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Lower limb rehabilitation is essential for recovery post-injury, stroke, or surgery,
improving functional mobility and quality of life. Traditional therapy, dependent
on therapists’ expertise, faces challenges that are addressed by rehabilitation
robotics. In the domain of lower limb rehabilitation, machine learning is
progressively manifesting its capabilities in high personalization and data-driven
approaches, gradually transforming methods of optimizing treatment protocols
and predicting rehabilitation outcomes. However, this evolution faces
obstacles, including model interpretability, economic hurdles, and regulatory
constraints. This review explores the synergy between machine learning and
robotic-assisted lower limb rehabilitation, summarizing scientific literature and
highlighting various models, data, and domains. Challenges are critically
addressed, and future directions proposed for more effective clinical
integration. Emphasis is placed on upcoming applications such as Virtual
Reality and the potential of deep learning in refining rehabilitation training. This
examination aims to provide insights into the evolving landscape, spotlighting
the potential of machine learning in rehabilitation robotics and encouraging
balanced exploration of current challenges and future opportunities.
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1 Introduction

Lower limb rehabilitation is vital for recovery after injury, stroke, or surgery, impacting

mobility and quality of life (1). Traditional techniques mainly involved physical therapy,

including manual exercises. These methods, although effective, had limitations such as

dependence on therapist skills and being physically demanding (2).

Technological advances led to mechanized methods like treadmill training with body

weight support and robot-assisted therapy. Body-weight-supported treadmill rehabilitation

has demonstrated efficacy in stroke recovery (3). Robot-assisted therapy, in particular, has

proven to improve walking speed and distance in patients with stroke compared to

conventional therapy (4). Nevertheless, they also present challenges such as high costs (5).

Recently, machine learning has shown potential in reducing costs in lower limb

rehabilitation, offering solutions that can be managed with less dependency on highly

skilled therapists. This cost-efficiency aspect, highlighted in studies such as Das et al.

(6), aligns with the growing need for more accessible rehabilitation options (6).

Following this, machine learning also plays a pivotal role in optimizing personalized
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TABLE 1 Summary of selected scientific literature on machine learning in lower limb rehabilitation robotics.

Theme Category of models/methods Application areas Input data References
Powered
exoskeletons

Exoskeleton design Restoring walking in paraplegics Ambulatory function assessment data (9)

Exoskeleton design and control Assisted walking and gait re-education
training

Gait speed, motion pattern data (4, 10–12)

Robotic
technology

Rehabilitation robot design and control Post-Stroke rehabilitation Limb and gait neurophysiological data. (13, 14)

Dynamics Robotics dynamics optimization and
parameter estimation

Robotics User intent, joint angle predictions, action
recognition, and sensor feedback.

(15–17)

Rehabilitation
therapy

Rehabilitation assessment and
intervention methods

Stroke rehabilitation and limb
amputation rehabilitation

rs-fMRI analysis, adaptive control parameters, force
and CoP data.

(7, 18–20)

Real-time
monitoring

Real-time biosensor systems Sports rehabilitation and fitness Gait data from IMU and motion capture systems. (21)
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rehabilitation protocols and predict patient outcomes (7). However,

challenges like data privacy, the need for extensive datasets, and

model interpretability restrict its clinical application (8).

This review explores the potential of integrating machine

learning into lower limb rehabilitation, focusing on its

enhancement of rehabilitation robotics. It examines applications

in optimizing personalized protocols, predicting recovery, and

real-time feedback, and discuss challenges in model

interpretability, economics, and regulation. Furthermore, it

outlines future prospects, such as incorporating deep learning

and virtual reality to enhance rehabilitation training. Selected

articles are categorized in Table 1. This review emphasizes

balancing current challenges with future opportunities in the

evolving field of lower limb rehabilitation.
2 Robotics, machine learning, and
personalized rehabilitation

Robotic-assisted rehabilitation, enhanced by machine learning

algorithms, addresses patients’ unique needs and conditions to

increase lower limb rehabilitation efficiency. This intersection of

robotics and machine learning results in highly individualized,

adaptive treatment plans, real-time feedback, and sophisticated

data analysis (14).
2.1 Customizing rehabilitation plans with
advanced machine learning

2.1.1 Deep neural networks (DNNs)
Within the realm of robotic-assisted rehabilitation, Deep

Neural Networks (DNNs) play a pivotal role in deciphering

intricate biomechanical data and movement patterns captured

through devices like gait analysis tools. These networks excel in

identifying subtle alterations in gait, allowing the rehabilitation

system to adapt interventions precisely to each patient’s unique

requirements (21, 22). Notably, DNNs have been effectively

employed in tailoring robot-assisted exercises based on the

severity of paralysis, leading to more effective and personalized

therapy outcomes (23). For instance, Just as presented in the

study by Esquenazi et al. (9), their research used exoskeletal

robotics to stimulate walking rehabilitation of paraplegic patients
Frontiers in Rehabilitation Sciences 02
(9). patients with varying mobility levels receive exercises tailored

to their abilities, ensuring optimal progress.

2.1.2 Strategic adjustments via decision trees
In contrast, Decision Trees emerge as a strategic asset for

predicting necessary adaptations in rehabilitation strategies (24).

By considering factors such as heart rate, balance, and other

biomechanical data, these trees forecast improvements in motor

skills during rehabilitation, guiding informed modifications to

treatment plans (25). Decision Trees prove invaluable in

discerning the most suitable robot-assisted interventions for

specific patient groups, such as individuals with varying degrees

of upper limb impairment due to chronic stroke (13, 26). This

underscores the critical role of Decision Trees in shaping tailored

and effective rehabilitation paths.
2.2 Monitoring progress and predicting
recovery

A successful neuro-rehabilitation journey necessitates precise

progress monitoring and anticipatory capabilities, both of which

can be facilitated through machine learning techniques (27). For

instance, the Lokomat gait trainer deploys Reinforcement

Learning (RL) to dynamically calibrate the level of assistance

provided to patients, ensuring an appropriate challenge level that

aids in fostering recovery (28). Acknowledging that a singular

assistance mode may not suffice for diverse patient needs, Keller,

Rauter, and Riener devised the As Needed (AAN) path controller.

This innovation tailors the assistance mode to the patient’s

condition, adding a layer of adaptability to conventional robot-

assisted systems (12). In addition to real-time tracking, accurate

predictions about rehabilitation progress and the optimization of

therapeutic approaches heavily depend on historical data.

Specialized deep learning models tailored for time series data,

including Recurrent Neural Networks (RNNs) and Long Short-

Term Memory (LSTM) networks, offer powerful predictive

capabilities (11). An illustration of this lies in the ReWalk robot

exoskeleton system, which employs supervised learning to fine-

tune assistance intensity based on previous therapy data, ensuring

a consistent trajectory of rehabilitation progress (29, 30). In

essence, the synergy between advanced machine learning models

like Deep Neural Networks, Decision Trees, Reinforcement
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TABLE 2 Comparative advantages of machine learning in lower limb
rehabilitation.

Advantage Description References
Addressing
“sim-to-real”

Multi-strategy Bayesian optimization
algorithm based on virtual motion
parameters effectively addressed sim-to-
real transfer

(31)
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Learning, and time-sensitive models such as RNNs and LSTMs is

pivotal in revolutionizing the landscape of robotic-assisted

rehabilitation. These models collectively enable meticulous

analysis of biometric data, tailoring of treatment plans, and

precise tracking of recovery progress, culminating in highly

effective and personalized therapeutic interventions for patients.
Enhanced accuracy Machine learning-based recognition of
actions such as falling, walking, and
turning achieved 99.61% accuracy

(17)

Strengthened
exoskeleton controller

Developed squatting action controller
exhibited average joint angle tracking
error of only 1.22 degrees

(19)

Reduced physical
strain

Machine learning-driven exoskeleton
lowered extension muscle load by up to
87.5% during 50% body joint torque-
assisted squats

(32)

Increased adaptability Machine learning allowed for the design
of complex exoskeletons that imitate
human ankle motion range, significantly
improving walking and balance
capabilities

(29)
3 Comparing with conventional
approaches

Exploring machine learning’s role in lower limb rehabilitation,

it’s essential to contrast it with traditional methods. Traditional

approaches have relied on manual or mechanical techniques, but

machine learning introduces enhanced capabilities, significantly

enriching rehabilitation processes (18). Machine learning,

especially in lower limb rehabilitation robotics (MLLERR), excels

in action intention recognition and gait analysis. An example is

the innovative use of a Bayesian optimization algorithm, adeptly

bridging the gap between virtual simulations and real-world

application (17, 31). This approach was demonstrated in a study

using offline data mining and machine learning to predict and

evaluate movements in human exoskeleton systems (16).

In lower limb exoskeletons, a standout is the advanced

squatting action controller. It showed remarkable accuracy in

joint angle tracking, maintaining performance even under a

100N external disturbance force, highlighting its reliability (19).

Similarly, a human motion recognition system achieved an

impressive 99.61% accuracy in identifying various actions,

including falls (17).

Machine learning notably impacts lower limb rehabilitation,

enhancing motion controller and exoskeleton performance (15).

It can significantly reduce knee extension muscle load during

assisted squats, demonstrating its potential in easing physical

strain (32, 33). Though still emerging in prosthetics and

orthotics, machine learning promises more efficient management

of prostheses and orthoses (34).

Table 2 delineates machine learning’s benefits over traditional

methods in this field. In essence, while traditional techniques

form the bedrock of lower limb rehabilitation, machine learning’s

integration promises increased accuracy, adaptability, and tailored

care, addressing the complexities of human gait. Its evolving role

is poised to become increasingly pivotal in rehabilitation (35).

A clinically-based research is needed to maximise lower limb

rehabilitation efficacy utilising machine learning and

rehabilitative robots. This goal can only be achieved this way. To

complete the task, this is the only method. In clinical

rehabilitation, Erdaş, Sümer and Kibaroğlu found that a deep

learning model, specifically a convolutional neural network

(CNN), is better at predicting stroke patients’ gait patterns. CNN

predicted gait patterns more accurately which was shown by the

CNN’s superior accuracy than other models. Convolutional

neural networks excel at this. This is because the model

outperformed conventional methods because this model

outperformed established statistical methodologies (36). However,

Katakam et al. found that a random forest model predicts
Frontiers in Rehabilitation Sciences 03
functional gains in orthopaedic patients equally well. Closer

inspection revealed that these people have improved their

functioning. This measure was taken to anticipate functional

capability enhancements (37). Machine learning models’ accuracy

and efficacy are crucial to their usability. This is one of the most

important factors in using these models in therapy. Deep neural

networks, random forests, and support vector machines have

variable degrees of success in predicting rehabilitation results

across research (38). This must be considered to ensure accuracy.

Remembering this information is crucial for this kind of

challenges. Selecting the right model requires careful

consideration of the clinical scenario’s environmental factors.

This is because clinical situations include many environmental

factors. If this approach is being followed, it will make sure the

model works well and is relevant to the rehabilitation situation

being reviewed. Applying machine learning to real-world

situations is a major challenge to smooth integration into clinical

operations. This is a crucial hurdle to overcome in order to

complete the job. Vollmer et al. highlighted the importance of

researching both the accuracy of machine learning applications

and the practical challenges of implementing them in clinical

settings. This research should address the issues raised. This

research is necessary to highlight the problem’s severity.

Performing a comparative study was particularly harder because

the patients were different and there were several rehabilitation

methods (39). Some researcher recommended adapting machine

learning models to clinical situations. Models may work

effectively in controlled situations but struggle to meet patient

needs in clinical practice. This is because clinical practice feels

more natural (40). These models had several flaws, as indicated.

It is crucial to have multi-modal data sources. It showed that

biomechanical data and patient-reported outcomes can predict

knee rehabilitation patients’ functional outcomes (41). This was

shown by researchers. This method was used to predict

functional application results. This comprehensive strategy, which
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improves machine learning application efficiency, allows for

specialized insights into rehabilitation sequences. Evaluation and

explanation are crucial when implementing machine learning

models in healthcare. Models that provide explicit explanations

of predictions and such explanations are crucial, since such

models supply both explanations. These models help doctors

build trust with patients and make informed judgements.

Together with machine insights, this is done (42). A thorough

comparison of machine learning models in clinical rehabilitation

data is needed to optimize lower limb rehabilitation. This

research is necessary for progress. This requirement must be met

to achieve desired results. This will enable therapy efficacy

improvements, which is vital. Researchers can contribute to the

machine learning-rehabilitative robotics conversation by

addressing efficacy, accuracy, real-world applicability, patient

heterogeneity, multi-modal data integration, and interpretability.

Since these fields intersect, the conversation is happening there.

This is because the discourse is happening where these two fields

intersect. Due to this situation, they can shape the future of

customized and effective lower limb rehabilitation treatments.
4 Challenges and future directions

4.1 Model interpretability

Interpretability in machine learning models is crucial,

especially in lower limb rehabilitation (43). This refers to the

degree to which a human can comprehend the decision-making

process of a machine learning model (44). In the medical

domain, and particularly in lower limb rehabilitation,

understanding the rationale behind a model’s recommendations

is paramount. This is because the stakes are high, and decisions

directly impact a patient’s health and quality of life.

Lack of interpretability can lead to a variety of issues. First, if a

model’s decisions cannot be understood or explained, it can lead to

mistrust from patients, which can hinder their rehabilitation

progress (45). For example, if a robotic-assisted therapy device,

guided by a machine learning algorithm, recommends a specific

exercise regimen, the patient might be hesitant to comply if the

rationale is not clear. Second, uninterpretable models can be

dangerous in healthcare settings as incorrect interpretation can

lead to inappropriate treatment decisions (46). Consider a

scenario where an algorithm predicts a slow recovery trajectory;

if clinicians cannot understand how this prediction was derived,

they might make ill-informed adjustments to the therapy. Lastly,

lack of interpretability can pose a challenge in terms of

regulatory compliance, as healthcare is a highly regulated field

that often requires an explanation of treatment decisions (47–49).

Strategies to improve model interpretability are, therefore,

critical. One approach is to use simpler, easily interpretable

models like linear regression or decision trees (44). However, this

may compromise prediction accuracy. Alternatively, post-hoc

interpretation methods like LIME or SHAP can be used to

explain complex models (50). These methods approximate the

model’s decisions locally using a simpler model. Another strategy
Frontiers in Rehabilitation Sciences 04
is to incorporate domain knowledge in model development. This

can help in creating models that align with well-understood

clinical principles, thereby improving interpretability (51).
4.2 Implementation and acceptance:
economic, regulatory, and practical
challenges

AI-assisted health and medical devices face significant

challenges, particularly in economic, regulatory, and practical

contexts. Lower limb rehabilitation robots require substantial

investment, posing accessibility issues for patients, especially in

resource-constrained scenarios (52). Although research suggests

that eventual cost savings could arise from improved patient

outcomes and operational efficiency, the initial investment

required for rehabilitation robots is a substantial hurdle. It’s

crucial to acknowledge and address the substantial upfront

expenses by devising approaches to enhance affordability and

accessibility, thereby promoting broader adoption (53). Also,

strategies to minimize costs and enhance coverage, such as

improving technical designs, optimizing manufacturing processes,

and implementing effective rehabilitation strategies, should be

prioritized in future studies (54).

The medical sector operates within strict regulatory frameworks

aimed at safeguarding patient well-being and treatment

effectiveness. Navigating the intricate journey from experimental

prototypes to commercially viable AI-assisted rehabilitation devices

involves traversing complex regulatory pathways. Demonstrating

compliance with stringent medical device regulations, including

obtaining approvals from regulatory bodies, entails a time-

consuming and resource-intensive endeavor. Collaborative efforts

among researchers, manufacturers, and regulatory authorities are

indispensable to expedite and streamline this transitional process (55).

Additionally, AI-assisted rehabilitation faces implementation

challenges. Rehabilitation robots require specialized knowledge,

posing a significant hurdle for healthcare professionals (56, 57).

The adaptation of new rehabilitation techniques may pose

challenges due to changes required in existing treatment plans

and demands on the implementation environment (10, 58, 59).

High equipment costs and maintenance needs can also reduce

acceptance (20, 60). However, the potential benefits of AI and

rehabilitation robots in lower limb rehabilitation are compelling

(61, 62). Personalized rehabilitation treatments provided by

robots like Amadeo offer improved rehabilitation efficiency (63).

The triumph of AI-assisted lower limb rehabilitation hinges

upon securing the trust and active participation of both patients

and clinicians. Patients must feel assured and grasp the

advantages of these technologies in their recovery journey.

Skepticism or lack of comprehension concerning AI-driven

recommendations can impede patient adherence. Moreover,

clinicians’ endorsement of AI assistance is pivotal, as they play a

crucial role in treatment determinations. Fostering alignment

between technological progress and the preferences of patients

and clinicians necessitates adept communication and

comprehensive education (64).
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4.3 Future directions

One of the most important areas to examine in the future of

this discipline is new applications and machine learning

techniques in therapeutic rehabilitation. Even though the

research has illuminated current methods, there is still room for

creative approaches. One of the significant field of the research is

to find the small solutions that may enhance the treatment

outcomes. This objective of this research can be achieved with

the help of clinical rehabilitation as well as machine learning

research. Rehabilitation programs may benefit from a more

personalized approach that tailor’s therapy to patients’ needs.

This strategy tailor’s therapy to each patient’s qualities and

reactions. Investigating machine learning model scalability and

generalizability across clinical populations may lead to further

research. Therefore, it is crucial to understand how these models

function across a wide range of demographic groupings to ensure

their efficacy in various settings. This personalized method

makes machine learning deployment more flexible. Through

equity, this technique helps create accessible and equitable

rehabilitation solutions for all. Real-time monitoring and

feedback systems also make investigating extra study intriguing.

Researchers can create machine learning algorithms that

dynamically tailor rehabilitation therapy to patient needs. These

models use wearable sensors and continuous data streams. This

is achievable because these models learn from their own

experiences. This proactive and adaptive strategy could

revolutionize rehabilitation by providing timely and

individualized therapies. These interventions help people recover

from injuries during the dynamic rehabilitation process. To make

matters worse, one of the best areas of future research is the

ethical implications of machine learning in therapeutic

rehabilitation. One of the most important subjects to study. This

is one of the most important topics of research. The importance

of addressing data privacy, authorization, and algorithmic bias is

unquestionable given the growing adoption of these technologies

in healthcare. Researchers can help rehabilitation settings use

machine learning ethically by investigating and addressing ethical

issues. Ethical assessment and minimization can achieve this.

This technique will help patients trust doctors.
5 Conclusion

This extensive analysis of machine learning in clinical

rehabilitation shows the many ways these technologies can

improve patient outcomes. The research shows how machine

learning has been used for targeted treatments, predictive

modelling, and result evaluations. The ever-changing clinical

rehabilitation environment, which emphasizes customized and

flexible therapies, requires acknowledging changes. The appraisal

of future research shows how important it is to comprehend
Frontiers in Rehabilitation Sciences 05
clinical rehabilitation and machine learning. The junction is

where the two fields intersect, explaining this disparity. The

current trend involves a paradigm shift towards tailored

medicines that consider each patient’s uniqueness. This proposal

is part of the planned path. This will make therapy more

targeted and successful as possible. The scalability and

generalizability of machine learning models across many

populations have become vital, emphasizing the relevance of

inclusion in healthcare operations. This is because these models

can be applied to many people. Implementing real-time

monitoring and feedback mechanisms could change

rehabilitation processes. This advances the field greatly. Wearable

technologies and continuous data streams can simplify dynamic

intervention modifications to meet patients’ changing needs. This

can be achieved by adopting these technologies. Despite these

technological advances, managing the ethical aspects of machine

learning in healthcare is crucial. This is because these apps could

change patients’ lives. To integrate these technologies responsibly

and trustworthily, data privacy, consent, and algorithmic bias

must be addressed.
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