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Introduction: Recent advances in Artificial Intelligence (AI) and Computer Vision
(CV) have led to automated pose estimation algorithms using simple 2D videos.
This has created the potential to perform kinematic measurements without the
need for specialized, and often expensive, equipment. Even though there’s a
growing body of literature on the development and validation of such
algorithms for practical use, they haven’t been adopted by health professionals.
As a result, manual video annotation tools remain pretty common. Part of the
reason is that the pose estimation modules can be erratic, producing errors that
are difficult to rectify. Because of that, health professionals prefer the use of
tried and true methods despite the time and cost savings pose estimation can
offer.
Methods: In this work, the gait cycle of a sample of the elderly population on a
split-belt treadmill is examined. The Openpose (OP) and Mediapipe (MP) AI pose
estimation algorithms are compared to joint kinematics from a marker-based
3D motion capture system (Vicon), as well as from a video annotation tool
designed for biomechanics (Kinovea). Bland-Altman (B-A) graphs and
Statistical Parametric Mapping (SPM) are used to identify regions of statistically
significant difference.
Results: Results showed that pose estimation can achieve motion tracking
comparable to marker-based systems but struggle to identify joints that exhibit
small, but crucial motion.
Discussion: Joints such as the ankle, can suffer from misidentification of their
anatomical landmarks. Manual tools don’t have that problem, but the user will
introduce a static offset across the measurements. It is proposed that an AI-
powered video annotation tool that allows the user to correct errors would
bring the benefits of pose estimation to professionals at a low cost.
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1. Introduction

The measurement of three-dimensional human kinematics,

such as joint angles, position of the limbs, velocity of the motion

etc., can identify motion abnormalities early on, as well as guide

health professionals during rehabilitation. However, the necessary

equipment is not always accessible to the experts or cost-efficient.

Time investment, dedicated space, and the requirement for

trained operators, force health professionals to be reluctant to go

through that process. As a result, a lot of decisions in low-

priority cases are not driven by data but rather, they rely on the

personal experience and judgment of the expert.

Multiple tools have been developed for kinematic

measurements which vary in complexity and cost, with the

more accurate ones not necessarily being practical in all

situations. For example, the golden standard for motion

tracking is biplanar videoradiography for tracking the

movement of the bones using X-rays (1). These systems use

two X-ray cameras to record the movement of the bones and

they can achieve sub-millimeter and sub-degree error (2).

However, they can only capture a single joint because of their

limited field of view, there is also a high cost associated with

them, and the exposure of the person to radiation. As a result,

it is impractical for most use cases (1). The de facto standard

practice is the use of marker-based optical multicamera

systems. They use retroreflective markers that are placed on

anatomical landmarks by a trained professional and the person

performs tasks inside an area that is visible from all the infra-

red cameras. The 2D images that are recorded are triangulated

to give the 3D motions of the body (3,4). Though they have

higher error than biplanar videoradiography, and they are

sensitive to marker placement, they have been widely adopted

in both academic and clinical settings, because of their relative

affordability and adaptability to most situations.

Both of the methods that were just described require

preparation by an expert before each measurement and time-

consuming post-processing that needs different expertise, not to

mention dedicated indoor space. As such, they are not accessible

to most health professionals and sports trainers. More

importantly, they are not practical methods for non-critical

assessment even if the need is not trivial. To meet this demand,

in the last decade, markerless single-camera systems have been

tested as alternatives. The camera that popularized this approach

was the Kinect (Microsoft Corporation, Redmond, WA, USA). It

has an RGB camera and an infrared depth sensor to detect

human motions. Kinect was originally released for Microsoft’s

7th generation video game console (Xbox360) to enable

interactions without a gamepad. However, it soon found its place

as an affordable biomechanics motion tracker in multiple

projects that range from ergonomic assessment to biomimetic

robotics (5–12)). Nowadays, more devices are available that

combine simple 2D cameras with depth sensors and they are

used in different projects, such as collaborative robots for

industrial environments (13). With the advancement of Artificial

Intelligence (AI) and Computer Vision (CV), there’s a new trend
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of using a standard 2D RGB camera to extract kinematic

information. The benefit of using standard video for

biomechanics is that data can be recorded easily in any

environment with accessible equipment without any particular

preparation. Obviously, the main workload falls on the pose

estimation algorithm to extract accurate measurements.

On that front, there have been significant advances, and

while there’s still a lot of work to be done, the existing

software is mature enough for practical applications. The most

popular pose estimation algorithm is OpenPose (OP) (14)

which uses a Convolutional Neural Network (CNN) to detect

keypoints and then constructs a kinematic skeleton of the

human body (bottom-up approach). OP is well documented

and it has been validated for gait analyses in biomechanics

(15) but its biggest limitation is the relatively high

computational demands and that it requires coding skills to

produce usable metrics. Another pose estimation algorithm

that has gained traction is MediaPipe (MP) (16). Strictly

speaking, MP is a framework that can incorporate different CV

and machine learning algorithms for fast prototyping. In this

work, the focus is on the pose estimation algorithm that it

uses. MP produces joint angles using fewer resources than OP,

however, it uses a less accurate process where the body is

identified and then the joints are estimated (top-down

approach). Regardless of the specifics, pose estimation

algorithms suffer from errors in motions perpendicular to the

video’s plane, as well as the fact that the dataset they were

trained with, may not have been prepared by experts.

Therefore, the joint centers’ locations may be inaccurate (1). It

is also worth noting that in their published form, they do not

calculate any kinematics, but the locations of the keypoints. As

a result, additional software scripts are required by users

depending on the application. Though not necessarily a

limitation for academic research, this creates an extra barrier

for the adoption of this technology by health professionals.

The simplest method to perform gait analyses is with video

annotation tools. The process is to record a video and then

manually mark the joint centers and calculate the angles based

on the number of pixels. A modern open-source software that

does that is Kinovea (KV) (www.kinovea.org). A clinician or a

sports trainer doesn’t require any additional effort to perform

measurements using KV, but there is a significant time

investment for each case. It is decently accurate when compared

with established motion capture systems (17) though, its errors

should always be kept in perspective for clinical applications

(18). Despite KV’s limitations, its low cost, portability, and

straightforward use, make it an appealing tool for professionals

even if more complex systems are available.

In this work, gait kinematics from a marker-based 3D motion

capture system, OP, MP, and KV were compared to evaluate

accuracy as well as speed of results, ease of use, and cost. In a

similar work, Haberkamp et al. (19) compared Kinovea,

Openpose, and marker-based motion capture for single-leg

squatting in adolescents and, in agreement with the literature,

found good agreement in the sagittal plane, but not on the
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frontal. The advantage of the squatting task was that it required the

joints of the lower limb to reach their maximum range and return

to the neutral position, allowing for angles to be large enough for

identification. However, clinically important assessments may not

exhibit large joint angles, but rather a pattern of subtle motions.

It is also important to note that during gait, the extremities

overlap on the sagittal plane making identification of the joints

challenging. This is why the focus here was on a full gait cycle,

because it is a more complex motion with smaller but critical

joint movements that is more likely to be used as an assessment

task in a larger variety of individuals (from adolescents to older

people). As such, it is important to evaluate pose estimation tools

with a clinically relevant task that can be challenging to measure

accurately. The purpose was to identify the system that can be

reliably integrated into everyday practice for non-critical cases.
2. Methods

2.1. Data collection

Seventeen healthy people with a mean age of 69+ 5 years

participated in motion capture sessions. They did not have any

mobility limitations or cognitive maladies. All of them reported to

be independent in their daily lives and they were generally active.

A split-belt treadmill (Bertec Corporation, Columbus, OH, USA)

was used and their motions were recorded at 100 Hz with a Vicon

(VC) marker-based motion capture system (Vicon Motion Systems

Ltd, Oxford, UK) that was using ten infra-red cameras. The

motion capture system also had two standard RGB video cameras

integrated and synchronized with the rest of the equipment that

were recording at 100Hz as well. The RGB camera that captured

motions in the sagittal plane was used for this work.

The study received ethical approval from the Research Ethics

Committee of the Democritus University of Thrace (DUTH/EHDE/

28061/165) and was in accordance with international ethical rules.
FIGURE 1

Setup of the equipment. Ten infrared cameras and two RGB cameras were use
natural gait speed and then, they performed one minute walking on the split-
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2.2. Experimental protocol

Themarker set of the Conventional GaitModel version 2.4 (CGM

2.4) was used. It has 57 reflective markers placed on the whole body

and it is fully integrated with the system’s software (Nexus 2.14).

The participants walked ten times on an overground corridor for

ten meters in order to measure their natural gait speed. Figure 1

shows how the lab was set up. Once this was done, they would start

walking on the treadmill for a few minutes to familiarize themselves

and reach their natural walking speed. Once they were walking

comfortably, a full minute of normal gait on the treadmill was

recorded for each individual. For this work, a complete gait cycle of

the left leg for each person was used. The cycle was defined between

two left heel strikes. A heel strike was defined as the moment the

heel touched the ground and the treadmill detected a force. In total,

17 gait cycles, one for each person, were used.
2.3. Joint angles calculation

The joint angles from the markers of the full body were calculated

using the CGM 2.4 algorithm that is integrated into the system’s

associated software. From the synchronized RGB video, a gait cycle

was selected and the angles of the hip, knee, and ankle were

extracted. For OP and MP, custom scripts in Python (ver. 3.9.13) and

Matlab (ver. R2020b) (Mathworks Inc., Natick, MA, USA) were

written to extract the keypoints, organize the data, and calculate the

joint angles in a compatible with the CGM output. The low pass filter

that is integrated in Matlab (command: y ¼ lowpass(x, fpass, fs))

was employed with a cut-off frequency of 5 Hz to the raw signal.
2.4. Manual video annotation with Kinovea

The videos were annotated manually using Kinovea (KV) by NP.

The angles of the hip, knee, and ankle were exported and compared
d to record each participant on the overground corridor to calculate their
belt treadmill.
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Manual annotation using KV.
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with the other systems. A gait cycle was selected for each participant

to be annotated. Figure 2 shows an example of a manually annotated

frame. Assuming time is not a constraint, KV is an easy-to-use and

cost-effective video annotation software for 2D kinematic analysis

(20). It offers many features for manual and frame-by-frame video

editing and its reliability and validity have been assessed both in a

clinical setting (21–23) and in sports performance (24–27).

In this study, the anatomical landmarks that had markers placed

on them,were used to annotate the joint centers. For the hip joint, the

center of rotationwas placed approximately on the greater trochanter

of the femur. It was mediolaterally defined at the center of the thigh

and, in terms of height, across the line of the Iliac symphysis. The

distal markers were on the shoulder and the knee. The rotation

center of the hip did not had a marker on it, and it was defined

based on the motion of the leg during walking. For the knee joint,

the center of rotation was defined at the knee’s marker while the

distal landmarks were the rotation center that was defined on the

greater trochanter by the user and the malleolus marker. For the

ankle joint, the center of rotation was placed on the malleolus. The

other two defining markers were on the knee and at the 5th

metatarsal. In order to get values comparable with the VC, an

angle of 90� was subtracted from the measurements and then the

offset due to the person’s anatomy was removed. To do that, a

static posture image was used to remove the offset when the leg

was straight. A limitation of this process is that the use of markers

as landmarks introduces bias to the manual annotation. There

were three reasons why it was decided to continue the process

despite of this. The first one is that different gait cycles recorded at

different times will not be exactly the same. Therefore, there will

be a variance that did not arise from the methods that were used.
Frontiers in Rehabilitation Sciences 04
As such, the results would not allow for evaluation between them

since the origin of the variance would be undetermined. The

purpose of this work was to compare data that a professional could

realistically obtain manually with pose estimation methods and

quantify the inaccuracies. Therefore, the same signals were

required across all systems. The second reason was that CGM 2.4

doesn’t use the markers to establish Joint Centers (JC) but to scale

an Inverse Kinematic (IK) model. This means that the actual JCs

are products of an optimization process and may not necessarily

coincide with the markers. However, it is possible that the JC on

the knee and the ankle will not be far from their markers, at the

same time experts rarely have issues identifying these joints so the

bias should be minimal. The hip joint was the only one that

needed to be identified based on the motion that was exhibited

and it is the joint that is elusive across all methods. Lastly, the

markers were placed by a team of experts on bony landmarks. As

such, by following them, the variability that could arise between

successive annotations and different raters is reduced. It should be

noted that assessing inter- and intra-rater variability was outside

the scope of this work, so the focus was to minimize bias from

random sources. Ultimately, because of the different prerequisites

each method has, a process that balanced the different sources of

bias in a realistic manner was followed.
2.5. Pose estimation with Openpose and
Mediapipe

There are two main categories of pose estimation algorithms.

The top-down algorithms and the bottom-up. Top-down
frontiersin.org
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methods identify a human as an object in an image, then the pose

is determined. The problem with this approach is that if the initial

identification fails, then there’s no way to recover (28). These

methods tend to be less computationally intensive when only a

single person is in the image. However, their demands increase

when they attempt to identify multiple persons. Bottom-up

approaches identify keypoints first, and then cluster them

together to estimate the person’s movements. They can be more

computationally demanding, but their cost doesn’t increase as a

function of the number of people. However, the clustering may

fail when there’s an overlap of body parts (28).

In this work, Openpose v1.7, which is a bottom-up method,

and Mediapipe v0.9.0.1, a top-down algorithm, were employed. A

comprehensive technical description of pose estimation

algorithms is outside the scope of this paper. Suffice to say that

OP is a multi-stage CNN that uses the first 10 layers of the

“Visual Geometry Group” (VGG) architecture (29) to generate

representative feature maps from the RGB input. Then, the first

stage CNN uses the feature maps that were created to produce a

set of Part Affinity Fields (PAFs) representing the association of

the detected parts in the input image. The second stage is

responsible for estimating part confidence maps, i.e., the level of

confidence regarding the association of different PAFs. The

output of each convolutional layer in a single-stage CNN is

concatenated in the final output, adopting a technique proposed
FIGURE 3

The B-A graphs between VC and KV for ankle, knee, and hip joints. The ankle jo
the hip joint’s values are not clustered around the mean, but the error appears
(C) B-A graph of the hip joint.
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in DenseNets (30). Based on those two maps the final output is

attached to anatomical landmarks based on the pose model that

is used. On the other hand, MediaPipe uses a variation of the

lightweight, well-established MobileNetV2 model (31) to detect

the presence of bodies in the input RGB image in real time. This

is done using a set of a few pose keypoints. Then, a real-time

body pose tracker (32), a generative model for 3D human shapes

and poses named GHUM (33) are applied. Finally, a pose

estimation with 33 landmarks in 3D is produced.

OpenPose supports two pose models: BODY_25 and COCO.

The relevant difference that these two models have is that

BODY_25 has keypoints on the foot, which allows for

measurements on the ankle, while COCO ends at the ankle joint.

Therefore, BODY_25 is the model that is used in this work. A

simple custom script in Powershell was written for OP to extract

the keypoints as .json files (one file for each frame). The .json

files were organized into folders for each subject and were later

processed using scripts in Matlab to organize the output into a

format that could be easily manipulated.

Mediapipe had a better interface and it was quite simple to

write a script in Python that would extract all the keypoints into

a single Python dictionary. However, it was decided to perform

all calculations in Matlab for logistical reasons. Therefore the raw

output from both pose estimation algorithms (the .json files and

the python dictionaries) was processed by the same Matlab script.
int has many values that are close to the CI and the knee crosses the limits,
to have a pattern. (A) B-A graph of the ankle, (B) B-A graph of the knee and
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2.6. Statistical analyses

The ground truth was the output of VC. Joint angles that were

measured from the marker-based system were compared against all

other methods. Evaluating different methods has certain caveats

that need to be considered in order to avoid Type I errors. The

primary source of false positives is that even though the data are

being measured using different approaches, they have to be the

same to ensure that whatever variance is detected originates from

the method.

As such, the correlation coefficient R is inherently high

regardless of the actual agreement between the methods. In

general, when comparing methodologies, the question shouldn’t

be how much they agree, but how much they differ and if that

difference is significant (34). Another important aspect is the

output of each method across a range of measured values. This

helps to identify cases where the accuracy diminishes even if the

overall behavior is still within acceptable limits of difference.

Indeed, extracting a single value such as the coefficient R or the t

statistic, oversimplifies vector trajectories and may give a false

impression of the accuracy of each method.

In this work, the evaluation of the different methods is done

using the statistical parametric mapping (SPM) and the Bland-

Altman (B-A) difference against the mean graph. Initially used
FIGURE 4

The left-hand graphs of the figures shows the mean motion waveform with
significance of the error, wherever the area under the curve is greyed out, th
analysis for the knee joint and (C) SPM analysis for the hip joint.
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for neuroimaging analyses (35) and later adapted to

biomechanics (36), SPM considers covariance among vector

components. Mean continua are extracted from the

measurements of each method and the variance is studied. The

point of relevance here, is that regions of the joint angles that are

not adequately accurate are highlighted, allowing for a granular

assessment of the AI methods. This can direct efforts of

enhancing the pose estimation algorithm for the problematic

cases. The SPM calculations were done using the SPM1D API

(spm1d.org).

Complementary to SPM, the evaluation of the differences

between methods was also done using B-A graphs (34,37) to

have an overview. A mean gait cycle from each method was used

for the B-A graphs, using more gait cycles would clutter the

graphs obscuring the pattern. This is why B-A is used alongside

the SPM, to have both a detailed behavior and a general

description. The difference in the mean error between each

method was plotted against the mean error in a scatter plot. This

method can show not only the average error between the two

methods, but also how clustered the data points are around the

error. The limits of the confidence intervals (CI) were set as

+1.96 * standard deviation (37), however, attention was given

to the range of the CI as well. In essence, it was possible to see

how wide the measurements are scattered around the mean error.
their respective standard deviations. The right side shows the statistical
ere is significant difference. (A) SPM analysis for the ankle joint, (B) SPM
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3. Results

In this section, the comparison between VC and the other three

methods is shown first. Then, the comparison between OP and KV

is presented. This is done to explore if these two systems can

complement each other and if accurate results can be achieved

without access to a marker-based system. It should also be noted

that all images are present in the Supplementary Material at

their full size for clarity, along with a few, somewhat redundant

but possibly interesting, extra graphs of the repeated SPM

ANOVA for VC, KV, and OP.
3.1. Vicon vs. Kinovea

The first metric that needs to be examined is the B-A graphs

between VC and KV. Figures 3A–C show the B-A scatter plots

for ankle, knee, and hip respectively.

The ankle joint in Figure 3A appears to have a lot of

measurements near the CI limits but they never cross the lines of

significance. Figure 3B shows that it is possible for KV to measure

angles that are outside the CI. In general, even though the

majority of measurements are clustered near the mean difference,
FIGURE 5

The B-A graphs between VC and OP for ankle, knee, and hip joints. The ankle jo
gait cycle. The hip joint’s values are not clustered around the mean but the erro
of the knee joint and (C) B-A graph of the hip joint.
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there is also a portion of joint angles that are near or outside of

the CI. Figure 3C shows that on the hip, the measurements tend

to be on the left-bottom and right-top parts of the B-A graph. It is

also worth noting that the CI is 13:38�, the largest of the three joints.
For the ankle, knee, and hip joints, the SPM mean continua

analyses are examined next to identify the problematic areas.

Figures 4A–C shows the statistical parametric mapping between

VC and KV for the three joints.

Observing Figure 4A, it can be seen that the error between VC

and KV is consistent but well away from significance. It is also

interesting to see that the variance of the VC (grey area) is

larger, while the KV variance (red area) is more focused around

the mean motion. This means that the user was more consistent

but less accurate.

From Figure 4B, KV has a relatively stationary offset of about

20� when compared to VC. According to the SPM analysis, there is

significant disagreement for all of the gait cycles but the pattern is

preserved. This is because identifying the hip joint center is

challenging, especially during the terminal stance and pre-swing

phases of gait. As a result, the user’s bias will add an offset to

the knee joint angles that is more pronounced around

30%��50% of the gait cycle. However, the pattern and the

range will still be preserved, which makes it possible to account

for that offset.
int appears erratic, the knee approaches the limits in certain regions of the
r appears to have a pattern. (A) B-A graph of the ankle joint, (B) B-A graph
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Figure 4C shows that the hip also has an offset between the two

methods and the statistically significant region is at the middle of the

cycle. As before, the issue is that the hip joint is difficult to identify

visually with KV and its motion might be underestimated.

Referencing back to the B-A graphs (Figures 3B,C), the cases

crossing the CI on the knee and the large CI on the hip are

justified since they are affected by the placement of the hip joint

center. As such, it is not surprising that the SPM shows error

when the leg is perpendicular to the ground and the hip center of

rotation cannot be distinguished.

In general, manually annotating the joints will preserve the

motion similar to a marker-based system but in certain

situations, the error of the user will introduce a significant offset.

What is important to note, however, is that the KV user will be

consistent.
3.2. Vicon vs. OpenPose

The B-A graphs between VC and OP are examined in this

section. Figure 5A shows the ankle joint angles. There is only a

small portion of measurements that appear to be significantly

different between the two methods. However, the distribution

appears to be somewhat erratic in Figure 5A with certain values
FIGURE 6

The left-hand graphs of the figures shows the mean motion waveform with
significance of the error, wherever the area under the curve is greyed out, th
analysis for the knee joint and (C) SPM analysis for the hip joint.
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crossing the CI limits. Figure 5B shows that the knee joint

angles are clustered around the mean with a very narrow CI,

while the hip joint in Figure 5C has the CI of 20:6� similar to

the ankle joint (20:76�). Both knee and hip do not cross the CI

limits though that might not be the full story. The SPM analyses

highlight the regions of interest.

The mean motion of the ankle from OP in Figure 6A reveals

how unstable OP is in tracking the foot. Indeed, visual

examination of the videos shows the OP keypoints on the

metatarsals to be misidentified on multiple frames. Though the

error is not statistically significant, this is a Type I error (false

positive), since OP fails to follow the overarching pattern of VC.

The large variance (red area) in Figure 6A is also a sign of

erroneous tracking of the metatarsals

Figure 6B shows the opposite behavior. The knee joint angles

are measured accurately with OP. The significant error occurs in

the middle of the gait cycle. This is again an error arising from

different identification of the hip joint center between the

systems. It should be noted though that OP has a smaller offset

than KV. The knee has the highest range of motion and

according to the B-A graph and the SPM analysis, it is the joint

that is being tracked the best. Finally, the hip joint in Figure 6C

shows that OP suffers in the same areas as KV but the JC is

tracked better.
their respective standard deviations. The right side shows the statistical
ere is significant difference. (A) SPM analysis for the ankle joint, (B) SPM
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In general, OP can have impressive accuracy for the correct

joints. However, it is more sensitive to misplacing the keypoints

and this will have consequences. It is also highlighted that this is

a problem that affects joints that exhibit low motion since even

the knee and the hip can have larger errors when they are

relatively stationary. That said, the agreement of OP with VC is

still impressive and the potential to become an accessible tool for

gait analyses is a realistic possibility.
3.3. Vicon vs. Mediapipe

The B-A graphs for the three joints of interest are shown in

Figures 7A–C.

The most striking observation is that the range of the CI is

pretty large for all joints compared to the other methods. Indeed,

even the knee that had the smallest CI so far, shows a large

confidence interval in Figure 7B. The uniform distribution of the

data points on the whole region of the CI shows that the error is

very spread out around the mean value. Therefore the accuracy is

greatly diminished throughout the gait cycle.

The SPM analyses show that the results are as problematic as

the B-A graphs suggested. The ankle joint is completely

misidentified as shown in Figure 8A. Similarly, Figure 8C shows

that the hip suffers as well. MP seems to struggle to separate the
FIGURE 7

The B-A graphs between VC and OP for ankle, knee, and hip joints. The ankle j
gait cycle. The hip joint’s values are not clustered around the mean. (A) B-A gr
the hip joint.
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left and right sides and that has led to large variances (red area).

The clearest example is the knee SPM analysis in Figure 8B that

shows a surprising agreement during flexion. However, during

the stance phase, there is a motion recorded across all subjects.

This happens because the algorithm mislabels the left and right

knee when the right leg crosses from behind the body to the

front. Indeed, visual inspection of the videos showed that MP’s

skeleton was flickering and mislabelling joints a lot more than

OP’s. This is the source of the error that produced the results

presented here.
3.4. Openpose vs. Kinovea

From the previous subsections, it is clear that OP and KV can

be fairly accurate and can potentially complement each other. To

explore this, the OP and the KV results are compared. It should

be stressed that, unlike the previous sections, it is not the

agreement of the methods to the ground truth that is examined,

but the agreement with each other.

Figure 9A shows a rather wide CI with the values scattered

throughout the whole region and some values crossing the limit.

This was expected since OP failed to follow the ankle. The

agreement is much better on the knee, as Figure 9B shows. The

mean error is lower than when either method is compared to
oint is very spread out, the knee crosses the limits in certain regions of the
aph of the ankle joint, (B) B-A graph of the knee joint and (C) B-A graph of
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FIGURE 8

The left-hand graphs of the figures shows the mean motion waveform with their respective standard deviations. The right side shows the statistical
significance of the error, wherever the area under the curve is greyed out, there is significant difference. (A) SPM analysis for the ankle joint, (B) SPM
analysis for the knee joint and (C) SPM analysis for the hip joint.
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VC with the CI being larger from VC-KV but smaller from VC-

OP. The SPM analysis gives a better insight of both methods

track. Finally, in Figure 9C, the hip exhibits a very high

agreement with a low mean error and the measurements

clustered around it. However, some values cross the CI limit and

a closer examination is in order.

Figure 10A is very similar to Figure 6A since the erratic

behavior of OP on the ankle renders the results inaccurate.

Figure 10B is more interesting because it shows that the offset of

the KV pushes the error slightly above significance (below the

confidence interval’s lower limit) twice. However, it becomes

insignificant again quickly and remains like that. Finally,

Figure 10C, shows that the hip joint can be confidently

measured with either KV or OP and have the same results.

Please note that this simply means that the hip will have

equivalent error regardless of the method, rather than it is

measured more accurately.
3.5. Time of processing

Using KV, each gait cycle took about 2 to 2.5 h to get the final

measurements. That’s roughly 38 h for all 17 subjects. This was by

far the most time-consuming and taxing method with no practical
Frontiers in Rehabilitation Sciences 10
way to speed it up. Pose estimation algorithms were on a different

order of magnitude. It took about 2 minutes and 9 s to run all 17

trials in OP, while MP required 87 s to process the videos.
4. Discussion

In this work, a multicamera marker-based system for

motion capture that has become the de facto standard (VC)

was compared with three open-source methods to calculate

the leg’s joint angles during a gait cycle. Those were the

Kinovea video annotation tool, the Openpose pose estimation

algorithm, and the Mediapipe pose estimation algorithm. The

goal was to examine if it is possible to get accurate data using

more accessible tools. The B-A graph was used to examine

the degree of difference between each method and the SPM

t-test was employed to identify the phases of disagreement

during gait.

Results show that MP had the worst output of all tested

methods. However, as Figure 8B shows, when the motion was

sufficiently large and the joint is unambiguously discernible like

knee is, it can produce very accurate results. This is probably a

result of MP’s top-down approach. As such, despite being less

computationally expensive, it is not recommended for gait analysis.
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FIGURE 9

The B-A graphs between OP and KV for ankle, knee, and hip joints. The ankle joint appears erratic, the knee approaches the limits in certain regions of the
gait cycle. The hip joint’s values are clustered around the mean, but they cross the CI for a small number of cases. (A) B-A graph of the ankle joint, (B) B-A
graph of the knee joint and (C) B-A graph of the hip joint.
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KV showed that a static offset, the bias of the user, was present

throughout the recording, but it was consistent for the majority of

the measurements. The source of the error was the difficulty to

identify the hip joint center. It can be argued that a more

standardized approach to identify the joint center, such as

adding a marker (not necessarily reflective) or review from

multiple users can alleviate the issue. However, this will not solve

the issue that KV is extremely dependant on human input. Since

the time investment that it requires from the person who

performs the analysis is very high, adding more users to the

workflow will have diminishing returns.

Pose estimation using OP had the most promising results but

some caveats need to be considered. The ankle suffered from

keypoint misplacement, it didn’t help that the joint itself

exhibited very little motion. Even though there wasn’t a

significant error, this was a Type I error because the overarching

pattern of the ankle wasn’t preserved. This particular joint is

extremely important for biomechanic analyses during gait but it

is elusive to measure using pose estimation methods. The knee is

the most successful result of OP. This is because the joint center

is relatively easy to identify, the segments attached to it are

substantially long and rigid, and it exhibits the largest range of

motion during gait. However, hip misidentification still affected

it. Despite that, knee flexion is the safest motion to use OP.
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Interestingly, the hip exhibits significant error at the same phases

as the KV results. This is not surprising considering that OP

used videos annotated by humans to train its AI model. The

implication here is that human bias is part of the OP’s algorithm.

The bias that has affected OP’s training is apparent in

subsection 3.4. The ankle wasn’t measured accurately, so there

are no safe conclusions to be drawn, but the SPM analysis shows

that the OP tracking does not deteriorate completely up until

60% of the gait cycle. This is perhaps grounds for future

investigation. The knee, once again, is a great example because it

seems that the bias between OP and KV is very close to the bias

between VC and KV. This was expected because OP manages to

follow VC very closely, thus Figure 10B is very similar to

Figure 4B. Since the knee is the easiest joint to identify, it was

possible for the AI system to achieve high accuracy from the

training dataset. Lastly, the hip joint had an impressive

agreement between the two methods. Considering that VC uses

its own algorithm of inverse kinematics to define the hip joint

center, and OP uses a large dataset that was annotated by

humans, it becomes apparent that OP has achieved a high level

of mimicry, but it also means that the error of the dataset has

been transferred as well.

The lower computational demands of MP came at the cost of

reduced accuracy to such an extent that it cannot be used for
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https://doi.org/10.3389/fresc.2023.1238134
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


FIGURE 10

The left-hand graphs of the figures shows the mean motion waveform with their respective standard deviations. The right side shows the statistical
significance of the error, wherever the area under the curve is greyed out, there is significant difference. (A) SPM analysis for the ankle joint, (B) SPM
analysis for the knee joint and (C) SPM analysis for the hip joint.

Menychtas et al. 10.3389/fresc.2023.1238134
gait analyses in its current iteration. On the other hand, in

agreement with the literature, OP appeared to be able to

correctly identify and follow the joints for the majority of the

motions examined, albeit it was more taxing on the hardware.

Manual annotation using KV is still a viable option as long as

the user’s bias is taken into account. It should be noted that the

time required for a single trial makes it difficult for larger scale

studies. However, the low cost, and the potential for a single

professional to be able to get data on par with a marker-based

system makes it appealing to try to work around the issues

surrounding KV and OP.

The time difference between MP (87 s), OP (129 s) and KV

(�38 h) cannot be ignored. The most obvious solution would

be a video annotation tool that would integrate OP, or perhaps

MP for lower-end computers, and would allow manual

corrections on the output. This would reduce the time to

annotate a video and its accuracy would be comparable to a

multi-camera system.

It should also be understood that AI pose estimation

accuracy hinges on the the quality of the labelled training

dataset. This has been pointed out in the literature (1) but

after comparing the VC with KV (Figure 4C), VC with OP

(Figure 6A) and OP with KV (Figure 10C), it would seem

that the human bias has leaked into the trained model and it
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is a powerful source of error. As such, videos annotated by a

marker-based system might be more appropriate to train pose

estimation algorithms in the future.
5. Conclusions

In conclusion, OP is superior to MP despite the higher

computational cost. However, it suffers on certain joints and

when the range of motion is not large enough. Manual

annotation with KV has an offset but it’s consistent and accurate.

More importantly, KV allows for the user to fine-tune the

keypoints in case of problematic recordings. From the results

presented here, the pose estimation algorithms are accurate

enough but they lack flexibility. Though the creation of better AI

pose estimation systems is a very active field of research, the

practical problem is that if the automated system miscalculates,

the user has no way to intervene. This can become an even

bigger problem if people with movement disabilities (prosthesis

users, cerebral palsy, etc.) are measured with such systems. If

markerless pose estimation is to become a part of the standard

practice for health professionals, a platform that will use such

systems and then allow for manual editing appears to be the

most viable strategy in the near future.
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