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Muscle redundancy is greatly
reduced by the spatiotemporal
nature of neuromuscular control
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Animals must control numerous muscles to produce forces and movements with
their limbs. Current theories of motor optimization and synergistic control are
predicated on the assumption that there are multiple highly diverse feasible
activations for any motor task (“muscle redundancy”). Here, we demonstrate that
the dimensionality of the neuromuscular control problem is greatly reduced
when adding the temporal constraints inherent to any sequence of motor
commands: the physiological time constants for muscle activation-contraction
dynamics. We used a seven-muscle model of a human finger to fully
characterize the seven-dimensional polytope of all possible motor commands
that can produce fingertip force vector in any direction in 3D, in alignment with
the core models of Feasibility Theory. For a given sequence of seven force
vectors lasting 300ms, a novel single-step extended linear program finds the
49-dimensional polytope of all possible motor commands that can produce the
sequence of forces. We find that muscle redundancy is severely reduced when
the temporal limits on muscle activation-contraction dynamics are added. For
example, allowing a generous +12% change in muscle activation within 50ms
allows visiting only �7% of the feasible activation space in the next time step. By
considering that every motor command conditions future commands, we find
that the motor-control landscape is much more highly structured and spatially
constrained than previously recognized. We discuss how this challenges
traditional computational and conceptual theories of motor control and
neurorehabilitation for which muscle redundancy is a foundational assumption.
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Introduction

Controlling the muscles of a limb is a task “cursed” by dimensionality, as it is a learning and

control problem that requires the nervous system to identify and implement a specific muscle

coordination pattern from an infinite set of possible options. Our objective in this work is to

add more reality (constraints) to the models to uncover the way muscles “must” coordinate,

given a task. This so-called muscle redundancy problem has been considered the central

problem of motor control in computational neuroscience for the past half century (1).

There are three main conceptual approaches to this problem that attribute the nervous

system the ability to mitigate muscle redundancy by (i) a priori reducing the dimensionality

of the problem to a handful of basis functions or “synergies” [e.g., (2–4)], (ii) defining cost

functions to follow a gradient to find unique muscle coordination patterns [e.g., (5–7)], or

(iii) using experience-based sampling to find useful coordination patterns [e.g., Bayesian

priors (8), trial-and-error (9), or habitual (10)]. Feasibility Theory (11, 12) contextualizes

these alternative theories of neuromuscular control by formally describing the high-
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dimensional set of all neuromechanically feasible coordination

patterns. This is the landscape upon which all learning and

adaptation must take place at any point in time.

How a neural controller explores and exploits such high-

dimensional landscapes is not known. However, from an

anthropocentric mathematical perspective (which may not be the

way neural systems operate), it is computationally more tractable

to use optimization or dimensionality reduction than experience-

based sampling, which may take an infeasibly long time in such

high-dimensional spaces (13, 14). Moreover, we and others have

suggested that there may be non-obvious mechanical constraints

that must be considered when selecting coordination patterns

such as the integrity of the joint (4, 15), or the instability of the

task (16, 17). In the case of rehabilitation, injury and disease

likely impose their own mechanical or dynamic constraints.

To find unique time-varying muscle coordination patterns in

spite of the muscle redundancy problem, investigators use

dynamic optimization and optimal control formulations that

enforce tenable (yet arbitrary) convex (generally quadratic) cost

function with differential equations that approximate the

activation-contraction dynamics of muscle and equations of

motion of the limb (6, 7, 18–21). While this approach solves a

well-posed mathematical problem, it does not, however,

characterize the redundancy problem the nervous system faces:

how is the dimensionality and structure of muscle redundancy

affected by the neurophysiological time constants needed to

change coordination patterns over time?

Synergy analyses are valuable for understanding the tendencies

of muscles to collaborate and coordinate with one another, across

health and pathologies (22). In monitoring intermuscular

coherence between muscles at the 10 Hz (alpha) range, specific

postures highlighted more alpha drive than others (23),

suggesting that the task has a large effect on the way muscles

coordinate with themselves. In the effort to understand the “way”

muscles are coordinated, our drive is to clearly and exhaustively

characterize the task the neuromuscular system must be solving,

so we can uncover the tenets of control. Muscle control and

body dynamics must be considered in parallel. This field of work

aims to aid in our comprehension of the broader field of

comparative physiology and neuroscience, ultimately enhancing

our knowledge of the biological underpinnings of movement in

diverse organisms and informing robotics, orthopedic, or

prosthetic design for improved mobility and quality of life.

Here, we describe how muscle activation-contraction

dynamics, a dynamical physiological constraint common to all

time-varying limb functions, affects the dimensionality and

structure of muscle redundancy. The dynamics of the limb and

task are as diverse as the multitude of behaviors, but the fact that

muscles cannot change the force level instantaneously affects the

options in the next moment (24, 25). We refer to this behavior

as a “spatiotemporal tunnel—the well-structured representation

of feasible muscle activations to achieve a series of isometric

forces, where the limb must meet the force output across each

discretized moment in time (Figure 1). We provide a novel

conceptual and computational approach to determine how

muscle activation-contraction dynamics limit the feasible changes
Frontiers in Rehabilitation Sciences 02
in muscle activation pattern at a given point during a time-

varying force modulation task.

We demonstrate, using the sample task of redirecting a 10N

fingertip force over a 30� arc (Figure 1), that we can characterize a

well-structured and lower-dimensional “spatiotemporal tunnel” that

contains the set of all feasible muscle activations without invoking

cost functions or performing a priori dimensionality reduction.
Results

We find that the time history of feasible activations for a time-

varying task is highly restricted by the activation-contraction

dynamics imposed by muscle physiology (Figure 2).

As the activation-contraction speed limit is reduced, the

trajectories become more spatially constrained in the regions of

the feasible activation space they can inhabit/exploit (Figure 2D).

This allows us to describe the effects of the activation-contraction

constraint under which muscle coordination happens to be able to

produce a force and change its direction on the activation levels

across the task, activation-contraction speeds (Figure 2B), signed

maximum activation-contraction speeds observed across the larger

pool of generated trajectories (n ¼ 10,000, Figure 2C), and the

max-absolute-value activation-contraction speeds for each muscle,

across each activation-contraction constraint (Figure 2D). Some

muscle trajectories appear more profoundly affected by more

stringent activation-contraction constraints than others, such as

extensor indicis propius (EIP), extensor digitorum communis

(EDC), and lumbrical (LUM) (Figure 2D). As the maximal

activation-contraction speed is reduced, those same muscles will

visit/exploit increasingly smaller subspaces of their feasible

activation space. This spatiotemporal interaction is best seen in

EIP, which has a naturally large range of feasible activation, which

are suitably exploited when the activation-contraction constraint is

less-constraining, but then shrinks as the constraint becomes more

strict. However, changes also spill over to muscles with naturally

smaller ranges of feasible activations such as FDP. This muscle has

few trajectories with an activation-contraction rate greater than

0.25 to begin with, but becomes limited in range as the activation-

contraction speed is reduced (Figure 2D).

A closer look further confirms that muscles that have a narrow

range of feasible activations will be least sensitive to changes in

activation-contraction constraints. FDP, FDS, and PI are more

affected by the reduction of maximal activation-contraction speed

—muscles which do not have much room to move are

constrained primarily by their involvement in the task, and

secondarily by the activation-contraction constraints—the

muscles that have greater ranges of activation have non-

overlapping central quartiles between the 0.75 and 0.5 activation-

contraction constraint (Figure 2D).

Producing a fingertip force and changing its direction require

selecting a specific solution and implementing a specific sequence

of activation patterns. Our “seeded analysis” reflects the

consequences of choosing an initial activation pattern (a “seed”) to

subsequent feasible activation patterns. We examine the case where

the first activation is fixed to a single option (the unclamped case
frontiersin.org
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FIGURE 1

The landscape within which motor learning and performance must occur in time is highly structured and spatially smaller than previously recognized. Our
objective is to computationally survey the Feasible Trajectory Space in the context of activation-contraction constraint, to better inform our perspectives
of descending neuromuscular control paradigms. We illustrate the types of neurophysiological constraints that affect muscles (A), highlight how a feasible
activation space is subject to the aforementioned constraints (B), select a model system of a human cadaver index finger conducting a force redirection
task (C), and document the model as well as the axes (D). Illustrations in this summary figure are artistic representations.
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in Figure 3A) and the “clamped” case, where the first and last

activation must match one another (Figure 3B). Given a seed,

subsequent feasible activations for each muscle are highly limited

in where they can go when unclamped, and when clamped the

activation trajectories have (by design) a symmetric expansion and

contraction of the activation space. Traditional techniques for

visualizing these spaces, including density distributions and parallel

coordinates as used in (11), could be misleading on the raw

activations when incorporating the concept of time.

Finally, the hypothesis illustrated conceptually in Figure 1 is

highly supported by data in Figure 3. We show how, for 10

randomly selected seed points, the activation-contraction

constraints shown in Figures 2A,B limit the evolution of muscle
Frontiers in Rehabilitation Sciences 03
activations over time in the force redirection task, and how the

blue seeded point has its space limited to 7%. The 7% result is

when muscle activations are constrained to remain within 12% of

its activation between each time slice (the highest allowable

activation change is set to 0.12 per 50 ms).

To create an adequate visualization, we had to find a method to

fairly represent, project, and render the 49-dimensional space of

trajectories onto a page as a 2D representation.

Given a starting point in t ¼ 0, the time-constrained activations

form a “tunnel.” A single seed point defines where the activation

must move, highly limiting the space of feasible activation patterns

that can be used to achieve the rest of the task; a spatiotemporal

tunnel exists. Furthermore, when constraining the muscle activation
frontiersin.org
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FIGURE 2

Effect of tightening constraints on the feasible trajectory space. We show 10 sample trajectories (from the 10,000 computed) for each of three levels of
activation-contraction constraints. For each activation-contraction level, we show (A) sample trajectories, where each color is a different trajectory. (B)
Those trajectories, differentiated to show how quickly the activations were changing with the upper and lower activation-contraction constraints shown
as dotted lines, and (C) the full distribution (n ¼ 10,000) of the trajectory “activation-contraction speeds,” grouped by muscle. Note that colors on (C) do
not relate to (A) and (B). Outliers are not shown on (C). In (D), we show the effect of differing activation-contraction constraints on the distribution of
max (j _aij), compared across muscles. When we sample trajectories, we get n-dimensional trajectories, with n ¼ 7 muscles. From each of those
trajectories, we differentiate them (e.g., _ai ¼ aLUMiþ1 � aLUMi ), and we show here the distributions of, e.g., _aLUM. These speeds are grouped by the applied
activation-contraction constraint. The case with no activation-contraction constraints is a 1:0; a 0:1 means a muscle is spatiotemporally constrained
so that it cannot change by more than 10% within 50ms.
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trajectory to have identical starting and finishing activation patterns

as in Figure 3B, the muscle redundancy shrinks dramatically.
Discussion

The temporal constraints imposed by muscle activation-

contraction dynamics greatly affect the neuromuscular control

landscape upon which all learning, motor control, and evolution
Frontiers in Rehabilitation Sciences 04
must operate. This underappreciated aspect of muscle mechanics

has strong implications when navigating the feasible solution

space for a task where a null space for control exists. In addition,

this approach challenges traditional computational and

conceptual theories of motor control and neurorehabilitation for

which muscle redundancy is a foundational assumption.

Importantly, the range of valid solutions, i.e., muscle

redundancy, does not necessarily decrease in light of activation-

contraction constraints, as the feasible activation space is defined
frontiersin.org
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FIGURE 3

Spatiotemporal tunnels. The ‘seed’ activation you choose in the first
moment highly constrains where your muscle activations can evolve
across the following six 50 ms time steps. Consider a generous
activation-contraction limit of 0.12 per 50 ms time step (in that no
muscle can change more than ±12% in tension from slice to slice).
We show 10 seeds as they move through the 7 feasible activation
spaces, each corresponding to a different force direction. All feasible
muscle activations have been projected onto PC1 and PC2 generated

(continued)
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by the anatomy of the limb and the operating constraints of the

task (12). In addition, the utility of a muscle has been described

many times as a description of the bounds within which that

muscle can be used and can contribute (11, 26, 27, 28).

Nevertheless, our work highlights how those bounds on muscle

redundancy are too optimistic for time-varying evaluations of

spatiotemporal feasibility, even in a very simplistic force

redirection task. That is, just because a solution in the feasible

activation space is valid, it does not mean that it is reachable at

any point in time. Rather, the possibility of implementing a new

muscle coordination pattern in finite time is conditioned on the

current muscle coordination pattern.

As discussed in detail in (11, 12, 29), the concept of muscle

redundancy has been interpreted to mean that the nervous

system is confronted with the computational need to solve an

underdetermined problem that has infinite solutions. There are,

however, constraints other than those explicitly imposed by the

force or movement production task that conspire to reduce the

dimensionality of the feasible activation space. For example,

muscle coordination must consider anatomical constraints to

stabilize joints (4, 30) or regulate limb impedance (31)—which

additionally reduce the feasible activation set. We now add the

critical aspect of temporal constraints imposed by muscle

activation-contraction dynamics, further showing that the

“problem” of motor control is not as underdetermined as

commonly proposed. Importantly, “reducing the dimensionality”

of the feasible activation is synonymous with meeting an

additional constraint (12). This additional spatiotemporal

structure in time-varying muscle activation patterns then further

complicates the disambiguation of the so-called descriptive

synergies that arise naturally from the structure imposed by the

constraints of the task, from prescriptive ones that are proposed

to be explicitly regulated by the nervous system (12, 32–34).

Moving beyond the traditional view of muscle redundancy

opens up exciting alternative perspectives to understand function,

disability, and rehabilitation. It is no longer necessary to

continue to assume that optimization or dimensionality

reduction of motor signals is the only or primary modus

operandi of the nervous system (11, 29, 35). For one, our work

highlights the important role the properties of muscle play in the

co-evolution and co-adaptation of brain and body (36).

More broadly, our results point to the long-underappreciated

hierarchical distributed architecture of the nervous system (37–

39): the time history of muscle activations arises from the

collaboration of slower cortical “higher-level” circuits with faster
FIGURE 3 (Continued)
from the unseeded distribution for each force direction. Note the color-
coded projection of ten sample seeds onto the next time step. A typical
example (yellow highlight) shows that only 7% of the next feasible space
can be reached when muscle activations are constrained to remain
within 12% of its activation from the first seed. We show these
spatiotemporal limitations on muscle coordination patterns for (A) the
initial value case with only an initial seed activation prescribed, and (B)
the clamped case where the initial and final activation match the seed.
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brainstem and spinal “lower-level” circuits to manage perturbations

and other time-critical interactions with the ground and body

mechanics. Thus, for example, stroke rehabilitation need not only

focus only on disruptions of the corticospinal tracts as they

coordinate “redundant musculature.” Rather, we can focus on

potentially more clinically impactful approaches for

understanding the interactions across the neuroaxis to mitigate

the known dysregulation of brainstem and spinal circuitry in

stroke (40–42) and the accompanying reduction in rate of force

production (43) responsible for deficits in the time-sensitive

coordination of muscles.

At a practical clinical level, these findings improve our

understanding of the impact of changes in the rate of muscle

force production on neuromuscular control, its deficits in clinical

conditions, and their rehabilitation. The rate of muscle force

production is determined by the recruitment and rate coding of

the motoneuron pool combined with activation-contraction

dynamics. The net rate of force production can, for a variate of

reasons, be enhanced with training (44) or reduced by pain (45),

joint injury (46), Parkinson’s disease (47), and stroke (43)—

among other conditions. An impact on the feasible activation

space can be readily modeled by reducing the strength or speed

of a given muscle with the same approach described herein.

Therefore, our results directly suggest that the ability to navigate

the feasible activation space can be positively or negatively

affected by those muscle-level changes from training and clinical

conditions, respectively.

This expanded perspective aligns more closely with the

complexities of the co-evolution of neural, muscular, and

anatomical structures for effective control of real-world motor

tasks with realistic muscle activation-contraction properties. In

addition, it offers a more comprehensive understanding of how

the nervous system collaborates with muscle activation-

contraction properties to efficiently control function.

Navigating these spatiotemporal landscapes, and how those

landscapes change, is the physics upon which animal brains

and bodies co-evolved. Our work is thus conducive to cross-

species comparisons of “spatiotemporal tunneling” in the

context of evolutionary biology like, for example, when

comparing the index finger manipulability between humans

and bonobos (48). Several cadaveric, computational, and in

vivo studies then allow a wide variety of future comparisons to

support ongoing research into the control of numerous muscles

(49, 50), and how it is further constrained by mechanics and

time (17).

Prior work in (11) directly shows the impact of reducing the

strength of one muscle and can show the relative loss of volume

for the resulting feasible activation space—the same analysis

could be readily used with the spaces with additional

spatiotemporal constraints. For instance, consider a scenario

where the strength of a few muscles is reduced by 50%, possibly

due to an acute injury. By utilizing models developed in this

research, we can visually depict how the remaining muscles

might need to adjust to accommodate this altered motor

capability while still achieving the same task performance. This

can offer valuable insights to clinicians and researchers, helping
Frontiers in Rehabilitation Sciences 06
them better comprehend why even a minor injury can result in

a significantly different movement pattern. While the change in

one muscle may seem small, it can render certain areas within

the range of feasible muscle activations inaccessible.

Consequently, the patient will need to find a new solution or

opt for a different output force, such as adopting a new walking

style.

We use an index fingertip as our “model organism,” and while

fewer muscles are involved than for other limbs, there is a path and

some precedent for applying these techniques to higher-

dimensional models, e.g., the entire posterior chain of a cat (26).

Adding activation-contraction dynamics into higher-dimensional

systems can help us understand which constraints are most

influential in limiting the feasible activation space and help us

find which tasks may be more affected.

An important limitation of our work is that additional research

is necessary to fully apply our approaches to various scenarios

involving pseudo-static, slow, fast, and ballistic movements. We

anticipate, however, that incorporating dynamic constraints into

our analysis will narrow down the range of feasible muscle

activations and provide deeper insights into the actual limitations

governing the development and adaptation of motor control.

Ultimately, this paper calls for a measured re-evaluation of

existing optimization- and synergy-based motor control theories

to better account for how the integrative neuroaxis operates as a

hierarchical and distributed system to control the spatiotemporal

dynamics of muscle coordination. Producing a more accurate

view of the physical system of constraints can aid in our

understanding of how motor control has evolved in animals.
Materials and methods

As in (11, 26, 27), we define the linear transduction of tendon

tensions into output endpoint wrench as

H � �x ¼ �w: (1)

where H (a [4, 7] matrix in this paper for four output dimensions

and seven input tendon activations) represents the linear

activation-to-wrench relationship, such that H�x ¼ �woutput. We

refer to wrench in the mechanical sense, where it represents the

output forces and torques produced at the endpoint—in this

case, at the fingertip.

Wrenches are four-dimensional as the index finger can produce

a torque (i.e., scratching) �w ¼ (fx , fy , fz , ty) (15). We show the

output forces, frame-of-reference, and the actual joint torques in

Figure 1. As the data for H were collected in the same posture,

and as there is strong evidence supporting the linearity of

tendon-driven isometric force transduction in fixed postures, we

do not need to model the intermediary Jacobian or the Moment-

arm matrix (26, 30, 51, 52). We define x [ [0, 1]7, where 1

represents 100% activation.

Note that the term muscle activation can take on different

meanings depending on the level of the analysis being used. In
frontiersin.org

https://doi.org/10.3389/fresc.2023.1248269
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


Cohn and Valero-Cuevas 10.3389/fresc.2023.1248269
our case, we use it as shorthand for the total signal needed to

produce a given level of neural drive to produce force at each

muscle. The reason we do this is that it encompasses the

metabolic cost, intensity, and feasible rates of change of both

the neural drive and muscle force. As such, it includes the

following:

† Presynaptic input to a population of a-motoneurones.

† The neural command sent by the a-motoneuron to the

population of muscle fibers in its motor units (53).

† The biochemical processes required for the release and uptake

of acetylcholine at the motor end-plate of each muscle fiber

(54).

† Ca2þ release and uptake by the sarcoplasmic reticulum (54).

† The cross-bridge cycle at the sarcomere to produce, hold, and

change the level of muscle force.

We make the simplification, without loss of generality, to not

distinguish between muscle types and consider equal time

constants for the increase and decrease of neural drive and

muscle force. Many approaches minimize �cT�x, where �c represents

a vector of linear weights to combine with �x to form a metric of

cost, e.g., if �c ¼ (1, 1, 1, 1, 1, 1, 1), �cT�x would compute the “sum

cost of activation,” or �c ¼ (0, 0, 0, 0, 0, 0, 1) would compute the

“sum of just palmar interosseus.” Non-linear objective functions

have also been used to better understand weighted L2 and L3
metabolic cost functions (11). For this paper, rather than

minimization or optimization on an arbitrarily defined cost

function (a model choice in itself), our approach instead samples

from the nullspace of �x uniformly at random (u.a.r). We

leverage the same computational geometry technique “Hit-And-

Run” as in (11, 27), which is originally described in (13).

Synaptic drive applied to motor units create forces, which

ultimately generate muscle forces, and accumulate to tendon

force. The tendon is compliant and together, the musculotendon

is a big dynamic system with many physiological and physical

constraints. It is a series elastic element.
Hit and Run sampling of the feasible
activation space

Visualization and analyses of these high-dimensional

structures requires unique approaches to highlight different

aspects of feasible activation spaces, and there has been some

success in using 2D and 3D visualization to decompose neural

control of force (11, 27). As the dimensionality of the space

increases, the ratio of out-of-polytope to in-polytope volumes

within the unit cube expands exponentially, thereby making 2D

and 3D approaches computationally intractable with systems

with more than two muscles. Like in prior work, we sample the

space with the Hit-and-Run algorithm—a Markov chain

propagating within the polyhedron that yields a uniform-at-

random distribution within the volume of a given convex

polytope. This method is agnostic to measures of metabolic or

neurologic cost and allows for contextualization of the solutions

optimization may select.
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Defining the temporal constraints

One core limitation of our prior work (11) is the single-moment

analysis that does not take into account the amount of change the

CNS must perform to move from solution to solution, from task

to task. Muscles do not act with infinitely fast response times; to

respect this, we incorporate an element of temporal constraint in

our model by limiting a muscle’s change in activation between

+d% over a 50-ms interval. Given the observation that

deactivation in vertebrate muscle is often slower than activation

(53), we set this limit to the faster of the two, forming a

conservative bound. We refer to this metric as the activation-

contraction constraint, and as we take the absolute value of the

deltas, this metric is always set between [0, 1]. A constraint value

of 0.25 means that in 50ms, activations can change their output

by no more than 25% of their maximal tension.
Specimen

Our activation-to-wrench model H was sourced from an

experiment using cadaver fingers (55), with original data

(n ¼ 11) from (56). To reveal the effects of activation-contraction

constraints on a time-dependent feasible activation space, we

leveraged a stochastic Monte Carlo technique to fairly extract

activation trajectories—Hit-and-Run (13). In addition to being

normalized between an activation of 0 and 1 (muscles cannot go

negative as they can only pull), muscles were constrained in their

ability to change their output activation from moment to

moment. For each moment in time, the endpoint vector had to

meet the requirements of its desired output wrench within a

series of seven tasks. Formally, we add new constraints in the

way the activations can change, which are ultimately classifiable

as Lipschitz constraints (57, 58), and we sample u:a:r: (uniformly

at random) from the null space on x, given A and b where

x [ [0, 1]n. Our Lipschitz constraints (referred to hereafter as

“activation-contraction constraints”) serve to link different motor

patterns over time to different output wrenches.

jxiþ1 � xij � d x [ [0, 1]7 (2)

fx
fy
fz
ty

0
BB@

1
CCA ¼ w ¼ Ha ¼ H

a1
a2
a3
� � �
a7

0
BBBB@

1
CCCCA
, a [ [0, 1]7 (3)

We set the task to a series of seven individual wrenches performed

over the course of 300 ms, which starts at a pure fx force (toward

palmar), with a 30� rotation toward proximally (rotated about

the axis defined by the ulnar direction), and a symmetrical

return. The progress is shaped as a single cosine period, with the

peak being the fourth index. Wrenches (wt¼0 ¼ wt¼6),

(wt¼1 ¼ wt¼5), (wt¼2 ¼ wt¼4) are identical—providing a

symmetric set of tasks to stay constant while the activation-

contraction constraint demands may change.
frontiersin.org

https://doi.org/10.3389/fresc.2023.1248269
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


Cohn and Valero-Cuevas 10.3389/fresc.2023.1248269
Method for generating unseeded and
seeded trajectories

Unseeded trajectories that can originate in any valid solution at

t ¼ 0 show their evolution across the subsequent polytopes (i.e.,

solution spaces) subject to the temporal constraints of activation-

contraction dynamics of muscles. A seeded trajectory, on the other

hand, is pulled from the same constraint matrix, but with an

additional constraint: all of the points selected from a seed start at a

same seed point (i.e., valid solution at t ¼ 0). A seed point can be

extracted from the unseeded trajectories. Seeded points can only

evolve in time into subregions of the subsequent solution spaces that

are reachable given the starting point and the temporal constraints of

activation-contraction dynamics of muscle. Importantly, unseeded

trajectories all meet activation-contraction constraints as well.
Quantifying the evolution over time of the
distribution of solutions for unseeded and
seeded trajectories

Here, we detail ourmethod for analyzing and visualizing the effect

of selecting a solution seeded in t ¼ 0. We began by extracting

100,000 activation trajectories from H (Eq. 3). With 10 of those

trajectories, we extracted only the first value and then ran a further

sampling paradigm on a modified constraint equation where the

first activation pattern (of 7 muscle activations) had to match

the seed’s activations at t ¼ 0 (unclamped) and another case where

the t ¼ 0 and t ¼ 300 had to match (clamped). As we want to

visualize the effect of selecting a seed point, but cannot easily plot a

4D structure embedded in 7D, we applied principal component

analysis to each of the seven moments of time across the unseeded

distribution. We then projected both the unseeded, and seeded

activation trajectories across the first two PCs, highlighting where in

the lower-dimensional space those solutions were most probable.

We sampled 100,000 activation trajectories per activation-

contraction constraint condition, where the constraints were set

from 1 to 0.05.
Seeded and Unseeded analyses

To address this difficulty in analyzing the distributions of

muscle activations, we present the following “unseeded vs

seeded” trajectory analysis in Figure 3. We compute the possible

trajectories when the first moment is fixed to a seed point and

compare those “seeded” trajectories to the “unseeded” trajectories

that were not fixed. Unseeded trajectories are still sampled under

the same activation-contraction constraint as their seeded

counterpart, that all unseeded trajectories meet the activation-

contraction constraint, and that all seeds must have a starting

point that exists in the unseeded polytope. For the “clamped”

case, we require the starting and ending point activations to

match one another. To pick good seed points that would

generate viable trajectories, we computed 100,000, filtered by

those that met an activation-contraction constraint of �0.12, and
Frontiers in Rehabilitation Sciences 08
selected 10 at random as our “seeds.” For each seed, we trimmed

off the t ¼ 50 to t ¼ 300 activation values and appended a new

constraint to the original constraint matrix, so all sampled

trajectories had an additional constraint to match the seed in

t ¼ 0. Finally, to evaluate the effect of adding this constraint, we

examine the t ¼ 50 time step between the seeded and unseeded

case, tracing the 2D convex hull of the PNG image in pixels

[ImageJ (59)]. The inner area (seeded case) of 8,972 px2 divided

by the outer area (unseeded case) 126,926 px2 ¼ 7%.
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