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Motor dysfunction in individuals with cerebral palsy (CP) such as the inability to
initiate voluntary movements, walking with compensatory movement patterns,
and debilitating spasticity is due to the aberrant neural connectivity between the
brain and spinal cord. We tested the efficacy of noninvasive spinal cord
neuromodulation (SCiPTM, SpineX Inc.) with activity-based neurorehabilitation
therapy (ABNT) in improving the sensorimotor function in six children with CP.
Children received 8 weeks of either SCiPTM or sham therapy with ABNT (n= 3
per group). At the end of 8 weeks, all participants received 8 weeks of SCiPTM

therapy with ABNT. Follow up assessments were done at week 26 (10 weeks
after the last therapy session). Sensorimotor function was measured by the
Gross Motor Function Measure 88 (GMFM88) test. We observed minimal change
in sham group (mean 6% improvement), however, eight weeks of SCiPTM

therapy with ABNT resulted in statistically and clinically relevant improvement in
GMFM88 scores (mean 23% increase from baseline). We also observed reduced
scores on the modified Ashworth scale only with SCiPTM therapy (−11% vs.
+5.53% with sham). Similar improvements were observed in sham group but
only after the cross over to SCiPTM therapy group at the end of the first eight
weeks. Finally, sixteen weeks of SCiPTM therapy with ABNT resulted in further
improvement of GMFM88 score. The improvement in GMFM88 scores were
maintained at week 26 (10 weeks after the end of therapy), suggesting a
sustained effect of SCiPTM therapy.
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Introduction

Cerebral palsy (CP) is the most common childhood motor disorder affecting 2–4

children in every 1,000 births (1–3). The affected children present with a wide range

of functional disorders including inability to move voluntarily, maintain balance and

posture, spasticity and abnormal sensation during early development that often

worsen with age (4, 5). The primary standard of care (SoC) is physical therapy (PT)
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(6), potentially with subsequent medication and/or surgery to

manage pain and reduce spasticity (7). For children with

significant spasticity, SoC often includes selective dorsal root

rhizotomy (SDR) (8) and intramuscular injections of

OnabotulinumtoxinA (9). While these treatments reduce

spasticity, they are invasive, may diminish muscle function,

and have minimal effect on voluntary sensorimotor

function. For instance, 3 months of standard PT resulted in

5.7 points increase in GMFM88 (10); and

intramuscular OnabotulinumtoxinA injections result in 1.7–

2.2 points increase in GMFM88 after 1–2 months (7).

However, CP children that underwent SDR surgery showed a

6.5 points increase in GMFM66 at 4 months (8). More

importantly, the GMFM66 decreased by 20 points 17 years

post-surgery (11).

Over the last decade, we and others have extensively shown the

therapeutic promise of noninvasive spinal cord neuromodulation

in spinal cord injury (12–18). We have previously demonstrated

the acute (19) and chronic effects (20) of spinal cord

neuromodulation on improvements in sensorimotor function in

children with CP. However, the effect of activity-based

neurorehabilitation therapy (ABNT) alone compared to spinal

neuromodulation with ABNT remains unknown. We

hypothesized that children with CP who undergo SCiPTM

therapy with ABNT will show greater levels of sensorimotor

function improvement as assessed by GMFM88 score, compared

to children with CP who undergo inactive sham

neuromodulation with ABNT. To test this hypothesis, we

performed a single blinded, sham-controlled, one-sided crossover

study to investigate the impact of noninvasive spinal

neuromodulation with ABNT to improve sensorimotor function

in children with CP.
TABLE 1 Demographics, training and descriptive outcomes for the study par

Participant 1 Participant 2 Participant
Age 1 year 8 months 2 years 3 months 2 years 11 month

Gender M F F

GMFCS Level V Level I Level V

Group Treatment Sham Sham

ABNT
activities

BWSTT. Sitting. Floor
play. Quadruped and
kneeling. Standing.

BWSTT. Standing. Side
stepping. Jumping and
balance beam.

BWSTT. Sitting.
Floor play.
Quadruped and
kneeling.

Changes at 8
weeks

Increased head control
and accuracy in reaching.
Independent rolling and
prop sitting.

Sit to stand with no hands. Increased sitting
control and weig
bearing on arm i
quadruped.

Changes at
16 weeks

Independent head
control, sitting balance,
weight bearing on arms
in quadruped, and
control in prone.

Increased step length and
single leg balance.
Symmetrical squat and
jump pattern.
Independent stair
climbing.

Increased sitting
balance, floor
mobility, and we
bearing on left ar

Parents’
feedback at
the end of 16
weeks

Increased use of the
upper extremities. More
control in quad position,
sitting, reaching, and
standing.

Increased balance on
uneven terrain and
kicking a ball. Increased
participation at the
playground. Decreased
falls.

Increased crawlin
throughout hous
Improved swallow
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Methods

Six participants diagnosed with CP (GMFCS level I (n = 1),

level II (n = 1), level III (n = 1) and level V (n = 3), aged 20

months–8 years) were enrolled in the study (Table 1). The

participants demographics and baseline characteristics are

described in Table 1. Participants were randomly assigned to

either treatment or sham group (n = 3 each). Sham group

received 8 weeks of ABNT with sham therapy (2 mA for 1 min

followed by 0 mA for 60 min) whereas the treatment group

received 8 weeks of ABNT with therapeutic SCiPTM therapy

delivered using our proprietary SCiPTM device (SpineX Inc., Los

Angeles, CA) (20). The spinal neuromodulation consists of

delayed biphasic waveform formed with a carrier pulse (10 KHz)

with a 1 µs delay between the two phases (positive and negative).

The delayed biphasic carrier (10 KHz) was combined with a low

frequency (30 Hz) burst with a pulse width of 1 ms.

Neuromodulation was applied using two adhesive electrodes

placed between C5–6 and T11–12 vertebral levels serving as the

cathodes (1.25″ in diameter), and two adhesive electrodes over

bilateral iliac crests as anodes (3 × 5″). A visible motor

contraction of any muscle or any involuntary movement induced

by the stimulation, identified by the therapist was used to

determine thresholds for the two sites (C5–6: 18–22 mA, and

T11–12: 16–20 mA). The neuromodulation intensity was initially

set at 20% below the threshold for each site. The intensities over

the C5–6 spine ranged between 12 and 18 mA and over the

T11–12 ranged between 10 and 16 mA depending on the activity

being performed by the participant. During activities involving

sitting, rolling, etc., the therapist lowered the amplitudes by

2–4 mA prior to initiation of the activity. Whereas, during

standing and stepping, the therapist increased the intensities by
ticipants.

3 Participant 4 Participant 5 Participant 6
s 7 years 8 months 3 years 4 months 8 years 2 months

M M F

Level II Level V Level III

Treatment Sham Treatment

BWSTT. Half kneel to
standing. Balance beam.
Jumping and step ups.

BWSTT. Prone reaching
and rolling. Sitting.
Quadruped play.

BWSTT. Standing.
Sidestepping. Sit to
stand. Jumping.

ht
n

Increased balance in
tandem and single leg
stances. Ability to jump
higher than two inches.

Increased head control and
sitting ability.

Independent sit to
stand, backward
stepping and stair
climbing.

ight-
m.

Further increase in
balance during tandem
and single leg stances.
Independent stair
climbing.

Increased control in sitting
and reaching. Increased
forearms control prone
and plantar placement in
quad & standing.

Walking down stairs
with railing support.
Maintaining half-
kneel position.

g
e.
ing.

No major carry over
effects

Increased ease in sitting
postures and increased
rolling across the room.

Independent sit to
stand and use of
stairs. Increased
independence in
ADLs.
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FIGURE 1

(A) Experimental design and timeline of events. (B) GMFM88 scores at baseline, week 8, week 16 and follow up. 3 participants started with SCiPTM+ ABNT
(blue) vs. 3 with sham+ABNT (red). Sham group crossed over to SCiPTM at week 8 and all participants received SCiPTM from week 8 to 16, followed by 10
weeks of no intervention (grey). (C) Mean ± SD change from baseline in GMFM88 scores after 8 weeks of sham, 8 weeks of SCiPTM, 16 weeks of SCiPTM

and follow up (n= 3 each). (D,E) Comparison of GMFM88 scores at the end of 8 weeks (primary efficacy endpoint) between sham (red) and SCiPTM (blue)
groups with reference to a validated predicted model of change in GMFM scores without an intervention, matched for age and GMFCS level (21). (F)
spasticity scores (MAS) at baseline, week 8 and week 16 for sham (red) and SCiPTM (blue) groups. (G) Mean ± SD change in spasticity scores suggest
that children in therapeutic group had lower spasticity at the end of 8 and 16 weeks, compared to baseline.
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1–2 mA prior to initiation of the activity. During the course of a

given activity, the intensities would be modulated ±2 mA based

on observed functional performance of the child.

Details of ABNT sessions are provided in Table 1. The

treatment was administered by a trained pediatric physical

therapist. The participants (and parents) were blinded to the

randomization group. At the end of 8 weeks, the sham group

crossed into the therapeutic group and received 8 weeks of

SCiP therapy with ABNT. The treatment group continued

SCiPTM therapy with ABNT for another 8 weeks (i.e., total 16

weeks; Figure 1A). Voluntary sensorimotor function was

measured as the primary outcome using Gross Motor

Function Measure 88 (GMFM88) and muscle tone (spasticity)

was measured using the Modified Ashworth Scale as the

secondary outcome (22), at baseline, 8 weeks, and 16 weeks

(10). Ten weeks after the last therapeutic session, three

participants were reassessed for the primary outcome. Primary

end point assessment was based on improvement in GMFM88

scores at 8 weeks compared to baseline.
Results

Eight weeks of SCiPTM therapy resulted in an increase (mean

± SD) in GMFM88 scores by 7.6 ± 2.08 points (minimal clinically

important difference; MCID = 5 points) (23), compared to a 2.2 ±

1.38 points increase in the sham group (Figures 1B,C). Further,

when the participants from sham arm crossed over and received

8 weeks of therapeutic SCiPTM, their GMFM88 increased by

7.13 ± 0.6, equivalent to the treatment group. The participants

originally randomized to treatment group continued SCiPTM

therapy for another 8 weeks and achieved the ΔGMFM88 score

of 9.4 ± 1.5 at week 16 compared to baseline. Interestingly, three

participants (1 from treatment group and 2 from sham group)

that were reassessed at 26 weeks (i.e., 10 weeks after last

SCiPTM therapy session and no further intervention) showed a

ΔGMFM88 score of 10.8 ± 6.3 compared to baseline, suggesting

a sustained effect of SCiPTM therapy with ABNT. All

participants receiving SCiPTM therapy qualified as responders at

the primary efficacy endpoint (i.e., ΔGMFM88 > 5 points at 8

weeks), and showed an accelerated functional improvement,

compared to the predicted GMFM88 model curve matched for

age and GMFCS level (Figures 1D,E) (21). Qualitative

observations by the physical therapist and parents suggested

meaningful functional improvements in response to SCiPTM

therapy, during and post treatment. Table 1 describes the

qualitative results for each participant, along with notable

feedback from parents. Eight weeks of SCiPTM therapy with

ABNT reduced spasticity compared to the sham therapy with

ABNT group (ΔMAS −0.06 ± 0.1 SCiPTM vs. +0.02 ± 0.09

sham). Continuation of SCiPTM therapy with ABNT for

additional 8 weeks further reduced spasticity score (ΔMAS

−0.1 ± 0.1). None of the participants demonstrated an increase

in spasticity in response to SCiPTM (Figures 1F,G). No adverse

events were reported during the course of SCiPTM therapy with

ABNT.
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Discussion

To our knowledge SCiPTM therapy with ABNT is the first

intervention to show a significant clinical improvement in

sensorimotor function in children with CP within a short period

of 8 weeks and be able to sustain the improvement for an

extended period of time (10 weeks). Our preliminary findings

demonstrate greater improvement in sensorimotor function

relative to the available standard of care treatment options,

reduced spasticity and increased participation in activities of

daily living with SCiPTM therapy with ABNT. Although the exact

mechanistic understanding of the proposed combination therapy

of SCiPTM with ABNT is incomplete, insights can be gained

from studies with spinal cord injury and other forms of paralysis.

We hypothesize that spinal neuromodulation (SCiPTM)

transforms the targeted spinal-supraspinal neural networks into

an activated state of plasticity, which are made functionally more

competent using activity dependent guidance (ABNT), obtained

from proprioception (24). The two key findings of this study are

(a) the recovery in voluntary motor function even in the absence

of active spinal neuromodulation, and (b) the persistence of

improved function during the follow up period. While the

present study did not directly test the evidence for putative

neural plasticity, it has been previously documented in studies

investigating neuromodulation-mediated recovery in the spinal

cord injury population (25–28). However, since CP and spinal

cord injury have distinct pathophysiologies, the mechanism of

action responsible for neuromodulation driven changes in

sensorimotor function remains unknown. Despite the lack of

mechanistic evidence, our initial findings suggest that

noninvasive neuromodulation (i.e., SCiPTM therapy) can be a

viable option to improve sensorimotor function in CP, and

warrants a comprehensive investigation using a randomized

control trial with a larger sample size.
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