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exposure, and knee symptoms in
male athletes before the anterior
cruciate ligament reconstruction
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Introduction: Anterior cruciate ligament (ACL) injuries cause knee instability, knee
pain, weight-bearing adjustments, and functional deficits but their association to
patellar tendon quality is unknown. Our purpose was to investigate quadriceps
strength, patellar tendon quality, relative load exposure, perceived knee stability,
knee pain, extension angle, and time from ACL injury; in addition to examining
their relative associations.
Methods: Injured and uninjured legs of 81 male athletes of different sports with a
unilateral ACL injury (18–45 years) were examined. Participants reported location
and intensity of knee pain and their perceived stability using a numerical rating
scale (NRS 0–10). Strength was tested with an isokinetic device. Tendon quality
was measured using ultrasound tissue characterization. Means ± standard
deviation (SD) of perceived knee stability, knee extension angle, knee pain,
isokinetic quadriceps strength in relation to body mass, proportion of echo-
types (I–IV), tendon volume, and number of days from ACL injury to assessment
are reported. Values of effect sizes (ES) and correlations (rs) were calculated.
Results: ACL injured leg demonstrated reduced reported knee stability (6.3 ± 2.5),
decreased knee extension angle (−0.7 ± 3.1° vs. −2.7 ± 2.2°; ES = 0.7; P < 0.001),
greater knee pain (NRS 3.1 ± 2.2 vs. 0.0 ± 0.1; ES = 2.0; P < 0.001), and 22% lower
quadriceps strength (228.0 ± 65.0 vs. 291.2 ± 52.9 Nm/kg: ES = 1.2; P < 0.001) as
compared to the uninjured leg. However, patellar tendons in both legs displayed
similar quality. Quadriceps strength was associated with stability (rs=−0.54; P <
0.001), pain (rs=−0.47; P < 0.001), extension angle (rs=−0.39; P < 0.001), and
relative load exposure (rs=−0.34; P < 0.004). Echo-types distribution was
beneficially associated with time from ACL injury (rs range: −0.20/ −0.32; P < 0.05).
Discussion: ACL injured athletes displayed knee pain, extension deficit, and weaker
quadriceps in the injured leg. While there were no differences in patellar tendon
quality between legs, longer time from ACL injury showed better tendon quality.
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1. Introduction

Anterior cruciate ligament (ACL) injuries are a significant

cause of time loss in sport (1–3). Frequently, patients with ACL

tear (ACLp) present with swelling, knee pain, and restricted

range of motion (ROM) that might lead to a protective gait

pattern (4). The location and intensity of pain varies depending

on the severity of the associated lesions such as meniscal and

collateral ligaments injuries (5).

One of the main functions of the intact ACL is to control the

anterior translation of the tibia in the last degrees of knee

extension (3, 6–8). Thus, it is not surprising that ACLp adopt

compensations during gait to avoid this vulnerable position (4, 9–

11). More specifically, increased flexion and reduced internal

rotation with a resulting reduction in ROM (pivot-shift avoidance

gait) have been observed in ACLp to improve stability at the late

stance phase of walking (7, 9, 10). Alternatively, acute ACLp (up

to 6 months post ACL injury) might keep the injured knee stiffer

at an extended position (quadriceps avoidance pattern) to reduce

the anterior tibial translation during walking (7, 11–13).

Biomechanical gait analysis of ACLp have demonstrated lower

quadriceps and gastrocnemius activation, lower vertical ground

reaction forces, and lower joint loads in the injured leg at weight

acceptance in comparison to the uninjured and/or control leg

(14). Interestingly, in acute ACLp, even a small quadriceps

strength deficit was sufficient to cause altered weight-bearing in

functional tasks such as stepping up and down (15).

Muscles and tendons are active structures with high capacity to

adapt to different demands (16–20). Offloading the lower limb

after an injury is a common compensatory mechanism that

might reduce pain and improve function (14, 15). However, a

short period of offloading the lower limb seemed to negatively

affect the patellar tendon quality by progressively reducing the

stiffness and the collagen synthesis rate (21–23). A normal

tendon is characterized by the absence of hypoechoic areas and/

or increased thickness in ultrasound images (16). Even though

abnormal imaging features have not been associated to the

presence and severity of pain in the tendon (24, 25), an

abnormal tendon image in ultrasound at pre-season has been

linked to three to fivefold increase in risk of developing tendon

symptoms during the season (18, 25).

One method of exploring tendon quality is ultrasound tissue

characterization (UTC), which is a valid and reliable tool to assess

healthy (26–28), pathological (26–28), and harvested tendons (29).

The UTC grading system is based on histopathological studies that

correlated the structural organization of equine tendon specimens

with ultrasound images (30–33). It categorizes the quality of the

tendon tissue from more to least organized (echo-types I–IV) (27).

UTC has been increasingly used to quantify load effects in

patellar and Achilles’ tendons. A reactive tendon response to

load have been proposed by Cook’s tendinopathy continuum

model. In this phase, with appropriate load management, the

tendon would return to non-reactive normal state (34).

Conversely, it has been proposed that higher cumulative loads

might alter tendon homeostasis resulting in swelling and/or

increased waviness of the tendon bundle. These adaptations may
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occur within days of change in load exposure (35). Such

adaptation was observed in UTC scans as reduction in the

proportion of echo-type I with an increase of echo-type II, but

no significant changes in the proportion of echo-types III and IV

(disorganized tendon tissue) (36, 37).

It is important to consider the patellar tendon quality during the

rehabilitation after an ACL injury, as it is one of the most common

grafts used to replace a torn ACL (38, 39). It is unknown whether the

uneven loads between ACLp injured and uninjured legs (14, 15)

would offload the patellar tendon in a way that could cause acute

adaptations within these tendons. Thus, quadriceps strength,

patellar tendon quality, and the associated symptoms of perceived

knee stability, relative load exposure, and extension angle in ACL

injured athletes may have important implications for rehabilitation

before and after the ligament reconstruction.

Consequently, the first aim of the study was to evaluate and

compare the quadriceps strength, the patellar tendon quality, and the

knee extension angle between injured and uninjured legs of athletes

with a unilateral ACL tear participating in preoperative rehabilitation.

The secondary aim was to find out if knee pain, extension angle,

relative load exposure, and perceived knee stability are related to

quadriceps strength, and consequently to patellar tendon quality. We

hypothesized that the injured leg of ACLp will demonstrate limited

extension range, lower quadriceps strength, smaller proportion of

echo-type I, and greater proportion of echo-type II in the patellar

tendon in comparison to the uninjured leg. We also hypothesized

that the greater the extension deficit, the higher the knee pain, the

lower the quadriceps strength, and patellar tendon quality.
2. Methods

2.1. Participants

A total of 412 male ACL injured athletes awaiting surgical

reconstruction were examined in the assessment center of Aspetar,

Orthopaedic and Sports Medicine Hospital from July 2015 to March

2020. Eighty-one athletes with age between 18 and 45 years, who

had a unilateral ACL rupture confirmed by magnetic resonance

imaging and had been referred to start or had enrolled in the ACL

rehabilitation program of the same facility were selected to take part

in the study. Patients were excluded if they did not match the age

criteria (n = 15), presented with bilateral (n = 40) or previous ACL

reconstruction in the contralateral leg (n = 263), declined to take part

(n = 5), or presented inability to flex the affected knee sufficiently to

acquire a proper image of the patellar tendon (n = 8) (37).

Informed consent was obtained from each participant. The study

protocol meets the ethical standards in Sport and Exercise Science

Research (40), and was approved by the ethical committee of the

Anti-Doping Laboratory Qatar Research Office (2017000227).
2.2. Clinical assessment

Each participant’s medical history and demographics were

recorded, including age, height, current body mass, and date of
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injury. Participants were asked specifically about the presence and

location of knee pain, including anterior, medial, lateral, posterior,

and inside the knee pain. They were also asked about their

perception of stability in the injured knee in relation to the

uninjured stable knee. Values between 0 and 10 in the numeric

rating scale (NRS) (41, 42) were used to obtain the subjective

scores of maximum knee pain (NRS-knee pain), and perceived

knee stability (NRS-stability) reported over the 7 days period

prior to the assessment.

A digital inclinometer was used to quantify the passive knee

extension angle (43). Negative values indicate hyperextension,

while zero and positive values indicate deficit of extension.
2.3. Relative load exposure

Participant’s gait and relative load exposure over the 7 days

period prior to the assessment were considered. An ordinal

classification was used to quantify levels of load exposure. These

levels of load were 0 = no weight-bearing in the injured leg; 1 =

participant was walking with partial weight-bearing while using 1

or 2 crutches but hadn’t started the rehabilitation program; 2 =

participant was walking with partial weight-bearing while using 1

or 2 crutches and had started no weight or partial weight-bearing

exercises in rehabilitation; 3 = participant was walking with full

weight-bearing but hadn’t started rehabilitation; 4 = participant

was walking with full weight-bearing and had started weight

bearing exercises in rehabilitation; 5 = participant was walking

with full weight-bearing and had started resisted exercises in

rehabilitation; 6 = participant was performing resisted exercises

and running in rehabilitation; 7 = participant was performing

resisted and plyometrics exercises, and running in rehabilitation;

8 = participant was engaged in resisted exercises, plyometrics,

running, and sports specific drills in rehabilitation.
2.4. Isokinetic strength test

A Biodex TM dynamometer (Biodex TM, Shirley, New York) was

used for the evaluation of quadriceps strength of each leg of ACLp.

After warming up on a stationary bicycle for approximately 10 min,

participants were seated upright with 90° of hip and knee flexion.

After a brief familiarization, the participants were asked to perform

five repetitions of maximal knee extension and flexion for each leg

at 60°/s (3). Concentric peak torque for knee extension relative to

body mass (Nm/kg) was recorded for the uninjured and injured

legs of ACLp, in this order. Negative values of deficits indicate that

the injured leg generated greater torque than the uninjured leg.
2.5. Ultrasound tissue characterization
(UTC) acquisition, analysis, and processing

Both patellar tendons of the participants were scanned by a

single experienced examiner (CSP) using UTC. This method uses

a 5–12 MHz ultrasound transducer (SmartProbe 12L5, Terason
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2000, Teratech, USA) Diagnostic Radiology (RRID:SCR_004427)

fixed into a tracking device (UTC Tracker, UTC imaging,

Netherlands). One UTC acquisition yields about 600 sequential

transverse images in gray scale at regular intervals of 0.02 cm

(26, 27). Each participant lay supine on the plinth with their

knees flexed to approximately 100°. The UTC tracker was placed

parallel to the long axis of the tendon resting with full contact

on the anterior surface of the knee to acquire the patellar tendon

images from proximal to distal. Ultrasound parameters were

standardized as 12 MHz, with a focus at 2.8 cm and a depth of

4 cm (29). To minimize image artefacts and to ensure the

ultrasound transducer is perpendicular to the tendon fibers, only

scans that presented with the patellar apex and tibial tuberosity

aligned longitudinally in the coronal view (Figure 1A), and a

horizontal and taut patellar tendon in the sagittal view

(Figure 1B) were included for analysis.

UTC analyses were performed on the UTC analyzer v.2.0.2 with

window size 17. The UTC images in grey scale were inspected to

identify areas of disorganization and/or increased thickness in the

patellar tendons. Afterwards, in the transverse view of the UTC

analyzer several contours were manually traced with a maximum

of 0.5 cm apart (Figure 1C) along the patellar tendon length for

each tendon (Figure 1D). This step defines the area where the

UTC software, based on the stability of the echo-pattern, identifies

the alignment of tendon fibers, and calculate the proportion of

aligned and disorganized structures (%) within the tendon (26). To

characterize the tendon quality, the UTC algorithm yield the

proportion of echo-types I (green—aligned collagen bundles),

II (blue—wavy collagen bundles), III (red—loose matrix), and

IV (black—mainly amorphous matrix) in each area of interest

(26, 31, 44). Echo-types I & II have been described as normal

tendon or aligned fibrillar structure, while echo-types III & IV have

been named as disorganized tissue structure (24).

The areas of interest in the patellar tendon were: (1) apex = the

first image after the patellar apex disappears in the transverse view;

(2) proximal tendon = 0.5 cm distal to the apex; (3) mid tendon =

1.5 cm distal to the apex; (4) distal tendon = at 75% of the tendon

length; and (5) overall tendon, which includes all the contours

drawn from the patellar apex to the tibial notch (Figure 1D).

Additionally, the UTC algorithm also calculates the tendon

volume (cm3) which is characterized by the area within a

selected contour (patellar apex level).

A detailed protocol for the patellar tendon data acquisition,

analysis of the intra- and inter-rater reliability as well as the

minimal detectable changes (MDC) for the quality of the patellar

tendons of ACLp athletes have been previously described (29).
2.6. Statistical analysis

Descriptive statistics including means, standard deviations

(SD), minimum (min), and maximum (max) were calculated for

all variables of interest and are presented where applicable.

Data distribution for normality was tested using the Shapiro–

Wilk test. As extension angle, knee pain, knee stability, and all

the variables of patellar tendon quality were not normally
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https://doi.org/10.3389/fresc.2023.1283635
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


FIGURE 1

Example of UTC scans that met the inclusion criteria in frontal (A) and sagittal (B) views; contour delimitating the patellar tendon in transversal view (C);
and the 5 studied areas of the patellar tendon (D). (A) Yellow reference line used to check the vertical alignment in the frontal view. (B) Yellow reference
line used to check the horizontal alignment in the sagittal view. (C) Transverse view of the UTC color coded image showing a manually traced contour to
delineate the area of the patellar tendon. (D) Sagittal view of the patellar tendon illustrating all the contours traced in the entire length of the patellar
tendon. Yellow arrows show the four levels of the tendon (1–4) where the proportion of echo-types were calculated to characterize the tendon
quality. (1) Patellar apex = first image after the patellar apex disappears in the transverse view. (2) Proximal tendon = at 0.5 cm from patellar apex. (3)
Mid tendon = at 1.5 cm from patellar apex. (4) Distal tendon = at 75% of the tendon length. (5) White line and arrows show the distance between the
1st and last contours which characterizes the overall tendon length.

TABLE 1 Descriptive statistics of the characteristics of ACLp.

Characteristics Mean ± SD (min-max)
Body mass (kg) 79.5 ± 14.5 (48.7–122.5)

Height (m) 1.78 ± 0.09 (1.55–2.03)

Age (years) 25 ± 5 (18–44)

Days from ACL injury (days) 61 ± 92 (6–622)

NRS—knee pain—injured knee (0–10) 3.1 ± 2.2 (0–8)

Reported stability (0–10)—Injured knee 6.3 ± 2.5 (0–10)

ACL, anterior cruciate ligament; ACLp, participants with a torn anterior cruciate

ligament; SD, standard deviation; min, minimum; and max, maximum; NRS,

numeric rating scale.

Pereira et al. 10.3389/fresc.2023.1283635
distributed, non-parametric Wilcoxon signed ranks test was used to

compare tendon quality between injured and uninjured knees.

However, quadriceps strength was normally distributed and

analyzed with the parametric paired t-test.

Cohen’s coefficient (d) was used to estimate the effect sizes

(ES). Thresholds for small, medium, and large effect sizes were

0.2, 0.5, and 0.8, respectively (45).

d ¼ (Mean ACLp (injured)�Mean ACLp(uninjured))=SD pooled

Spearman’s rank-order correlation (rs) was used to assess the

strength and direction of the association among the variables:

quadriceps strength, proportion of echo-types in the patellar

tendon, NRS-knee pain, NRS-stability, knee extension angle,

relative load exposure, and time from ACL injury. rs values were

ranked as: very weak or no correlation (when less than 0.19),

weak (0.2–0.39), moderate (0.4–0.59), strong (0.6–079), or very

strong (above 0.8) (46, 47).

Statistical significance was set as P < 0.05. SPSS v.28 was used

for all statistical analyses (SPSS Inc., Chicago, Illinois, USA) SPSS

(RRID:SCR_002865).
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3. Results

3.1. Characteristics of the participants

The characteristics of the 81 ACLp at the time of data

acquisition are detailed in Table 1. Of these athletes, 38 were

footballers, 9 played handball, 6 basketball, 6 rugby, 5 futsal, 5

volleyball, 2 field hockey, and one in each of the following sports:

athletics, beach soccer, billiards, cycling, rowing, sky diving,

swimming, table tennis, tennis, and wrestling.
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Their perceived stability in the injured knee ranged from 0 to

10 with average of 6.3 ± 2.5. Ten participants reported to feel the

injured knee as stable as the uninjured (10/10). The passive

extension angle ranged from −10° to 5° and from −10° to 2° in

the injured and uninjured knees respectively. The difference in

extension angle between injured and uninjured knees ranged

from −5° to 10° with an average of 2.0 ± 2.7° of extension deficit.

From the total sample, 41 participants displayed deficits of

passive extension in the injured knee (≥0°), and from these, 38

complained of knee pain at the time of data acquisition.

Only one participant complained of anterior knee pain (NRS =

1/10) in the uninjured knee at the time of data acquisition. The

average pain in the injured knee was 3.1 ± 2.2 (ES = 2.0; P < 0.001),

however, 15/81 participants reported no pain in the injured knee.

None of the participants completely offloaded their injured leg

(level 0), 1 participant was using crutches while adopting partial

weight-bearing in the injured leg and was assessed before starting

the rehabilitation program (level 1), 11 participants were using

crutches in partial weight-bearing and were attending the

rehabilitation program (level 2), 22 ACLp were in full weight-

bearing and were assessed before starting the rehabilitation

program (level 3), 16 ACLp were in full weight-bearing and were

engaged in body weight exercises in rehabilitation (level 4), 29

participants were engaged in resisted exercises in rehabilitation

(level 5), and 2 participants were engaged in resisted exercises,

plyometrics, running, and sports specific drills in rehabilitation

(level 8) at the time of data acquisition.
3.2. Visual inspection of the patellar
tendons in grey scale images

The UTC images in grey scale revealed that 16 out of 81 ACLp

displayed a clear disorganized area within the patellar tendon,

namely, increased thickness and/ or hypoechogenic areas. Seven

of these participants presented one or more of these features in

both patellar tendons, 5/16 in the tendon of the injured leg and

4/16 in the uninjured leg. While only 2 of these tendons were

associated with anterior knee pain specifically at the time of data
FIGURE 2

UTC images in grey scale—findings in the patella and tibial tuberosity. (A) Transv
in the patella. (B) Sagittal view—white arrow shows case of Osgood Schlatter
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acquisition, 5 out of these 16 ACLp had a prior history of

unilateral tendinopathy. From the 16 athletes with abnormal

features in the tendon, 8 played football, 3 basketball, 2 rugby, 1

volleyball, 1 handball, and 1 field hockey.

The UTC scans also revealed that 3 ACLp displayed signs of

Sinding-Larsen and Johansson syndrome (Figure 2A), whilst 5

ACLp showed signs of Osgood Schlatter disease (Figure 2B) in

one of their tendons (48, 49).
3.3. Quadriceps strength

Eleven participants were unable to perform the isokinetic

strength test due to concern of flaring up symptoms in the

involved knee just before surgery. Comparisons between the

injured and uninjured legs of ACLp revealed a significant

reduction in quadriceps strength in the injured leg (ES = 1.2, P <

0.001) (Table 2). The difference in quadriceps strength between

injured and uninjured legs was greater than the MDC previously

calculated for the same variable in patients with knee

osteoarthritis (50). Participants displayed on average 21.7% ±

19.3% deficit in quadriceps strength in relation to the uninjured

leg, with values ranging from −35.5% to 72.1%. Only 8 out of 70

ACLp generated greater extension torque in the injured leg.
3.4. Patellar tendon quality

There was no significant difference in volume and in echo-

types distribution in any of the studied areas of the patellar

tendon (P > 0.05) (Table 2).
3.5. Associations between the variables of
interest

When considering both legs of all ACLp included in the

current study, there was a weak association between quadriceps

strength and knee extension angle (rs =−0.39; P < 0.001),
erse view—white arrow shows case of Sinding–Larsen and Johansson sign
sign at the tibial tuberosity.
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TABLE 2 Comparisons between the injured and uninjured legs of ACLp.

ACLp (n = 81) Injured leg Uninjured
leg

Inj × UnInj

Mean ± SD Mean ± SD p-
values

Effect
size

Echo-type I (%)
Patella apexa 55.5 ± 14.3 54.4 ± 17.0 0.59 0.07

Proximal tendona 61.4 ± 12.5 63.3 ± 14.6 0.21 0.14

Mid tendona 65.0 ± 12.5 66.8 ± 12.6 0.28 0.14

Distal tendona 57.2 ± 15.3 55.5 ± 18.6 0.25 0.10

Echo-type II (%)
Patella apexa 37.7 ± 11.4 36.6 ± 11.7 0.43 0.09

Proximal tendona 34.4 ± 10.5 33.2 ± 12.5 0.31 0.10

Mid tendona 31.3 ± 10.2 29.5 ± 10.5 0.20 0.17

Distal tendona 34.0 ± 11.6 33.6 ± 11.6 0.95 0.03

Echo-type III (%)
Patella apexa 5.0 ± 9.0 6.8 ± 12.0 0.22 0.17

Proximal tendona 2.7 ± 5.4 2.3 ± 3.9 0.77 0.09

Mid tendona 2.4 ± 4.6 2.4 ± 4.9 0.73 0

Distal tendona 6.1 ± 8.5 8.2 ± 11.6 0.22 0.21

Echo-type IV (%)
Patella apexa 1.9 ± 4.7 2.2 ± 3.7 0.45 0.07

Proximal tendona 1.4 ± 3.7 1.1 ± 2.4 0.60 0.10

Mid tendona 1.3 ± 4.3 1.1 ± 2.9 0.95 0.05

Distal tendona 2.5 ± 4.4 2.7 ± 3.8 0.76 0.05

Overall tendon (%)
Echo-type Ia 59.3 ± 10.9 58.9 ± 11.5 0.67 0.04

Echo-type IIa 32.7 ± 8.3 31.9 ± 7.9 0.46 0.10

Echo-type IIIa 5.7 ± 5.7 6.6 ± 6.4 0.16 0.15

Echo-type IVa 2.4 ± 3.9 2.6 ± 3.1 0.18 0.06

Echo-types I + IIa 92.0 ± 9.3 90.8 ± 9.3 0.25 0.13

Echo-types III + IVa 8.0 ± 9.3 9.2 ± 9.3 0.19 0.13

Volume (cm3)
Patella apexb 0.9 ± 0.2 0.9 ± 0.2 0.64 0

Proximal tendona 0.9 ± 0.2 0.9 ± 0.2 0.45 0

Mid tendonb 0.9 ± 0.2 0.9 ± 0.2 0.49 0

Distal tendona 0.9 ± 0.2 0.8 ± 0.2 0.94 0.5

Range of motion (°)
Passive knee
extensiona

−0.7 ± 3.1
(−10–5)

−2.7 ± 2.2
(−10–2)

<0.001* 0.7

PT/BM (Nm/kg)b

Maximal quadriceps
(n = 70)

227.1 ± 65.1* 287.3 ± 54.5* <0.001* 1.2

ACLp, participants with a unilateral anterior cruciate ligament tear; BM, body mass;

Inj, injured leg; UnInj, uninjured leg; PT/BM, peak torque divided by body mass.
aWilcoxon signed ranks test.
bPaired samples test.

*Statistical difference between injured and uninjured legs.
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moderate associations between quadriceps strength and NRS-knee

pain (rs =−0.47; P < 0.001), and between NRS-knee pain and knee

extension angle (rs = 0.40; P < 0.001).

When considering only the injured leg, there were weak

associations between: quadriceps strength and relative load

exposure (rs = 0.34; P < 0.004), quadriceps strength and NRS-

stability (rs = 0.39; P < 0.001), NRS-stability and knee extension

angle (rs =−0.34; P < 0.002), NRS-stability and relative load

exposure (rs = 0.36; P < 0.001), and relative load exposure and

NRS-knee pain (rs =−0.27; P < 0.01).
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Regarding the correlations between echo-types distribution (I

to IV in the 5 areas of the tendon) in both legs of all ACLp,

there were no meaningful associations between quadriceps

strength, NRS-knee pain, or knee extension angle with the

distribution of the four echo-types regardless of tendon area

(Table 3). However, there were weak to moderate associations

between time from ACL injury and echo-types I to IV at

different tendon levels (Table 3). There was a statistically

significant association between quadriceps strength and echo-type

III at the proximal tendon (rs =−0.17; P < 0.03) but the

correlation strength is considered very weak or none (Table 3).

When we considered the patellar tendon quality in the injured

leg only, there were weak associations between relative load

exposure and echo-type II at distal tendon (rs = 0.22; P < 0.04),

echo-type III at patellar apex (rs =−0.25; P < 0.02) and proximal

tendon (rs =−0.24; P < 0.04), echo-type IV at patellar apex (rs =

−0.26; P < 0.02), and volume at distal tendon (rs = 0.23; P < 0.04).

Figure 3 depicts a representation of all the associations among

the studied variables.
4. Discussion

To our knowledge, this is the first study to explore quadriceps

strength, patellar tendon quality, reported knee stability, knee

extension angle, knee pain, and relative load exposure

simultaneously in athletes before the reconstructive surgery for a

unilateral ACL tear. The study is also novel in that it is the first

one to use UTC to evaluate the offloading effects in tendons, and

one of the few studies using UTC to evaluate the quality in the

entire tendon length.

Our main findings showed that ACLp had significantly less

knee extension, feeling of reduced stability, more knee pain, and

reduced quadriceps strength in their injured compared to

uninjured legs. These results agree with our initial hypothesis

and with the extensive evidence describing the negative impact of

an ACL injury in the extensor mechanism of the knee (51–56).

About 95% of the participants in the current study were less

than 6 months from their ACL injury, so it was not surprising

that more than 80% of ACLp reported pain in the knee and 50%

were unable to fully extend their knees. Filbay et al., also noted

that 57% of their participants with acute ACL rupture presented

deficit of extension (57). We observed in the injured leg of ACLp

an average of extension deficit of 2.0 ± 2.7°. Comparatively,

Muneta et al., found an average of 1.3 ± 3.9° of extension loss but

their 81 patients with ACL rupture had average of 612 days from

injury (58). Likely, the presence of swelling in the knee might

had contributed to these findings of extension loss. Although not

considered in the present study, swelling is frequently present in

ACL injured knees. It distends the joint capsule (59–61), restricts

the range of motion, and may or may not cause pain (61, 62). In

addition, even a mild swelling in a healthy knee was found

sufficient to trigger quadriceps inhibition (63). Furthermore,

more than half of ACLp in the current study were adopting

partial weight-bearing or had only recently started to fully load

their injured leg at the time of the assessment. It is possible that
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TABLE 3 Values of the associations between studied variables.

NRS-knee pain
(n = 162)

Quadriceps
strength
(n = 140)

Time from ACL
injury

(n = 162)

Knee extension
(n = 162)

rs p-value rs p-value rs p-value rs p-value
NRS-knee pain – – −0.47 <0.001* 0.02 0.83 0.40 <0.001*

Quadriceps strength −0.47 <0.001* – – 0.05 0.55 −0.39 <0.001*

Time from ACL injury 0.02 0.83 0.05 0.55 – – −0.01 0.90

Echo-type I
Patella apex −0.05 0.51 0.08 0.35 −0.06 0.41 −0.12 0.12

Proximal tendon −0.07 0.36 0.14 0.09 −0.03 0.69 −0.07 0.34

Mid tendon 0.01 0.93 0.05 0.59 0.09 0.25 −0.01 0.88

Distal tendon 0.09 0.21 −0.04 0.63 0.30 <0.01* −0.03 0.63

Echo-type II
Patella apex 0.09 0.22 −0.11 0.18 0.25 <0.01* 0.13 0.10

Proximal tendon 0.07 0.35 −0.18 0.03* 0.20 0.01* 0.07 0.37

Mid tendon 0.01 0.90 −0.12 0.17 0.09 0.23 −0.04 0.61

Distal tendon −0.01 0.92 0.01 0.90 0.08 0.27 0.03 0.70

Echo-type III
Patella apex −0.01 0.95 −0.09 0.28 −0.21 <0.01* 0.09 0.26

Proximal tendon −0.04 0.63 −0.09 0.27 −0.35 <0.01* 0.03 0.76

Mid tendon −0.04 0.61 −0.11 0.21 −0.33 <0.01* 0.09 0.26

Distal tendon −0.06 0.43 −0.03 0.70 −0.34 <0.01* 0.01 0.90

Echo-type IV
Patella apex −0.02 0.79 −0.08 0.32 −0.28 <0.01* 0.06 0.49

Proximal tendon −0.06 0.41 −0.03 0.71 −0.41 <0.01* −0.01 0.93

Mid tendon −0.05 0.49 −0.04 0.64 −0.35 <0.01* 0.09 0.24

Distal tendon −0.04 0.57 −0.05 0.55 −0.35 <0.01* 0.00 0.97

Variables of tendon quality, echo-type distribution in the specific areas of interest; NRS-knee pain, numerical rating scale for knee pain at the time of data acquisition;

Quadriceps strength, maximal knee extensor’s peak torque divided by body mass; Time from ACL injury, number of days between ACL injury and the time of data

acquisition; Knee extension, angle of passive knee extension measured in the assessment; rs, Spearman correlation coefficient.

*Statistically significant.

FIGURE 3

Summary of the associations among the studied variables. Black arrows = positive correlation with weak to moderate statistical significance. Dark grey
arrows = negative correlation with weak to moderate statistical significance. Light grey arrow = very weak to no correlation although statistically
significant.
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these compensations might have contributed to the significant

smaller quadriceps strength observed in their injured legs

(227.1 ± 65.1 Nm/kg) in comparison to the uninjured one

(287.3 ± 54.5 Nm/kg). Acute ACL patients frequently adopt

different strategies during gait to compensate the stability loss (4,

7, 9–11, 64–66). These patients tend to avoid using the
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quadriceps muscle close to knee extension to minimize the strain

in the torn ligament (7). Compensatory mechanisms such as

pivot-shift avoidance gait (13) or quadriceps avoidance pattern

(7, 11, 12) directly affects the extensor mechanism of the knee by

reducing the demand in the quadriceps muscle preventing

excessive anterior tibial translation (7). Yet, regardless of the
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reason behind the quadriceps weakness, even a small deficit in

quadriceps strength in the ACL injured leg was found sufficient

to affect weight-bearing, increase the impact forces in both legs,

and negatively impact function (15).

To the best of our knowledge, few studies have explored

quadriceps isokinetic strength in ACL injured patients so soon

after injury. Our participants had an average of 61 ± 92 days

from the ACL injury at the time of assessment, and the injured

leg presented average deficit of 21.7% ± 19.3% in relation to

uninjured leg. However, not only the time since ACL injury

poses a challenge when comparing strength values between

studies. Gender, age, level of physical activity, test protocols, and

the type of strength variable studied are additional factors

hindering comparisons. For instance, de Jong et al., noted 17% of

deficit in the injured leg after assessing the quadriceps strength

in 191 (29 women) patients before the ACL reconstruction, but

their average time from injury to surgery was 2.2 years pos-

injury, and the exact time of the preoperative strength test was

not specified (67). Thus, caution is advised when comparing the

quadriceps peak torque in relation to body mass of our 81 male

registered athletes (227.1 ± 65.1 Nm/kg) with that of the 36 (18

female) participants with 3.8 years from injury and a quadriceps

peak torque of 174.9 ± 63.8 Nm (68).

Moreover, our findings indicated that quadriceps strength was

weakly to moderately associated to knee pain, knee stability, knee

extension, and relative load exposure, i.e., higher knee pain,

greater deficit of extension, lower stability, and lower load in the

lower legs, was associated to weaker quadriceps (Figure 3).

Persistent quadriceps weakness has been previously linked to

deficit of extension and anterior knee pain (52, 56, 69–71).

Initially, it seems obvious that these symptoms would occur in

parallel after such an incapacitating injury such as an ACL tear,

however, each ACL patient might display each of these

symptoms in very particular ways demanding personalized

targeted interventions during rehabilitation. For instance, by

exploring the data of relative load exposure in which ACLp were

engaged, it was interesting to note how participants responded

differently to the ACL injury, displaying different coping

mechanisms and ability to tolerate the lack of ACL. Whilst we

observed the majority of ACLp presenting with instability,

protective behavior, pain, deficit of extension, and quadriceps

weakness, we also witnessed that 9 participants (time from ACL

injury ranging from 12 to 88 days) perceived no instability in

their injured knee, had full range of motion, and no strength

deficit. This minority of ACLp might be characterized as copers

(72). It is noted that 5 of them opted for non-surgical treatment.

There is little evidence on the psychological impact of

persistent symptoms after an ACL injury (73–75). Most of the

studies focus on psychological readiness to return to sports

(76–78). For Chmielewski et al., preoperative psychosocial status

did not reflect pain and function at 3 months post ACL

reconstruction (74). However, increase in self-efficacy, optimism,

and high motivation have been associated to positive functional

outcomes (74, 76, 79). On the other hand, persistent pain, fear of

movement, and anxiety are associated with a lower rate of return

to sports (73, 76). Thus, the worsening or improvement in the
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parameters investigated in this study might impact these patients

functionally and psychosocially interfering with their recovery

process, readiness for surgery, postoperative rehabilitation, and

return to sports (73).

Considering ACLp presented significant quadriceps deficiency

in the injured leg and most of them adopted compensatory

mechanisms during gait to offload the injured knee, it was

unexpected to find that the patellar tendons in their injured and

uninjured knees presented similar distribution of echo-types and

volume. It was also unexpected that there was no meaningful

association between quadriceps strength and tendon quality, even

though the patellar tendon is a direct part of the extensor

mechanism of the knee and responsible for transferring

concentric and eccentric forces from the quadriceps to the tibia

(16, 23, 80). The lack of association was especially surprising

because offloading the lower leg of healthy individuals for a brief

period, such as 1–3 weeks, reduced significantly the knee

extensor torque, the muscle cross-sectional area, the synthesis of

collagen rate within the tendons (21, 22), and increased the

patellar tendon elongation along with the decrease in tendon

stiffness (22, 23, 81).

Our initial hypothesis of tendon adaptations post-ACL injury

was mostly rejected, however, in agreement with our findings of

tendon volume, previous studies have reported that regardless of

the period of rest and/or immobilization the tendon cross-

sectional area remains the same (22, 82). On the other hand,

many animal and human studies have reported the negative effects

of offloading and/or immobilization on the mechanical properties

of tendons (16, 21, 22, 83–86). It has been suggested that a period

of disuse could cause tendon deterioration and a transient

adaptation in echo-type distribution (36, 87) which did not

happen in the patellar tendons of ACLp. It is possible though, that

the interruption in sports and the offloading effect caused by the

ACL injury led to a transient adaptation in both patellar tendons

of ACLp, thus the lack of differences in patellar tendon quality

between injured and uninjured knees. Or yet, that the

compensations adopted by ACLp were not sufficient to trigger

physical changes in the tendon fibers that would be visible in

UTC scans. The latter seems plausible taking into account the

echo-types distribution in both patellar tendons of ACLp is

comparable with previous values described in the literature for the

proximal portion of healthy (approximately 68%, 32%, nearly 1%,

and 0%, for echo-types I, II, III and IV respectively), and

asymptomatic (approximately 60%, 37%, 2%, 1%, for echo-types I,

II, III and IV respectively) patellar tendons (37).

Another point to consider is that 58 ACLp were already engaged

in rehabilitation for at least 7 days, which could have positively

affected the tendons in their injured leg. Particularly when

considering that some variables of patellar tendon quality were

weakly to moderately associated to relative load exposure and time

from ACL injury. These relationships suggest that tendon quality

improved with increased loading and longer time from ACL

injury, i.e., an increase in relative load was associated to an

increase in the proportion of echo-types II, reduction of echo-

types III and IV, and greater volume at the distal tendon. Whereas

longer time from injury was associated to increase in echo-types I
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and II, and reduction of echo-types III and IV. In UTC scans, echo-

types I and II are described as aligned fibrillar structure, while echo-

types III and IV are described as disorganized tissue that lacks

structural organization (26). Participants in the current study

started body weight exercises followed by resisted exercises as soon

as they were walking with full weight-bearing and the symptoms

in the injured knee were adequately controlled. It appears that

resistance training prevents the detrimental effects of bed rest in

tendons (88). Also, there is some evidence suggesting that targeted

loading improves the tolerance of the tendon, resulting in more

aligned tendon tissue (89).

Furthermore, we observed a lack of significant associations

between scores of knee pain with all the tendon variables studied.

Although 16 participants displayed abnormal signs in their

tendons, only 5 of them had history of tendinopathy, and only 2

out of 16 were symptomatic at the time of data acquisition

(anterior knee pain). The presence of tendon abnormalities in

UTC scans have not been associated to current symptoms in

tendons (24, 90). However, a recent study using UTC proposed

that an increased proportion of disorganized tendon structure

(echo-types III + IV) in the Achilles (>8.5%) and patellar tendons

(>10%) at baseline have been associated with increased risk of

developing lower leg pathologies during periods of increased

training (91). These findings suggest that investigating the tendon

quality before starting a rehabilitation/training program and

identifying the participants with higher risk could lead to

preventive strategies, with targeted interventions that might avoid

flaring tendon symptoms and/or reducing injury occurrence.

Our findings are significant because they shed light on the impact

of an ACL injury on muscle strength and tendon quality before the

ligament reconstructive surgery. Since patellar tendons are often

used as ACL graft, it is relevant to know the quality of the patellar

tendons and its relations with quadriceps strength, load exposure,

and knee pain in individuals waiting for the ACL reconstruction.

At the time of data acquisition about half of ACLp presented deficit

of extension, 66 of them had knee pain, and quadriceps strength

deficit ranging from −35% to 75% of the uninjured leg. Further

examination revealed that participants with extension deficits

showed significantly greater deficits of quadriceps strength

highlighting the importance of achieving full extension motion to

improve quadriceps strength. Ideally, before the reconstructive

surgery the injured knee would present minimal strength deficit in

comparison to the uninjured leg, full knee extension, and no pain.

Preoperative quadriceps strength deficits greater than 20% in

comparison to the uninjured leg are often correlated to long lasting

strength deficits after the ACL reconstruction (70). Concurrently,

less anterior knee pain before the ACL reconstruction is predictive

of better clinical outcomes at 12 months post-surgery (92, 93).

Without a structured strengthening program, side-to-side deficits in

quadriceps strength appeared to persist even 1.5 year after the ACL

injury (54). Thus, structured rehabilitation prior to the ACL

reconstruction has been advocated to restore knee function and

reduce strength deficits (54, 94).

Even though all participants included in the study were active

patients at the same institution and were enrolled in the same

preoperative rehabilitation program, a few limitations need to be
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considered as they were not controlled for: the presence of

associated knee injuries, the amount of swelling in comparison to

uninjured knee, and the level of knee function. Due to our study

group consisting of male registered athletes from 18 to 44 years

of age, caution should be exercised when extrapolating these

results for other age groups and female athletes. Additionally, to

avoid misleading comparisons with other research, it is

important to highlight that we used “window 17” in the UTC

imaging software to analyze the quality of the patellar tendons of

ACLp in the current study. It is likely that other (wider,

narrower) window settings result in different output in the same

tendons (24, 28, 29, 37).

In summary, feeling of instability, deficit of knee extension, pain

in the knee, and deficit of quadriceps strength were common

symptoms in athletes with ACL injury. There is an intricate

relationship of reported knee stability and knee pain with deficits

in knee extension, relative load exposure, and quadriceps strength

that might dictate the pace of progression in rehabilitation.

The quality of patellar tendon improves with the increase in

lower leg load and the time from ACL injury. And the lack of

differences in patellar tendon echo-type distribution between the

injured and uninjured legs of athletes sustaining a unilateral ACL

injury suggests that the tendon of the uninjured leg can be used

as a reference for future longitudinal studies.

Based on our results a clinician might assume, when treating

ACL injured patients before the reconstructive surgery, that the

ACL injury itself, the presence of knee pain, the reduced

extension range, and the reduced quadriceps strength will not

significantly affect the quality of their patellar tendons.
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