peak power
per push.

Only two (13%) participants adopted a semi-circular
propulsion pattern which is ubiquitous in competitive wheelchair
racing. All other participants used different techniques with
the majority (73%) gravitating toward a double looping over
propulsion. This propulsion technique is often associated with
regular handrim wheelchair propulsion (33, 42). On the other
hand, athletes use a near horizontal trunk position during
wheelchair racing which limits the available range of motion
for the recovery pattern and forces a starting position on
the handrim that is beyond top-dead center. As the current
study was performed in a lab setting, where no wind or air
resistance was present, there is no need to employ a more
horizontal position and reduce the exposed surface area. This
might have encouraged a different propulsion pattern as the
task/environment constraints are different than those of actual
wheelchair racing, leading to a different movement solution.
However, it is still unclear whether a longer attenuation period
may lead to the same kinematic solutions or that the participants
are stuck in a local minimum. Finally, while pattern classification
is subjective, the inter-rater agreement in this study was high.

Nevertheless, some quantitative measures are available and
should be further developed to provide a more robust objective
method of describing propulsion patterns (42, 43).

Despite piloting beforehand, not all participants seemed able
to achieve the desired velocity during the first three sessions.
The able-bodied participants were complete novices, whereas
regular handrim wheelchair users already have some propulsion
skill that could transfer. Wheelchair racing propulsion is a
relatively hard task which takes a certain amount of skill to
even begin the process of mastery. To borrow terminology
from the electronic-sports domain: it has a high skill floor.
However, as speed was included in the mixed effects regression
model, the statistical outcomes “account” for the effect of speed.
The inclusion of one experienced athlete provided information
about the reference technique of racing propulsion. Yet, one
athlete is not representative for all wheelchair racing athletes
across all disciplines. The athlete also performed at a higher
external power output than the novice participants, which
is known to influence propulsion technique parameters and
mechanical efficiency (22, 38, 44). Finally, any potential sex-
dependent differences between the athlete and 7/15 novice
participants are not accounted for. These specific results should
therefore be treated with care. However, for other parameters
such as RPE and heart rate the differences found are even
more pronounced when considering the higher power output.
Finally, it must be noted that all results were obtained on an
ergometer and in a small sample of able-bodied participants.
The ergometer provides a more constrained, yet standardized,
environment than a racing track or other training environments.
Moreover, the current ergometer setup only allowed for the
examination of straight-line wheelchair propulsion. Previous
studies in regular handrim wheelchair propulsion, however,
have not found any differences between treadmill/ergometer and
overground propulsion practice (20, 45). Whether this is also the
case for themore complicated wheelchair racing task is an avenue
for future research.

The current study examined the effects of a uninstructed
learning setup, to improve our understanding of the learning
process of wheelchair racing propulsion. Yet, previous studies
in daily handrim wheelchair propulsion have also examined
the effects of variable practice (20) and feedback (8). Exploring
those setups would be especially interesting since learning
processes in sports are generally guided or supervised by trainers
or coaches. The effect of feedback or variable practice could
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therefore provide them with valuable input. Perhaps one of
the most essential parts of wheelchair racing is the coupling
of the gloved hand with the handrim (40). To provide enough
friction between the glove and the handrim, a medio-lateral
force is required which reduces the fraction of effective force
(46). Therefore, studies that specifically examine this coupling
and the influence of sports equipment (i.e., rim and glove type)
using 3D kinematics and kinetics are needed. Finally, since the
sport is only eligible for athletes with an impairment, this seems
crucial for understanding wheelchair racing. As these athletes
usually already have some wheelchair experience, but might
have a reduced physiological capacity or other impairments
that influence the learning process. Therefore, future research
should also include experienced wheelchair users that are new to
wheelchair racing propulsion.

In short, the current study on motor learning processes
found similar results for wheelchair racing and previous
research in daily wheelchair propulsion. Similar to previous
studies, participants show larger contact angles and a decreased
push frequency. Using only uninstructed practice, participants
increased their mechanical efficiency by 39% (1.5%-point).
A comparison with an experienced athlete showed that
both the propulsion pattern, and physiological and kinetic
outcomes are still different. The performance gap between
the participants and the experienced athletes shows that
much can still be learned about the difficult task that is
wheelchair racing.
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