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Strengthening exercises are recommended formanaging persisting upper limb

(UL) weakness following a stroke. Yet, strengthening exercises often lead to

variable gains because of their generic nature. For this randomized controlled

trial (RCT), we aimed to determine whether tailoring strengthening exercises

using a biomarker of corticospinal integrity, as reflected in the amplitude of

motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation

(TMS), could optimize training e�ects in the a�ected UL. A secondary aim was

to determine whether applying anodal transcranial direct current stimulation

(tDCS) could enhance exercise-induced training e�ects. For this multisite RCT,

90 adults at the chronic stage after stroke (>6 months) were recruited. Before

training, participants underwent TMS to detect the presence of MEPs in the

a�ected hand. The MEP amplitude was used to stratify participants into three

training groups: (1) low-intensity, MEP<50 µV, (2) moderate-intensity, 50 µV

< MEP < 120 µV, and (3) high-intensity, MEP>120 µV. Each group trained at a

specific intensity based on the one-repetition maximum (1 RM): low-intensity,

35–50% 1RM; moderate-intensity, 50–65% 1RM; high-intensity, 70–85% 1RM.

The strength training targeted the a�ected UL and was delivered 3X/week for

four consecutive weeks. In each training group, participants were randomly

assigned to receive either real or sham anodal tDCS (2mA, 20min) over

the primary motor area of the a�ected hemisphere. Pre-/post-intervention,

participants underwent a clinical evaluation of their UL to evaluate motor

impairments (Fugl-Meyer Assessment), manual dexterity (Box and Blocks test)

and grip strength. Post-intervention, all groups exhibited similar gains in

terms of reduced impairments, improved dexterity, and grip strength, which

was confirmed by multivariate and univariate analyses. However, no e�ect
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of interaction was found for tDCS or training group, indicating that tDCS

had no significant impact on outcomes post-intervention. Collectively, these

results indicate that adjusting training intensity based on the size of MEPs

in the a�ected extremity provides a useful approach to optimize responses

to strengthening exercises in chronic stroke survivors. Also, the lack of add-

on e�ects of tDCS applied to the lesioned hemisphere on exercise-induced

improvements in the a�ected UL raises questions about the relevance of

combining such interventions in stroke.

Clinical trial registry number: NCT02915185. https://www.clinicaltrials.gov/

ct2/show/NCT02915185.

KEYWORDS

stroke, strengthening exercises, MEP, tDCS, arm impairment, arm function

Introduction

Worldwide, stroke is the second-leading cause of mortality,

with an estimated 6.6 million deaths annually (1) and over 100

million individuals live with residual impairments. One of the

most common sequelae following a stroke is hemiparesis of

the side contralateral to the affected hemisphere (2). Paresis

or muscle weakness can interfere with activities of daily

living (ADL), decrease the quality of life (3, 4), and impact

interpersonal relationships (5). Residual muscle weakness in the

upper limb (UL) is particularly prevalent in stroke survivors

affecting more than three-quarters of them (6), with more than

half reporting being unable to perform basic ADL, even after

intensive rehabilitation therapy (7). Accordingly, improving UL

function is a top priority for survivors at the chronic stage of a

stroke (8).

European and American Stroke Best Practices recommend

strengthening exercises to address residual UL weakness after

a stroke (9, 10). Strengthening exercises are considered a key

element of rehabilitation interventions for post-stroke paresis

by improving muscle strength and motor function (11, 12),

and contributing to enhanced motor cortex excitability (13, 14).

These effects translate into significant gains in daily use of

the affected limb (12). Moreover, recent findings show that

patients can still experience significant improvements in arm

function in response to training interventions even when they

reach the chronic stage after a stroke (≥6 months) (15–18).

Yet, individual responses to training are often variables, some

showing significant gains while others show either minimal

or no response (2, 11). This variability, to a large extent,

reflects the fact that exercises are generally prescribed as a

“generic” intervention without consideration for individual

differences in terms of susceptibility to respond to training

and potential for recovery. In clinical settings, therapists will

typically build an exercise intervention based on their clients’

clinical profiles. However, clients with comparable clinical

profiles may exhibit very different potential for recovery

(19, 20) and, yet they will often receive the same strength

training program.

The corticospinal pathway can be reliably and safely assessed

by transcranial magnetic stimulation (TMS) in stroke survivors.

The presence of motor evoked potentials (MEPs) in the affected

extremity attests to the integrity of the descending projections.

Indeed, the presence or absence of MEPs in the affected limbs

is a sensitive biomarker to estimate the potential for recovery

after a stroke (19). In their PREP algorithm, Stinear et al. (19)

demonstrated the validity of using MEPs elicited by TMS in

paretic muscles to predict the potential for recovery 72 h post-

stroke and to establish realistic goals for rehabilitation for the

affected UL. Along the same line, baseline MEP amplitude

has been shown to predict individual responses to exercises

in patients at the chronic stage of a stroke (21). Thus, there

is compelling evidence that TMS responses in the affected

hemisphere can provide an index of corticospinal integrity both

in the early and later stages after a stroke and that such an index

can inform the potential of a given individual to experience good

or poor recovery. This raises the interesting question of whether

MEPs in the affected extremities could be used to tailor exercise

prescription by taking into account the individual’s potential

for recovery and susceptibility to respond to training. Such

an approach could assist therapists in designing more optimal

exercise interventions post-stroke.

Non-invasive brain stimulation strategies have also been

considered as another means to enhance neuroplasticity

and responses to exercise interventions post-stroke. In

particular, transcranial direct current stimulation (tDCS)

has received much attention recently in the context of post-

stroke rehabilitation. By applying a weak current (1–2mA)

through electrodes placed on the scalp, tDCS can increase

or decrease neuronal excitability depending on the montage

(22, 23). Anodal tDCS tends to increase neural excitability by

depolarizing the neurons’ membranes, while cathodal tDCS

tend to decrease neuronal excitability by hyperpolarizing

the neurons’ membrane (22–24). Recent studies suggest that
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tDCS may be more effective in individuals with moderate to

mild motor impairment post-stroke (25, 26). In such cases,

repeated application of anodal tDCS with various post-stroke

rehabilitation interventions translated into significant gains in

UL function as well as increased corticospinal excitability (25–

34) when compared to sham. Despite these encouraging results,

the benefits of combining tDCS with exercise interventions to

enhance training-induced effects post-stroke remain unclear.

Objectives

The primary objective of this study was to determine

whether a tailored strengthening intervention could reduce

impairments and improve UL function in chronic stroke

survivors when participants are regrouped into different

intensity-adjusted training levels according to baseline MEP

amplitude in the affected arm. The secondary objective was

to determine whether combining anodal tDCS of the affected

hemisphere with tailored arm strengthening exercises could

translate into further benefits in terms of reduced impairments

and improved UL function.

Considering that individual responses to training are known

to be variable in stroke survivors (20), we anticipated that

adjusting the level of strength training intensity between groups

according to MEP amplitude would benefit all participants

with clinically significant gains in the affected UL function

and performance. Also, given the ability of anodal tDCS to

enhance motor excitability and promote neuroplasticity post-

stroke (26), we anticipated that participants receiving real tDCS

would display greater gains in response to training than those

receiving a sham.

Materials and methods

A detailed description of thestudy protocol has been

published elsewhere (35). In brief, to be included in this

randomized controlled trial, individuals had to meet the

following entry criteria: (1) aged ≥18 years; (2) having

experienced a single unilateral stroke more than 6 months

ago; and (3) having finalized their rehabilitation treatment.

Individuals were excluded if presenting: (1) significant spasticity

at the affected upper limb (score >3 on the modified Ashworth

scale) (36); (2) significant pain intensity at the affected upper

limb (≥4/10 on the Visual Analog Pain Scale) (37); (3) major

sensory deficit (a score ≤25/34 on the Nottingham Sensory

Assessment) (38); (4) presence of hemineglect (>70% of

unshaded lines on the same side as the motor deficit on the Line

Cancellation Test) (39); (5) apraxia (score>2.5 on the Alexander

Test) (40); (6) the presence of a neurological disorder other than

a stroke; (7) concomitant orthopedic problems at the affected

upper limb; and (8) any contraindication to TMS and/or tDCS.

Prior to training, all participants underwent a clinical

evaluation of their affected UL as well as a TMS evaluation. The

clinical evaluation, performed by a blinded assessor, included

the following primary outcomes: (1) the Fugl-Meyer stroke

assessment for the UL impairment (FMA max score = 66)

(41), (2) the Box and Block test (BBT; number of blocks in

60 s) (42) to assess dexterity, and (3) Grip strength (average

of three trials in kg). The evaluation also included secondary

outcomes, which consisted of self-reported quality and quantity

of arm use in daily activities (Motor Activity Log /5) (43)

and active range of motion (AROM) as measured by standard

goniometry for flexion at the affected shoulder and elbow and

in extension for the wrist. The TMS evaluation, performed

by another blinded trained evaluator, consisted of determining

the resting motor threshold (RMT) and MEP amplitude in

the affected hemisphere. At all sites, the TMS was delivered

using a Magstim stimulator connected to a figure-of-eight coil

(Magstim 2002/BiStim, Magstim Company, Dyfed, UK). MEPs

were recorded using standard procedures to record surface

electromyographic activity. For first dorsal interosseous (FDI)

recordings, electrodes were placed in a belly-tendon montage

(Ottawa site: DE-2.1, Delsys Inc., Boston, MA, USA, Montreal:

Neuroline 700, Ambu, Glen Burnie, USA, Sherbrooke: PiCO

EMG Cometa, Bareggio, Italy). MEPs were also monitored in

the Extensor Carpi Radialis (ECR) with the electrodes placed

following anatomical landmarks over the muscle belly. All

raw EMG signals were band-pass filtered (6–450Hz), amplified

(×1,000) and sampled at 2,000Hz. After amplification and

filtering, EMG signals were further relayed to a PC at each

site running either custom (Ottawa) or commercially available

software (Sherbrooke, Montreal: Spike2 version 8.0, Cambridge

Electronic Design Ltd., 2018) for off-line analysis. The TMS

evaluation proceeded by first localizing the hotspot for the

FDI. Given the difficulty in eliciting MEPs in the affected

hemisphere, the hotspot for the FDI was first determined

on the unaffected side in all participants. Once determined,

the corresponding location on the affected hemisphere was

stimulated at a relatively high intensity (60–80% of stimulator

output) to elicit responses. When MEPs could be recorded

in the FDI, the RMT was then determined using the Motor

Threshold Assessment Tool software (MTAT version 2.0) (44).

The threshold peak-to-peak amplitude to detect the presence

of MEPs in the FDI was set at 50 µV. Next, resting peak-

to-peak MEP amplitudes of the FDI were elicited at 130% of

RMT and averaged over 10 trials. If no detectable peak-to-peak

MEPs amplitude could be elicited in the affected FDI even when

stimulating at 100% maximum output of the stimulator, the

procedure was repeated using the ECR as the target muscle. If

no peak-to-peak MEP amplitudes were detected for the ECR,

the participants were considered as having no MEPs. Note that

other TMS measures were also performed but these are not

reported here and will be the subject of another report in a

companion paper.
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The participants were stratified into three groups of intensity

training based on their baseline’s FDI MEP amplitude, adapted

from Milot et al. (21): (1) low-intensity (LI: MEPs <50 µV);

(2) moderate-intensity (MI: MEPs 50–120 uV) and (3) high-

intensity (HI: MEPs >120 uV). Within each group, participants

were then randomized to receive either real or sham tDCS.

The strength training program targeted the affected shoulder

and elbow flexors, wrist extensors and grip muscles and

consisted of lifting dead weights with the affected UL. The

characteristics of the strength training program followed the

recommendation of the American Stroke Association (ASA)

of exercise prescription after stroke (45) (see Appendix for

more details). Briefly, at the beginning of every week of

training, each participant’s 1RM (maximal load that could be

lifted once), estimated by the 10 RM (46), was determined to

allow a gradation of the training intensity. Depending on each

participant’s MEP amplitude, training started at 35, 50, or 70%

of 1 RM for the low-, moderate- and high-intensity groups,

respectively. Training intensity was increased by 5% each week

to reach, at the end of the week 4, 50, 65, and 85%, for the low-,

moderate- and high-intensity groups, respectively. Moreover, to

ensure a similar training intensity within and between eachMEP

group, participants rated their perceived level of effort after each

session of exercises on the Borg’s Rating of Perceived Exertion

(47). This self-perceived physical exertion scale is considered a

valid tool to control for the intensity of the exercise after a stroke

(17). Thus, for week #1, a score of 12–13/20 had to be reached

whereas, for week #2–4, participants trained at a score of 15–

16/20. The same training characteristics were applied for the

grip muscles, but participants trained with a Jamar
R©

hydraulic

hand dynamometer. The order in which each muscle group was

trained was randomized each week. For the first 20min of each

training session, tDCS (Ottawa: HDCStim, Newronika, Milano,

Italy; Montreal: NeuroConn, Llmenau, Germany; Sherbrooke:

Soterix Medical, New York, USA) was applied using an anodal

montage (12 sessions, 20min, 2mA). At each site, saline-soaked

5 × 7cm electrodes were used, with the active anode electrode

placed over the lesioned primary motor cortex (M1) and the

cathode electrode placed over the contralateral supra-orbital

region. The determination of the M1 site was based on the

localization of the FDI motor hotspot on the scalp (48). Sham

tDCS was applied for the first 30 s to induce the same sensations

as real tDCS (49), ensuring that the participants were blinded to

the type of stimulation.

Prior to taking part in this study, all participants signed

a consent form approved by the Research Ethics Committee

(REC) of the CIUSSS de l’Estrie-CHUS (MP-22-2016-630) and

Bruyère Research Ethics Committee (Protocol #M16-16-028).

Statistical analysis

Descriptive statistics were used to characterize the sample.

Sociodemographic characteristics of the training groups were

compared using independent t-tests or Chi-squared tests,

depending on the nature of the variables. Given the presence

of multiple outcomes, the main dependent variables (i.e., FMA,

BBT, Grip) were entered into a multivariate analysis of variance

(MANOVA) to determine the effect of the intervention with

Time (Pre vs. Post) as the repeated factor and tDCS (Real

vs. Sham) and Training Group (LI, MI, HI) as the between-

subject factors. Upon detection of main effects or interactions

in the multivariate analysis, univariate tests were examined to

determine the effect of each main dependent variable. Repeated

measures ANOVA was performed for secondary outcome

measures with tDCS (Real vs. Sham) and Training Group

(LI, MI, HI) as the between-subject factors. If an interaction

was noted, post-hoc analysis with a Bonferroni correction was

applied to locate the difference. The significance level was set at

p < 0.05 for all tests, and statistics were computed using IBM
R©

SPSS Statistics 25.

Results

Participants’ characteristics

As shown in Figure 1, 98 participants were initially screened

for eligibility and stratified into the three training groups.

However, because of the COVID outbreak, eight participants

voluntarily withdrew before completing the intervention,

leaving a total of 90 participants having completed the study.

Based on MEP size in the affected arm, 21 participants were

allocated to the LI group (mean MEP: 53 µV), 15 in the

MI group (Mean MEP: 158 µV), and 54 in the HI group

(Mean MEP: 717 µV) (see Figure 2). Note that for the LI

group, no MEP amplitude was detected in the FDI and ECR

for 6 participants. The randomization for tDCS allocated 48

participants to receive real stimulation, while 42 received the

sham one. The sociodemographic characteristics of participants

in each training group are presented in Table 1. All three

groups showed comparable characteristics with respect to age

(p = 0.37), time since stroke (p = 0.22) and male/female ratio

(p= 0.62).

E�ect of the tailored training intervention
and tDCS on primary outcome measures

Regarding primary outcomes, most participants, irrespective

of their training groups, showed improvements after the 4-week

intervention in terms of reduced impairments, manual dexterity

and grip strength. These improvements can be appreciated by

inspecting Figure 3, showing the means computed pre- and

post-intervention for each outcome within each group. Each

group experienced, on average, similar gains post-intervention

both in terms of reduced impairment (FMA) and improved

function (BBT and Grip strength). The multivariate analysis
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FIGURE 1

Study flow diagram.

confirmed the large main effect of “Time” on primary outcomes

[F(3,82) = 16.9, p < 0.001], but no “Training Group X Time” (p

= 0.55) or “tDCS X Time” (p = 0.86) interactions. This analysis

indicates that “Time” was the most critical factor influencing

primary outcomes, while the lack of interactions confirmed that

the different groups improved on the same level and that real or

sham tDCS had no significant impact. The univariate analysis

confirmed the significant effect of “Time” on each primary

outcome measures [FMA, F(1,84) = 25.0, p < 0.001; η2p: LI, 0.3;

MI, 0.5; HI, 0.2; BBT, F(1,84) = 9.8 p = 0.002; η
2
p: LI, 0.1; MI,

0.8; HI, 0.4; Grip strength, F(1,84) = 24.1, p < 0.001; η2p: LI, 0.5;

MI, 0.3; HI, 0.3] as well as the lack of interaction with “Training

Group” (p > 0.35) and “tDCS” (p > 0.54).

E�ect of the tailored training intervention
and tDCS on secondary outcome
measures

Figure 4 compares each group’s means computed pre- and

post-intervention for the secondary outcomes. As for primary

measures, the MANOVA revealed a significant effect of “Time”

[F(1,84) = 11.5, p < 0.001] but no interaction with “Training

Group” (p = 0.08) and “tDCS” (p = 0.58). As evident in

Figures 4A,B, the effect of “Time” was largely attributable to

changes in the MAL scores and the shoulder AROM, which was

confirmed by the univariate analysis [MAL amount: F(1,84) =

24.5, p < 0.001; η2p: LI, 0.2; MI, 0.4; HI, 0.4; MAL quality: F(1,84)
= 44.5, p < 0.001; η2p: LI, 0.4; MI, 0.6; HI, 0.5; AROMs: F(1,84)
= 21.8, p < 0.001; η

2
p: LI, 0.3; MI, 0.3, HI, 0.03]. Further, for

the shoulder AROM, a significant “Training Group X Time”

interaction was noted (F = 4.6, p = 0.013), which reflected the

fact that gains in AROM were noticeable only for the LI (p

= 0.01) and MI (p = 0.04) groups (Bonferroni post-tests; see

Figure 4B). Changes measured in the wrist and elbow AROM

pre- and post-intervention were not significant (F < 3.2, p >

0.08, Figure 4B).

Discussion

This study demonstrates improvements in arm motor

function and performance in chronic stroke survivors

who underwent a 4-week strength training intervention

whose intensity was tailored based on the amplitude of

MEPs in the affected limb. Our results also revealed that
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FIGURE 2

Individual examples of MEPs recorded at 130% of resting motor
threshold in the first dorsal interosseous of the a�ected hand to
assign participants to training groups (Low, Moderate and High
intensity). Each trace represents an average of 10 trials.

TABLE 1 Participants sociodemographic characteristics [mean (SD)] in

each training group.

Training groups

LI

(n= 21)

MI

(n= 15)

HI

(n= 54)

Age (years) 63 (12) 68 (13) 65 (11)

Handedness (right/left) 19/2 13/2 49/5

Male/female 13/8 7/8 32/22

Time since stroke (years) 6 (7) 5 (3) 5 (4)

Type of stroke

(ischemic/hemorrhagic/other)

21/0/0 13/2/0 42/9/3

Side of stroke (right/left) 9/12 6/9 33/21

Dominant/non-dominant

affected side

12/9 9/6 19/35

LI, Low-intensity training group; MI, Moderate-intensity training group; HI, High-

intensity training group.

combining anodal tDCS with tailored strength training had

no significant influence on outcome measures. Altogether,

these results suggest that adjusting training intensity

based on a neurophysiological marker of corticospinal

tract integrity is critically important for optimizing the

outcomes of strengthening exercises aiming to improve arm

function post-stroke.

E�ects of the tailored strength training
program on UL function and
performance

As mentioned earlier, strengthening exercises are

recommended post-stroke to improve residual weakness

and restore function in the affected extremities (9). The present

study provides further evidence of the benefits of strengthening

programs for patients and highlight the importance of tailoring

such interventions to optimize rehabilitation outcomes. Our

tailored strength training intervention hardly compares with

other training programs reported in previous studies (2, 11)

since we are the first to have stratified participants in groups

based on the size of MEP elicited in the affected arm. Thus,

our study is the first to demonstrate that adjusting training

intensity, using an index of corticospinal integrity based

on MEP, is of critical importance to allow participants to

experience gains in UL function, irrespective of their initial

status in terms of severity. Indeed, our data showed that the

vast majority of our participants experience improvements

after the intervention (i.e., 70/90), as reflected in the FMA

scores. Those who did not experience improvement (n = 20)

consisted mostly of participant in the HI training group (17/20),

whose FMA scores were already close to the maximum at

baseline. Excluding those high performing individuals, 89%

of our participants saw their FMA scores improved after the

intervention. Also, in each training group, many participants

experienced gains larger than the 5-point minimal clinically

important difference (MCID) of FMA (50) (LI, 29%; MI, 47%;

HI, 22%). For the BBT 60% of participants showed improved

performance post-training, while for Grip strength, 77%

improved post-training with 14% of participants exceeding

the 5 kg MCID, as found in subacute stroke survivors (LI,

14%; MI, 7%; HI, 17%) (51). The improvements noticed

in primary outcomes were also reflected in the secondary

outcomes. For instance, both the MAL quantity and quality

of UL use were improved post-intervention, indicating that

participants reported increased use of their affected arm in

real-life situations. In this respect, a substantial proportion of

participants in each training group experienced a change greater

than the 0.5-point clinically meaningful change in the MAL

score post-stroke (52) (LI, 38%; MI, 26%; HI, 41%). In addition

to the MAL, improvements were also detected in the AROM

measured in the affected arm. These improvements were found

for the shoulder only and were largely restricted to participants

in the LI and MI groups. For the HI group, the lack of

improvement likely reflected the fact that limitations in AROM

were already minimal at baseline, leaving no room for further

improvements. Given the crucial role played by the shoulder

in the performance of daily tasks (53, 54), and considering

the results of previous studies (11, 55), it is easy to see the

link between the increased arm use reported by participants
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FIGURE 3

Changes in the main outcome measures following the upper limb tailored strength training and anodal tDCS intervention in the three training
groups. A significant e�ect of “Time” was detected in all three primary outcomes (p < 0.01) but no interaction with groups. FMA, Fugl-Meyer
Assessment; BBT, Box and Block test; LI, Low-intensity training group; MI, Moderate-intensity training group; HI, High-intensity training group.

FIGURE 4

Changes in the secondary outcome measures following the upper limb tailored strength training and anodal tDCS intervention in the three
training groups for (A) the MAL and (B) a�ected upper limb AROM. A significant e�ect of “Time” was detected in all secondary outcomes (p <

0.01) but no interaction with groups. Note that error bars for the wrist AROM are presented in one direction for clarity. MAL_A, Motor Activity
Log amount of use; MAL_Q, Motor Activity Log quality of use; AROM, Active range of motion; LI, Low-intensity training group; MI,
Moderate-intensity training group; HI, High-intensity training group.

and the gains in shoulder AROM, both findings pointing

to an improved arm function and usage post-intervention.

Thus, both our primary and secondary measures converge

to show that participants, irrespective of their training group

allocation, experienced significant gains in their affected UL

post-intervention that translated into improved function in

daily life activities. These positive results stress the importance of

considering MEP amplitude in post-stroke exercise prescription
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(20) to ensure that each individual is training at an optimal

intensity, based on his specific recovery potential, knowing that

intensity is a critical factor influencing motor improvement

(17, 56).

Lack of tDCS e�ects

Contrary to our prediction, the addition of anodal tDCS

to our strength training program did not translate into greater

gains for participants. tDCS is used to alter the brain excitability

via modulation of cell membrane excitability and LTP-like

plasticity mechanisms (57). Although it is unlikely that the

response to tDCS post-stroke remains consistent from early to

late recovery, here, tDCS was used in patients in the chronic

stage to enhance neural excitability of the affected motor area

and to promote neural plasticity (57). However, as mentioned, in

this study, real or sham anodal tDCS of the affected hemisphere

had no effect on both primary and secondary outcomes. While

our tDCS protocol in terms of intensity and duration was

in line with recent successful trials on tDCS in post-stroke

populations (26), it is still possible that our chosen parameters

were not optimal for every participant. Yet, in line with recent

recommendation for tDCS in chronic stroke, our protocol

targeted mostly moderately and mildly impaired individuals

(26), who are considered good responders to tDCS, and was

applied during and not after exercises (26). The lack of benefit

of our tDCS protocol contrasts with positive results reported

previously (28, 29, 33, 58). One possible cause to explain the

negative finding may be in the intensity used. In our protocol

we used 2mA, but recent studies show that intensities up

to 4mA could yield to better efficacy in terms of current

penetration and effects (26, 59), as observed in animal models

(60). However, higher tDCS intensities may not always imply

enhanced efficacy (61), and using high tDCS intensities raises

concerns about safety and side effects (62). Also, a higher tDCS

intensity has been shown to reverse tDCS-induced neuroplastic

effects in healthy people (63–65). For example, Hassanzahraee

et al. found that stimulation >1mA for 26min resulted in

a reversal of anodal tDCS effects and was associated with a

decrease in MEP amplitude and an increase in short-interval

intracortical inhibition (63). However, these effects were also

shown subsequently to be linked with the duration of the

application (64), duration >26min leading to a reversal of

anodal stimulation. While it is still possible that the 2mA

intensity we used in our protocol might have led to a reversal,

this possibility is less likely given that our duration was limited

to 20min. Beyond intensity and duration, one alternative cause

for the lack of effects could come from the utilization of a

unihemispheric instead of a bihemispheric montage. Indeed,

there is evidence from systematic reviews that bihemispheric

montage, with the anode place on the affected hemisphere, could

provide an advantage over unihemispheric montage to promote

motor learning after a stroke (66).

While there are many reports supporting tDCS effects post-

stroke, our report is not the only one finding negative results

and no benefit from the application of tDCS at the chronic

stage of a stroke (15, 32, 67, 68). For example, Pavlova et al.

reported no add-on effects of tDCS combined to a 4-week

grip force task in their group of chronic stroke survivors (n

= 11) (32). In a recent study by Hordacre et al., the authors

propose a patient-tailored approach to deliver tDCS optimally

after stroke (69). This new theoretical approach considers key

characteristics to optimize tDCS response such as lesion site and

extend as well as ipsilesional corticospinal tract (CST) integrity,

the latest being the most important predictor to be considered

within their algorithm. Although we measured ipsilesional CST

integrity by means of baseline MEP amplitude, we did not find

“tDCS Group X Time” interaction, indicating that tDCS had

no influence regardless of the participants’ status with regards

to corticospinal integrity. This highlights the fact that there is

currently insufficient evidence for the optimal effectiveness of

tDCS due to stroke heterogeneity and unknown determinants

affecting the tDCS outcomes. The fact that the stimulation of a

neuronal (post-synaptic) population should be precisely timed

with neuronal activity is also an important factor to consider

in order to improve the efficacy of tDCS as to drive more

efficiently neuronal reorganization (70). This is an important

topic that deserves further investigation. Finally, since we did

not find an add-on effect of anodal tDCS on UL training gains, it

can be thought that tailoring training on each individual MEP

amplitude is a very effective approach in inducing substantial

gains in UL function after a stroke, as opposed to traditional

rehabilitation exercises, resulting in the tDCS having no added

value for this type of exercise.

Overall, the lack of benefit of tDCS in stroke rehabilitation

demonstrates that optimal tDCS stimulation characteristics to

boost recovery post-stroke are yet to be determined and that the

design and adoption of more robust protocols across studies are

needed (26, 69).

Limitations

As the project was conducted throughout three different

sites in Canada, a limitation of the study could be attributed

to a possible lack of consistency in the data collection. To

minimize this limitation, the research personnel involved at

three sites were all trained before data collection. However,

not all sites benefited from the same material (e.g., tDCS

machine). Additionally, FMA scores were high in many

participants pre-training, meaning that subtle improvements

in motor impairment could not be quantified using this scale.

However, the FMA is the recommended outcome to assess

the various levels of impairment in chronic stroke survivors

(71), and when combined with other clinical scales, such

as the MAL, it can provide a more complete assessment of

rehabilitation interventions destined to reduce impairment and
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activity limitations (72). Finally, a selection bias is present

in our study, as individuals with major impairments post-

stroke, who could not perform the training program, were

excluded. This, in addition to the multiple exclusion criteria,

may limit the generalizability of the results in the overall chronic

stroke population.

Conclusion

Tailoring exercise based on the participants’ MEP amplitude,

as assessed with TMS, translated into a marked improvement

in motor function and performance of the affected UL. The

current results add to the growing body of evidence stating

that recovery can take place even at the chronic stage of a

stroke, past the critical window for recovery considered to be

traditionally within the first 3–6 months post-stroke and even

in individuals having less recovered from their stroke, as in

our low-intensity training group. However, the use of tDCS

combined with exercises did not enhance treatment gains. The

results of this study advance our knowledge on the usefulness of

MEP stratification in stroke rehabilitation to prescribe tailored

exercises at an appropriate level of intensity. More studies are

needed to clarify the role of tDCS to enhance strength training

interventions in chronic stroke survivors.
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