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Gait symmetry between both legs is a typical hallmark of healthy walking. In
contrast, several pathologies induce asymmetry in the gait pattern, regarding
both spatial and temporal features. This can be due to either an asymmetrical
change of the body morphology—e.g., after an amputation or an injury—or a
damage in the brain—such as stroke or cerebral palsy. This deficit in gait
symmetry usually induces higher metabolic effort in locomotion and might
further accelerate severe comorbidities such as osteoarthritis and low back
pain. Consequently, several assistive devices—such as active exoskeletons or
prostheses—are currently developed to mitigate gait asymmetry and restore a
healthier gait pattern. Typically, the development of such devices requires
extensive tests and validations, and it is practically and ethically not always
desirable to recruit disabled patients to run these tests in the preliminary
stages of development. In this review paper, we collect and analyse the
different reversible interventions described in the literature that can induce
asymmetry in the gait pattern of healthy walkers. We perform a systematic
literature research by exploring five databases, i.e., Pubmed, Embase, Web of
Science, Google Scholar, and Scopus. This narrative review identifies more
than 150 articles reporting 16 different interventional methods used to induce
asymmetric gait pattern in healthy walkers or with the potential to do so.
These interventions are categorized according to their mode of action, and
their effects on spatiotemporal parameters, joint kinematics and kinetics are
summarized adopting a macroscopic viewpoint. Interventions are compared in
terms of efficacy, maturity of the results, and applicability. Recommendations
are provided for guiding researchers in the field in using each of the identified
manipulations in its most relevant research contexts.
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1 Introduction

Walking is a key daily activity: an average healthy person takes between 4,000 and

18,000 steps a day (1). Several studies have therefore investigated the normal walking

pattern, in order to unveil the mechanisms governing locomotion. Gait symmetry

between both legs has often been considered a sign of healthy walking, as exemplified

by the similarity between ground reaction force (GRF) profiles of both legs during

walking (2, 3). Yet this statement has been challenged by other studies: while both legs

behave in symmetry at the population level, much larger GRF asymmetries are found at

an individual level (4). To explain gait asymmetries in healthy walkers, authors

postulated that lower limb behavior during able-bodied locomotion is a reflection of

natural functional differences between both lower extremities. These are potentially

related to the contribution of each limb in carrying out the tasks of propulsion and
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balance during walking (5). The non-dominant lower limb

contributes more to support, while the dominant one contributes

more to forward propulsion (6). In sum, healthy walkers tend to

display symmetric or moderately asymmetric gaits, the latter

being due to functional differences between both legs.

Gait asymmetries are much more prominent in pathological

populations, and this induces a series of secondary disorders.

These pathologies often cause detrimental impairments regarding

energy expenditure and balance (7), requiring up to twice the

energy of a healthy gait (8, 9). This might have several sources,

such as loss of strength and coordination of the pathological leg.

In healthy walking, push-off with the first leg immediately begins

before heel strike of the other leg, thus reducing the velocity of

the collision with the ground. As a consequence, a decrease of

push-off causes an increased contralateral collision and requires

more energy compensation (7). Balance might also be affected by

changes in the phase relationship between transverse pelvic and

thoracic rotations (10, 11). These changes result in alterations of

the trajectory of the center of gravity (12). Besides effects on

energy cost and balance, asymmetric gait is also positively

correlated with fall risk and dependency in activities of daily

living in older adults (13).

Neurological disorders leading to altered gait pattern are stroke

—resulting in hemiplegia—Parkinson disease, and cerebral palsy.

Hemiplegia results in changes in almost all the parameters used

to assess walking on both the pathological and non-pathological

sides of the body (14). Hemiplegic patients show bigger flexion

of the affected hip during mid-stance, smaller hip adduction

during single support, and less knee flexion and dorsiflexion of

the affected limb compared to baseline walking (15). Parkinson’s

patients have bigger variability of stride length (16) and

alterations of the normal muscle functioning (17), yet generally

there are no significant asymmetries found in their gait pattern.

The asymmetries in the gait pattern of patients with cerebral

palsy depend on the level of paralysis (18).

Scoliosis, arthrosis or arthritis and unilateral amputation are

examples of non-neurological causes of altered gait. Scoliotic

patients, depending on the severity of their condition, display an

asymmetric trunk behavior eventually resulting in an asymmetric

GRF pattern in several directions (19, 20), associated to an

excessive energy cost of walking (21). Patients with unilateral hip

arthritis display a longer total support time and shorter swing

time for the unaffected limb (22). The step lengths are also

asymmetrical with shorter steps for the affected limb. The same

findings could be observed in unilateral transfemoral amputees

who also stand a little longer on their intact leg compared to

their prosthetic leg (23), causing asymmetry in both temporal

(24) and spatial variables (25). Moreover, the level of asymmetry

depends on the stump length: amputees with highly atrophied

hip-stabilizing muscles walk with an extreme lateral bending of

the trunk toward the prosthetic side (23).
Abbreviations

GRF, ground reaction force; LLI, leg length inequity; COM, centre of mass; AFO,
ankle-foot orthosis; MTP, metatarsophalangeal; UAW, unilateral ankle weight;
ROM, range of motion.
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Asymmetries can affect gait both in spatial features, such as a

difference between right and left step length, and in temporal

features, such as a difference in right and left single support

duration. Therefore, it is important to quantify gait asymmetries

using metrics associated with both the temporal and spatial

aspects. According to (26), the most insightful parameters are

step length, swing duration, and stance duration. The same

authors established thresholds for what should be considered as

pathological gait asymmetry, as compared to a healthy population.

Several technological solutions have already been provided to

correct asymmetrical gait. These tools range from special

orthopedic insoles correcting an anatomic leg length difference

(27, 28), to high-end mechatronic prostheses (29, 30). Passive

ankle-foot orthoses have been on the market for some time (31,

32), although research is still being carried out to improve their

settings for specific disorders, like for patients with equinus (33).

The most recent ankle-foot orthosis devices are no longer passive

but have for instance an actively modulated impedance

throughout the walking cycle. This results in improved walking

symmetry for patients with a drop foot (34).

Typically, the development of such new locomotion supportive

tools requires extensive tests and validations, and this is practically

and ethically not always desirable to recruit disabled patients to run

these tests in the preliminary stages of development. Although

sensorimotor functions are fundamentally different between

intact and disabled individuals, this early-stage research about

assistive devices creates a need for inducing strong asymmetric

gait in healthy walkers to support this early-stage research, and

many people developed concurrent approaches to reach this goal.

In this paper, we provide an overview of the methods that have

been developed to induce asymmetric gait in healthy walkers.

Literature search has been conducted to determine the effects of

these interventions on spatiotemporal parameters, joint

kinematics and kinetics (i.e., contact forces, muscle activations1

and resulting joint torques). We further compare these methods

in terms of efficacy, maturity of the results, and applicability, and

we provide recommendations for using each of them in specific

research contexts.
2 Methods

2.1 Literature search

We first performed a literature search in order to identify the

methodological approaches that researchers used in order to

induce asymmetric gait in able-bodied walkers. For this first step,

we used Pubmed, using the advanced search feature with the

following keywords: [(((able-bodied) OR (healthy)) AND
1To date, the impact on muscle activations has not yet been studied for the

vast majority of the asymmetrizing methods. Consequently, unless otherwise

specified, this particular aspect was not reported in the text.
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((asymmetrical) OR (asymmetry))) AND (gait)]. This led to a series

of 692 research articles. A selection was done based on their title and

abstract. Articles were kept for further investigations if the study

population consisted of healthy participants who got an

intervention to induce an asymmetric gait or describing an

intervention that has potential to induce asymmetric gait. Gait

asymmetry in this review was defined as an asymmetry in

spatiotemporal parameters, joint kinematics, or kinetics. Articles

were excluded when the study examined disabled subjects or if the

research goal was to characterize healthy gait with no specific

intervention to amplify asymmetry. This resulted in 24 articles

mentioning 16 different methods that could induce gait

asymmetry. These 16 methods are pictured in Figure 1, revealing

that they can further be sorted into five parent categories, namely:
FIGURE 1

Schematic overview of the 16 identified methodological approaches. Each a
each approach belongs to. These IDs are used throughout the whole pape
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(1) modifications of the participant’s anatomy, (2) asymmetric

loading of the participant’s body, (3) modifications of the

participant’s joint impedance, (4) manipulations of the participant’s

sensory feedback, and (5) manipulations of the environment. The

fourth category in particular gathers experimental interventions

using vibrotactile, electrical, auditory, or visual stimulations.

Vibrotactile tendon stimulation is indeed known to interfere with

proprioception (35–37), generating similar responses in the muscle

spindles as real movements.

In a second stage, we conducted a separate literature search for

each of these 16 methodological approaches, to specify how they

influence gait with a specific focus on asymmetry. For this

second step, we used five databases, i.e., Pubmed, Embase, Web

of Science, Google Scholar, and Scopus, with articles with
pproach has a unique ID structured as X.y where X refers to the category
r.
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FIGURE 2

Workflow diagram illustrating our review process.
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publication dates up to 2023 at the latest. Finally, we used Google

Scholar to identify the papers citing those we kept after the second

step, and the supplementary articles identified as being relevant for

the present review were added in the database for further analyses.

The detailed methods and results of this systematic search for each

of the 5 parent categories and their corresponding 16 methods are

reported in a Supplementary File. Our whole workflow process is

represented in Figure 2.
2.2 Scoring strategy

Another contribution of the present paper is to provide

recommendations about which manipulation should be used to
Frontiers in Rehabilitation Sciences 04
induce gait asymmetry, as a function of the expected effects and

objectives of the study. To achieve this goal, we based our

approach on a reference method frequently used in the field of

mechanical design (38). Subsequently, all the interventions

reviewed in this paper were given a relative score based on three

evaluation criteria, covering essential and complementary features

of these interventions. To calculate these relative scores, each

criterion was divided into up to 6 independent subobjectives,

each of which being assessed separately, before computing a

weighted sum to produce a global score on a single scale.

The first criterion quantifies the efficacy of the intervention. To

score this criterion, the effects on spatiotemporal parameters, joint

kinematics and kinetics were considered. Since assistive devices are

mostly developed to get the gait pattern back to symmetrical
frontiersin.org
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regarding spatiotemporal parameters (39–43), the effect of an

intervention on the spatiotemporal parameters was considered as

the most important and was subdivided into spatial and

temporal gait parameters. When no significant effect was found

in the literature, a subobjective value of 0 was given. When the

intervention caused a significant asymmetry in these parameters,

but only in specific conditions—e.g., only if the intervention was

applied on the dominant side but not on the non-dominant side

—or there was no consensus amongst authors, a subobjective

value of 1 was given. When the intervention caused a significant

asymmetry regardless of the side on which it was applied and

with consensus among the different publications, a subobjective

value of 2 was given. These spatiotemporal parameters have the

advantage of capturing the asymmetry with a single discrete

value—even if it can be formulated according to different

expressions (26)—which makes their analysis more robust than

joint kinematics and kinetics (i.e., GRF, joint contact forces and

joint torques) which require different elements of the entire

kinematic/kinetic pattern to be taken into account. For this

reason, we have decided to assign these parameters a

subobjective value of 0, 0.5, or 1 for no effect, an effect in certain

conditions only or without consensus, and a significant effect in

most conditions with consensus, respectively. When no data was

found in the literature, a subobjective value of 0 was given as

well. Therefore, by summing up these subobjectives values, a

single “efficacy” score is produced to capture the global effect of

a given intervention on the different gait parameters.

Next, a “maturity” score was given, with the objective to

capture both the effect regarding the size of the population on

which a given intervention has been tested, and the number of

studies that tested it. Indeed, the number of articles that

investigated a given manipulation could be used as a proxy of

how well studied the intervention is, and the number of subjects

examined in the largest study, excluding reviews, could give an

indication of the significance/quality of the reported results.

Regarding the first item, if five articles or less were found for a

specific intervention, a subobjective value of 1 was given; if six to

ten articles were found, a subobjective value of 2 was given; and

if more than ten articles were found, a subobjective value of 3

was given. Regarding the second item, if the largest study

included up to 20 subjects, a subobjective value of 1 was given;

and if the largest study included more than 20 subjects, a

subobjective value of 2 was given. The third criterion was

“applicability”, taking into consideration the ease of use. For this

criterion, the set-up time and an approximated cost of the

required equipment were considered. With the scoring of the set-

up time, we aimed at evaluating and comparing the approximate

time required to set up the experimental apparatus on the

subject. If it was more than 30 min, a subobjective value of 1 was

given, and if the estimated set-up time was less than 30 min, a

subobjective value of 2 was given. Regarding cost, if the

intervention required equipment costing more than 100€, a

subobjective value of 1 was given; and otherwise a subobjective

value of 2 was given. The estimated costs and set-up time did

not take into account the materials and time needed for the

actual data recording or the set-up of the measuring instruments
Frontiers in Rehabilitation Sciences 05
needed to collect these data. Thresholds for both “maturity” and

“applicability” subcriteria were set in order to reach a relative

uniform distribution across the corresponding subobjectives

values, with the exception of the set-up time which has been set

on the basis of practical considerations and our own experience.

However, it is still up to the reader to adapt these thresholds

values in accordance with their own desiderata. This scoring

methodology is summarized in Table 1.

For each criterion, score was then normalized by its respective

maximum one. Then, a global score was computed by weighting

the criteria of efficacy, maturity, and applicability by respectively

0.5, 0.3, and 0.2, capturing our own hierarchy between these

criteria. This larger weight given to “efficacy” stems from being

the main objective explored by this study. Next, the second most

important weight is given to the “maturity” index capturing the

level of dissemination of the different interventions in the

literature. Finally, “applicability” was quantified as the least

dominant criterion, as it is mostly a matter of authorized

expenses and installation time. The rounding of each weight to

the decimal point was then determined to reach a total value of

1.0. However, the reader is left free to assign different weights to

these criteria, for instance to comply to particular research needs

and/or working environment. In this case, the global score would

be directly adjusted. In order to facilitate this potential

adaptation, an editable and dynamic version of the comparative

table is provided as Supplementary Material.
3 Results

As detailed in the Supplementary File, more than 140 papers

were found after systematic literature searches. The main results

reported in these papers are summarized hereafter.
3.1 Modifications of the participant’s
anatomy

3.1.1 Leg length inequity (LLI, method 1.A)
Several authors examined the effect of LLI on the general gait

parameters by quantifying gait asymmetry by means of various

indices (44–46). Two studies examined the effects of an LLI of

4 mm. While gait initially became asymmetric, an adaptation

phase resulted in the regain of symmetry after 10 min (44, 47).

LLI’s of 27 mm and 52 mm only led to a significant decrease in

symmetry for the leg length difference of 52 mm according to

the Combined Gait Asymmetry Metric (45); while a significant

relative step lengths difference between both sides was found for

a LLI of 32 mm in (46). The main findings are that the step

length of the longer leg was increased compared to the step

length of the shorter leg (46) and that the single support phase

decreases on the side of the longer leg (47).

Concerning the kinematics of the lower limb joints, a LLI is

typically compensated by walking with a more bent longer leg

and a more extended shorter leg. Hip and knee of the longer leg

are more flexed during both swing phase and stance phase
frontiersin.org
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TABLE 1 Overview of the scoring system for each of the three considered criteria.

Criterion Subcriterion Scoring Clarification
Efficacy Spatial gait parameters 0 The specific intervention does not induce proven asymmetry or the asymmetry on this subcriterion was not examined.

1 The specific intervention causes proven asymmetry in specific research conditions.

2 The specific intervention causes proven asymmetry in all research conditions.

Temporal gait
parameters

idem idem

Joint kinematics 0 The specific intervention does not induce proven asymmetry or the asymmetry on this subcriterion was not examined.

0.5 The specific intervention causes proven asymmetry in specific research conditions.

1 The specific intervention causes proven asymmetry in all research conditions.

Ground reaction force idem idem

Joint contact forces idem idem

Joint torques idem idem

Maturity Number of articles 1 Up to 5 articles were found in the databases, communicating on this specific intervention.

2 Between 6 and 10 articles were found in the databases, communicating on this specific intervention.

3 More than 10 articles were found in the databases, communicating on this specific intervention.

Biggest study population 1 The biggest primary study on this specific intervention, found in literature, had a study population of up to 20 people.

2 The biggest primary study on this specific intervention, found in literature, had a study population of more than 20
people.

Applicability Set-up time 1 Estimated experiment set-up time for this specific intervention is greater than 30 min.

2 Estimated experiment set-up time for this specific intervention is lower than 30 min.

Costs 1 Estimated experiment costs for this specific intervention are more than 100 EUR.

2 Estimated experiment costs for this specific intervention are less than 100 EUR.
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compared to baseline walking while the ankle is more

dorsiflexed. Moreover, the hip adduction and external rotation

decreased with bigger LLI’s. Additionally, the ankle reaches

the peak dorsiflexion in stance phase relatively later compared

to baseline walking. On the short side, the main observations

during stance are an increase in knee extension, hip extension

and abduction and ankle plantarflexion; while in swing phase

only decreased ankle dorsiflexion and increased hip abduction

are observed (48–51).

The magnitude of the LLI is significantly correlated to

changes of the pelvic position, resulting in postural changes in

the spine (52). The main observations are an increase in the

maximal lateral bending angle and bending speed of the

thoracal and lumbar spine with increasing lateral deviation

towards the longer leg when the LLI is bigger and an increase

of the surface rotation of the spine (here orientated towards

the longer leg) (52–55).

Although (50) suggested that significant kinematic changes of

the longer limb were already observed in certain gait phases for a

LLI of 5 mm and (55) only found significant results for a LLI of

40 mm, a minimal LLI of 20 mm is cited in (52, 56). Note that

this finding might be partly due to the fact that these papers did

not systematically use the same kinematic metrics and/or age groups.

Based on inverse dynamics, contact forces in the leg joints

for several LLI’s between 5 and 40 mm were computed and

analyzed in (57). They found that the mean contact forces in

the ankle, knee and hip are significantly larger in the shortest

leg compared to the longest one. Contact forces in the joints

of the shortest leg increase with bigger LLI’s, again with a

threshold below which no difference is found with normal

walking (57, 58). On the contrary, contact forces in the medial

compartment of the tibiofemoral joint show a declining trend
Frontiers in Rehabilitation Sciences 06
with increasing LLI and contact forces in the lateral

compartment of the tibiofemoral joint show a stable trend

with increasing LLI (59). The contact forces in the hip joint

display an increasing trend with increasing LLI’s except for a

LLI of 30–35 mm, due to a pelvic tilt that moves the COM to

the contralateral side during the stance phase (59). Two

studies found a significant asymmetry in ground reaction force

with a trend of increasing GRF for the short leg and

decreasing GRF for the long leg with increasing LLI (60–62).

3.1.2 Lateral wedge insoles (method 1.B)
A customized printed single-sided lateral wedge insole with 6°

inclination has been used to perturb gait (63). Asymmetries

appeared immediately after use of the insole and remained after

20 min, yet not at the level of step length or speed. Furthermore,

the vertical GRF was significantly larger for the instrumented

side and the lateral moment of the center of pressure

significantly increased, shifting to the contralateral side,

compared to walking without the customized insole. The

adduction knee torque at the side with insole is also significantly

lower than for walking without this insole.
3.2 Asymmetric loading of the participant’s
body

3.2.1 Change in body morphology—unilateral
ankle weight (method 2.A)

Thirteen authors examined the effect of a unilateral ankle

weight (UAW) on the general gait parameters by quantifying gait

asymmetry by means of various indices. All examined weights

were found to induce an asymmetric gait pattern in the
frontiersin.org
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participants, even for a weight that is as low as 1% of the

participants’ bodyweight (64–67). Moreover, all studies

reported that the asymmetry was bigger for heavier weights.

The effects of a UAW are also influenced by the age of the

participant (64, 68). Overall, the addition of a UAW causes a

change of intralimb coordination with deviations from the

baseline antiphase pattern, with the loaded leg lagging behind

the other (69, 70).

Adding a UAW results in an asymmetrical step length that can

take up to 10 min to become noticeable (65, 71, 72). Curiously,

adding weight resulted in contradictory results regarding step

length: (65) reported the weighted limb to exhibit shorter steps,

while (64) reported longer steps. Possible explanations are (i)

that this was measured at different time intervals after adding

the weight, (i.e., during early vs. late adaptation), (ii) that

participants were allowed to adapt their gait speed in every

condition only in (64), and (iii) that the added weight was not

similar between studies (i.e., 5% and 7.5% of the body weight).

Single limb support time becomes asymmetrical once the weight

is added (71, 72) and the double support time decreases

significantly (73). This is due to an increase in swing time for

the loaded limb and an increase in stance time for the unloaded

limb (64, 72).

Adding a UAW has several effects on joint kinematics.

Compared to unweighted walking, an increased hip extension

and decreased hip and knee flexion can be observed for both the

affected and unaffected limb (74). The decreased flexion of knee

and hip is compensated by increasing ankle dorsiflexion during

mid-swing to aid in toe clearance (73, 74). Absolute angular

impulses of the loaded limb hip and knee increases significantly

after load addition (75). Net joint moments at the knee and hip

continue to change beyond initial exposure to the load, reaching

steady-state within five minutes (60). The effects on joint

kinematics depend also on the participant’s age: ankle angle at

touchdown is greater with UAW for younger adults than for

older adults (68).

Finally, (76) developed a cable-driven loading of the ankle

that can be applied during the swing phase only. This

perturbation resisted forward movement of the swing leg

under either an abrupt or a gradual loading. They reported a

greater asymmetry in the abrupt condition than in the gradual

condition regarding swing phase duration, step length, and

muscular adaptation.

3.2.2 Change in body morphology—unilateral arm
weight (method 2.B)

Eleven studies examined the effect of a unilateral arm weight

on both spatiotemporal, kinematics and kinetics parameters, and

these led to contradicting results. A reduction in step length for

the contralateral leg was seen only for the bigger weights (77)

but differentiation in step duration can already be found whilst

carrying a mass equivalent to that of a smartphone (78). In

contrast, carrying a load of 1.5 kg in one hand did not negatively

affect postural stability and gait variables (79), and no asymmetry

in arm swing amplitude with a unilateral arm weight of 0.45 kg

was found in (80). Mixed results were reported in (81): no
Frontiers in Rehabilitation Sciences 07
significant differences in step length, step time and double

support time, while—only for the highest loads—stance time for

the loaded leg, and single support and swing time for both legs

significantly decreased. This increase in double support time

was not confirmed in (82). Finally, (83) reported an increase in

compression area of the feet for increasing loads.

Several kinematic changes were observed when adding a

unilateral arm weight, such as an increase in foot angle of the

ipsilateral leg (77, 81) and an increased trunk flexion towards the

contralateral side (84, 85). A significant pelvic tilt for loads of

15% of body weight with pelvic rotation decreasing with

increasing load has also been observed in (86). At ipsilateral

trunk bending, a statistically significant increase in the maximum

values of contralateral hip adduction and contralateral shoulder

abduction, and a decrease in ipsilateral hip adduction were

reported as loads increased (81). These kinematic alterations

cause consistent asymmetries in the body COM oscillations (82).

Only one study examined the effects of a unilateral arm weight

on the GRF and reported a higher level of asymmetry in medial/

lateral GRF and free vertical moment (i.e., the GRF-induced

moment around the body vertical axis) in this condition (85).

Another single study reported the effects on joint torques, i.e., an

increase of the contralateral hip abduction torque and a decrease

of the ipsilateral hip torque (84). Finally, alterations in general

gait parameters for a trolley with a load of 20% of body weight

were reported in (87). Pulling a trolley can be considered as a

unilateral arm weight both pulling downwards as backwards.

However, no gait asymmetry was observed.

3.2.3 Change in body morphology—unilateral
shoulder load (method 2.C)

Unilateral shoulder load causes alterations in spatiotemporal

parameters, gait stability and regularity depending on the

heaviness of the load (88, 89). However, carrying a bag on one

shoulder, compared to carrying it on the forearm or by hand,

has the smallest effect on gait parameters (78). Yet coordination

—especially couplings between both thighs, between the thigh

and the shank of the loaded side, and between the shank and the

foot of this loaded side—is altered and asymmetric load carriage

leads to an asymmetry in step length with the right foot taking

longer steps when carrying the asymmetric load over the right

shoulder (90, 91).

A decrease for peak ankle dorsiflexion, mean knee varum angle,

peak value of hip extension and range of pelvic rotation can be

observed on the loaded side (92, 93). In addition, an increase for

knee flexion at initial contact, hip adduction angle, mean pelvic

anterior tilt and mean pelvic obliquity on the loaded side can be

observed. Some of these effects are compensated on the unloaded

side, with increased contralateral hip and knee moments (93).

Like for the unilateral arm weight, (86) also reported a

significant pelvic tilt for loads of 15% of body weight while

pelvic rotation decreased with increasing load. Yet, the variability

of the COM in vertical direction was significantly reduced when

carrying a load (94).

Only one study examined the effects on GRF but there was no

significant difference found in peak vertical GRF between baseline
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walking and walking with a unilateral shoulder weight of 7 kg,

which was around 15% of body weight for most of the

subjects (95).

3.2.4 Change in body morphology—added weight
to the pelvis (method 2.D)

Two studies examined the effect of a cable-driven active

tethered pelvic assist device, used to apply an external force on

the pelvis (96, 97). The adaptation to the applied force resulted

in asymmetry in stance phase timing. Although no asymmetry in

step width was reported, stability was kept by increasing

the circular propulsion of one leg, depending on the direction of

the force (97). Asymmetric changes were observed in the

anteroposterior and vertical pelvic motion and larger hip flexion-

extension range of motion (ROM) was found at the side of

external force (96). Subjects demonstrated asymmetric lateral

ground reaction force to compensate for the lateral forces applied

on the pelvis (97). The lateral GRF increased and plateaued but

the increment of vertical GRF (compared to baseline walking)

decreased over time.

A similar device has been developed to provide braking forces

to the user’s pelvis during the stance phase of one leg (98). One

healthy participant displayed walking asymmetry, in particular

through a larger propulsive GRF in the resisted leg.

3.2.5 Crutches (method 2.E)
Elbow/axillary crutches—either a unilateral one or a pair

supporting the same leg—cause a shift in the COM which results

in a reduction of step length for both legs and overall gait

velocity (99–102). The effects on stance phase and swing phase

depend on the experiment conditions. When walking with two

crutches and simulating an injured leg, putting less weight on

that side, stance phase decreased and swing phase increased

whilst stance phase increased in crutch assisted gait without

simulating any pathology (100, 102). There is no consensus

regarding step width (99–101).

When a unilateral crutch is carried in the dominant hand, the

gait changes more (99). Yet, subjects had a sufficient level of

coordination to perform the required unloading of weight

without pronounced modification between the steps of the

dominant and non-dominant sides (99, 101). If participants are

asked to simulate an injured leg and put a fraction of their body

weight on two crutches instead of the foot of that injured leg, the

single support phase for both sides were found significantly

different, i.e., shorter for the involved side (100). When

examining two-point and four-point crutch gait in healthy

subjects without simulation of any pathology, no gait cycle

asymmetries could be observed (102).

Slightly greater hip abduction and external rotation on the

involved side and slightly less hip adduction and internal

rotation on the non-involved side can be observed while walking

with elbow crutches simulating a leg injury (100). Furthermore,

for both sides the ROM patterns changed for the pelvis sagittal

tilt as well as the hip, knee, ankle, and foot joints. The results of

these kinematic changes appeared to be linked to a shift of the

COM from the involved side toward the non-involved side (100).
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Due to the support provided by crutches, the vertical GRF on

the involved side—bearing less weight—is lower during almost the

whole stance phase and exhibits a more plateaued pattern (100,

103). While differences of GRF in the mediolateral plane were

negligible, anteroposterior GRF displayed a more pronounced

asymmetry but mainly in amplitude, not regarding the pattern

shape (100, 103). No asymmetry in foot pressure patterns has

been found in (102).
3.3 Modifications of the participant’s joint
impedance

3.3.1 Knee brace (method 3.A)
The effect of a unilateral knee brace on spatiotemporal

parameters was not found in the literature. In contrast, several

studies reported the effect on joint kinematics. A brace with

30°-extension constraint induces increased peak knee flexion and

decreased peak knee extension for the braced limb (104). During

swing phase, peak dorsiflexion of the ankle was greater and the

ROM at the hip joint was also bigger for the braced condition,

compared to baseline walking (104, 105). With a similar setting,

(106) found smaller peak flexion for the braced knee while peak

flexion occurred earlier in the swing phase compared to baseline

walking. They also reported a lower peak extension for the

unbraced knee during the early stance phase compared to

baseline walking. Other authors developed a similar setup to test

the effect of unilateral robotic walking assistance with healthy

walkers (40). They also found smaller peak flexion for the braced

knee as compared to the control condition.

The anterior reach was reduced for both legs when the brace

was constrained but restriction of overall mobility of the leg was

limited (107). Bilateral net knee extension moments gradually

increased as the angle of contracture increased (108). The net

knee extension moments in the non-constrained limb were

significantly larger such that a knee flexion contracture greater

than 15° led to mechanical overloads in both limbs. The knee

shearing forces in contracture side and the knee compressive

force in non-contracture side also significantly increased (108).

Only one study examined alterations of GRF and reported that

vertical GRF values increase bilaterally at mid-stance but decrease

bilaterally during propulsion (107). Furthermore, (105) reported

a significant increase of ipsilateral peak hip power and the

contralateral hip showed significant increases in generating

mechanical work in early stance phase, with bigger effect is

fixing the knee in a more flexed position. Finally, (109) shed

light on individualized compensatory strategies adopted by two

healthy walkers constrained by a fully locked knee.

3.3.2 Asymmetric arm swing (method 3.B)
Arm swing amplitude as well as arm swing asymmetry vary

considerably in healthy populations, e.g., as a function of age

(110–112). Not all arm swing asymmetries are pathological: only

asymmetries where one side has twice the amplitude of the other

should be considered abnormal (110). A reduced lower limb

coordination can be seen when walking with an induced
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asymmetrical arm swing (113). Unilateral casted participants took

significantly smaller steps with the leg on the casted side, and single

leg support time was also smaller for that side (114). The smallest

changes were noted with the arm in a cast below the elbow and no

sling, and the greatest changes were noted with the arm in a cast

above the elbow and in a sling. Moreover, (115) reported that

single leg stance and double support times were decreased and

increased, respectively, compared to baseline walking.

Similarly, (116) studied the effect of a shoulder immobilization

on gait. They found that spatiotemporal parameters such as

velocity, step length, and stride length were significantly

decreased after immobilization. However, they found no

significant result regarding changes in gait symmetry.
3.3.3 Active ankle-foot orthosis (AFO, method 3.C)
A unilateral powered AFO has been used by (117, 118) to

induce gait asymmetry. They reported that the stance phase was

significantly reduced for the contralateral leg. Results for the

ipsilateral leg were not significant as compared to the control

condition. The subjects increase step length for both legs during

the assisted walking although this was not significant.

If the AFO was used to increase joint stiffness, this resulted in

reduced peak ankle plantarflexion and dorsiflexion, reduced total

ROM, and increased dorsiflexion at initial contact (118).

Moreover, flexion of the knee increased at initial contact, while

its peak extension decreased, and its peak flexion increased

during stance when ankle stiffness was increased. Stiffness did

not affect hip kinetics and there was low evidence for its effects

on hip or pelvis kinematics and ankle and knee kinetics. More

knee flexion was observed in both swing and stance phases when

walking with a powered knee-ankle-foot orthosis compared to a

conventional one (119).

Regarding GRF, (120) reported only one result with a 1-degree

of freedom active AFO: COM trajectories were generally more

localized in the lateral direction than with a 2-degrees of

freedom one.
3.3.4 Passive ankle-foot orthosis (method 3.D)
The main effects of a unilateral passive AFO on spatiotemporal

parameters were a decrease in step length, step time and single

support phase of the contralateral leg (121), over a large range of

stiffnesses (118, 121, 122). The stance phase duration of the

instrumented leg has been found to be relatively shorter (122).

Walking speed decreases when walking with a passive AFO (123,

124) although this was not significant in all studies (125).

Just like with an active AFO, larger stiffnesses of the device

generally resulted in reduced peak ankle plantarflexion and

dorsiflexion, reduced total ROM and increased dorsiflexion at

initial contact, larger flexion of the knee increased at initial

contact, smaller peak knee extension, and larger peak knee

flexion during stance (118, 124, 126). Unilateral restricted ankle

motion influenced kinematics mainly in the swing phase (125).

Hip and knee peak flexion were increased on the instrumented

side and occurred earlier in the swing phase compared to

baseline walking. Stiffness did not affect hip kinetics and there
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was low evidence for its effects on hip or pelvis kinematics and

ankle and knee kinetics (118).

The forward tilting angle of the trunk at the time of toe-off of

the instrumented side was significantly larger than the contralateral

one (123). In contrast, (126) reported the biggest changes in the

opposite leg suggesting that all its joints might undergo changes.

The maximum dorsiflexion angle of the ankle was significantly

smaller in the leg with the ankle-foot orthosis than in the leg

without the device, such as the maximum plantar flexion angle

in the early stance phase and at the time of toe-off (123). In

addition, (127) reported that peak plantarflexion angular velocity

and eversion ROM was smaller when walking with a unilateral

dynamic orthosis compared to a standard AFO and

baseline walking.

In one study, the peak vertical ground reaction force at heel

strike was found to be significantly larger in the leg without the

AFO than in the instrumented one (123). Yet, no significant

difference was found in the anteroposterior GRF impulses

compared to baseline walking (128); and this pattern of force

distribution under the foot directly depended on the angle of the

AFO during the stance phase (129). This further increased the

foot pressure of the lateral foot sole, such as the peak foot

pressure of the heel on the instrumented side. The effects of

AFO stiffness on GRF were limited (118).

Using a similar device, (128) reported a greater range of

angular momentum in both the frontal and sagittal planes, which

were correlated with the reduced peak hip abduction and

reduced ankle plantarflexion moments, respectively. The peak

knee extension torque was also reported to be larger (126).

Regarding muscle activation patterns, (126) found that an AFO

significantly reduced lower leg muscle activity whilst (130)

reported that peak quadriceps muscle force increased when the

orthosis had a strong plantar flexion resistance.

3.3.5 Hip orthosis or impedance modulation
(method 3.E)

Wearable active hip orthoses are mainly used for locomotion

assistance with diverse populations of patients (131–133).

Nevertheless, a couple of studies also investigated how these tools

could be used to induce asymmetric walking, typically by

artificially modifying one hip impedance via closed-loop control.

In (134), authors tested whether unilateral hip perturbations

elicit neural adaptation in healthy participants. They found that

applying a virtual stiffness parallel to the hip joint elicited time-

dependent and asymmetrical changes in hip range of motion and

step length, indicating an adaptation response. This research

paves the way towards applying mechanical impedance

asymmetrically to the joints for gait training and rehabilitation.

Recently, the same group extended the protocol to bilateral and

asymmetrical stiffness modulation (135), highlighting aftereffects

in step length and propulsive/braking ground reaction forces.

This was reported to be a signature of neural adaptation.

A couple of other papers were found about modifying the

dynamic environment of the hip through another manipulation

than via an active orthotic device. In (136), a passive device—

namely a custom-made hip-thigh compression sleeve—was used
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to restrict one hip range of movement of healthy walkers. Results

showed that this naturally result in asymmetric walking.

However, since the purpose of that paper was to validate an

assistive method through a dedicated device, no detailed results

have been reported about the asymmetric pattern. Similarly,

(137) reported investigations about using an active exoskeleton to

restore walking symmetry. In that case, they artificially induced

gait asymmetry in healthy walkers by attaching one of their

thighs to the treadmill structure via an elastic rope. They showed

that this manipulation induces gait features similar to the one of

stroke survivors, namely reduced and earlier peak position, and

smaller range of motion of the hip. They did not report other

gait metrics.

3.3.6 Unilateral metatarsophalangeal (MTP) joint
constraint (method 3.F)

Specific research has been conducted on the effects on general

gait parameters when immobilizing the MTP joints in one foot. In

(138), results highlighted that the contralateral step length was

significantly decreased and an asymmetrical COM pattern was

also observed. The double leg support phase increased

significantly but the single leg support phase of the ipsilateral

leg decreased.

When walking with an insole restricting dorsiflexion in MTP

joints, the ankle was more dorsiflexed during late mid-stance and

less plantarflexed during propulsion, the knee was more flexed

during mid-stance, and the hip was less extended during late

mid-stance (139). Maximum hip and knee flexion angles in the

swing phase of both limbs were increased (138, 140).

Only one study examined the effects on GRF and reported that

the second peak in vertical GRF typically observed during the

stance phase is larger compared to baseline walking (140).

Increased stiffness resulted significantly in greater peak ankle

moment, greater ankle push-off work, greater peak ankle foot

power, greater ankle foot push-off work and decreased positive

work by the ankle joint during the late stance phase (138, 141).
3.4 Manipulations of the participant’s
sensory feedback

3.4.1 Vibrotactile stimulation (method 4.A)
Eight authors examined different types and locations of

vibration and reported the effects on general gait parameters.

The effects of continuously and intermittent vibration on the

posterior neck muscles and triceps surae tendon of the non-

dominant leg were investigated in (142). They reported no effect

of neck muscle vibration on balance, a more backward body

position due to continuous and intermittent vibration of the

triceps surae and no change in spatiotemporal gait parameters.

Similarly, (143) did not show an effect on temporal parameters.

Bilateral mastoid vibration significantly increased the amount of

sway variability and decreased the temporal structure of sway

variability only in the anterior-posterior direction (144).

Stimulating the mastoid can also induce changes in the margins

of stability during walking, asymmetrically if the vibration is
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unilateral (145). With respect to interlimb coordination, only

vibration of the biceps femoris showed a significant increase in

phase lead of the vibrated limb (146). Vibration of the triceps

surae tendon induced significant, though minor, changes in

duration and length of stance and swing phase (147); and

reduced the center of pressure velocity and displacement

especially with eyes closed in healthy elderly subjects (148).

Vibration of the quadriceps femoris at the knee decreased knee

flexion at the-mid swing phase, vibration of the tibialis anterior

decreased plantar flexion at the toe-off phase, and vibration at

the triceps surea decreased dorsiflexion during the swing phase

(143, 146). Vibration on the stimulated leg did not induce any

effect on joint displacement of the non-stimulated leg and thus

induced gait asymmetry, leading to the conclusion that acute

effects of vibration during gait involving healthy participants are

varied (149).

3.4.2 Electrical stimulation (method 4.B)
According to our searches, no study has been conducted yet

using electrical stimulation with the aim to induce asymmetric

gait in healthy subjects. Moreover, comparing results is difficult

since applying this type of stimulation is done at several

locations and with different intensities, during different gait

phases. Thus, this mode of action can either interfere with

proprioception, direct muscle activation, or cause a pain reaction.

The effects of unilateral electrical stimulation of the plantar

intrinsic foot muscles from mid-stance to pre-swing has been

examined in (150). They reported a significantly bigger decrease

in the second peak of the vertical ground reaction force

compared to baseline walking but no change in gait velocity,

stance phase duration, minimum navicular height, and GRF in

other directions. The effects of unilateral electrical stimulation of

the tibialis anterior nerve on plantar pressure and gastrocnemius

medialis activity led to a decrease in peak plantar pressure but

no changes of gait parameters (151). Unilateral functional

electrical stimulation to the gluteus medius muscle resulted in a

decrease of the medial knee joint reaction force, a decrease in

peak pelvic drop in the frontal plane towards the swing leg,

during stance phase, and a reduction of the mediolateral

component of the GRF (152). Finally, a unilateral phase-specific

nociceptive electrical stimulation at the ankle led (153) to

conclude that—during the first couple of stimuli—the peak heel

contact decreased on that side and increased on the non-

instrumented side while heel contact duration was bilaterally

reduced. One minute after the start of these stimulations, only a

decrease in peak heel contact pressure on the stimulated

side persisted.

3.4.3 Auditory or visual stimulation (method 4.C)
Providing a rhythmic auditory stimulation to healthy walkers

induced bilateral changes of both spatial and temporal

parameters and joint kinematics, but neither walking asymmetry

(154–159) nor change in gait variability (160). The aim of (161)

was to induce asymmetry in the gait pattern of healthy subjects

using a rhythmic auditory stimulation. Although subjects

synchronized their gait within a few steps when the auditory
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cues were delivered, results suggest that it is not possible to

desynchronize the gait of healthy subjects using such a rhythmic

auditory stimulation.

In contrast to rhythmic auditory stimulation, phase-shifted

auditory cue significantly changes gait symmetry and trunk

displacement (162). The more the auditory cue was out of phase,

the larger the observed trunk displacement. Moreover, step

length, step time and swing phase time symmetry, also gradually

increased with increasing phase delay and gradually decreased

with increasing phase advance. On the other hand, single

support time and stance phase time symmetry showed

contrasting characteristics compared to above parameters.

Similarly, asymmetric walking can be induced by different levels

of loudness provided to both ears (163). In particular, these

authors found a significantly increased stance time on the side

with reduced volume. Another study focused on walking

perturbations induced by dichotic listening, i.e., attention

directed to right or left ear (164). They used Principal

Component Analysis and showed asymmetrical disruptions on

the components structure, capturing asymmetric modulations in

step/stride width and length. Finally, (165) examined the effects

of a fractal metronome on gait in healthy walkers and reported

that participants did synchronize with the metronome despite its

fractal randomness, causing asymmetries in general

gait parameters.

We found only one study that specifically investigated the use

of visual feedback to induce asymmetric walking (166). Visual

targets were projected on a treadmill to instruct healthy walkers

to take shorter or longer step than preferred. The authors found

that participants naturally adopted asymmetric walking regarding

both step length and duration, in order to minimize their

metabolic cost. Contact force profiles were also found to become

asymmetric in specific experimental conditions.
3.5 Manipulations of the environment—
split-belt treadmill (method 5.A)

Literature relying on split-belt treadmill protocol is abundant

since it has been largely used as a proxy to study adaptation and

learning in locomotion tasks, including with patient populations

(167, 168). A general factor influencing gait asymmetry is the

subject’s perception of belt speed difference, as reported in (169,

170). A threshold of 0.88 for belt speed difference ratio is

highlighted to induce gait asymmetry (170).

Two studies showed that for both younger adults and elderly,

adaptation to split-belt treadmill walking was done by re-

establishing symmetry in step length and double support time

(171, 172). Elderly mainly increased swing speed of the fast leg

whereas younger adults mainly increased the swing time of the

fast leg. However, this asymmetry occurring at early adaptation

tended to disappear during late adaptation (171–174), together

with an increase in whole body angular momentum (175). While

swing time of the fast leg and swing speed of the slow leg

slightly decreased during late adaptation, swing speed of the fast

leg continued to increase (172). Leg excursion asymmetry, which
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was biggest in the elderly, normalized in late adaptation as well

(171–173). Similar results were found with visual occlusion (176).

Thus, at initial contact with the split-belt treadmill, subjects

showed a step length asymmetry and a double support

asymmetry which normalized in the first couple of minutes

except regarding the swing duration of the fast leg.

With greater speed differences, participants adopted increasing

values of step time asymmetry while the step lengths and stride

time remained constant and nearly symmetric (177, 178).

Similarly, (179) noted a prolonged stance phase and a shortened

swing phase of the slower limb and inversely for the faster limb.

Stride times for both legs shortened during adaptation: where the

fast leg had a shorter double limb support time at beginning, this

became equal for both legs, although stance phase and swing

times did not normalize. With greater speed differences, step

time asymmetry increased while step length asymmetry remained

constant. Stance phase and swing times did not normalize

after adaptation.

Five authors examined the effect of split-belt treadmill speed

differences on the joints of the lower limbs. One of the articles

reported that knee joint contact forces were symmetric during

the entire adaptation (173). Similarly, (180) found a significant

difference in the intrasubject variability of knee flexion at heel

strike; and (174) found that the symmetry index of the anterior

force became asymmetric in the first minute and moderately

changed, lasting for the remaining time of the adaptation

period. The mediolateral GRF and hip moment impulse of the

fast limb increased over time with adaptation, but (181) did not

find differences in any joint moments or mediolateral GRF

during early or late adaptation compared to baseline walking.

Alterations in the GRF differed between the anterior and the

posterior components, both during and after the split-belt

exposure (182).

Six studies also examined the effects of adding a cognitive task

during split-belt walking on the adaptation process. Regardless of

cognitive task placement or duration (intermittent or

continuous), subjects tended to prioritize gait symmetry over

cognitive performance (183). A second study also reported no

additional effect of texting on a smartphone on gait parameters,

while walking on a split-belt treadmill (184). In (185), split-belt

treadmill was combined with visual cues to promote adaptation

of step timing or position. The main finding was that such visual

feedback affects deadaptation but not adaptation to the split-belt

configuration. Dual-tasking while walking on a split-belt

treadmill only caused an additional effect on limb excursion

asymmetry compared to normal split-belt treadmill walking,

during early post adaptation (169); while the presence of a dual-

task during adaptation slowed the rate of adaptation to the split-

belts and was characterized by greater variability compared to

the single-task group (186). Finally, (179) reported a main effect

of dual tasking to double support proportion variability.

Furthermore, stance phase significantly increased during dual

tasking for the limb on the faster belt, while it decreased for the

limb on the slower belt, although the latter effect was smaller.

There were also significant interactions between dual task and

belt speed.
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3.6 Combinations

We found three studies that specifically combined at least two

of the experimental conditions described earlier. In (187), the effect

of a unilateral ankle weight combined with an induced leg length

inequity on the ipsi- or contralateral leg was studied. Although

asymmetry in gait was reported in several parameters for

unilateral ankle weight and LLI alone, authors did not report

significant interactions between the amount of mass and leg

length added. Similarly, (45) only reported a significant

asymmetry compared to baseline walking for a LLI of 52 mm

and a UAW of 2.3 kg. Combinations of a smaller LLI or bigger

UAW did not result in significant increase in asymmetry. Finally,

(188) studied five walking conditions combining three types of

perturbations: extra ankle weight (0.9 or 1.2 kg), adding a

25.4 mm LLI, and with a walking boot locking one ankle. They

reported similar asymmetries as in the corresponding studies

focusing on a single perturbation type. The focus of their paper

was on the consequences of these artificially-induced gait

asymmetries on lower back pain. They found that lower back

kinetic demands associated with asymmetrical gait were similar

to, or only moderately different from, normal walking for most

conditions despite the induced asymmetries.
3.7 Scoring

Each intervention was scored according to the criteria

explained in the methodology. This scoring system results in a

gradation according to the efficacy of the method, its level of

maturity, and its practical applicability. These scores are gathered

in Table 2.
4 Discussion

Walking in a straight line on a flat surface or a treadmill is

performed with a quasi-symmetric pattern. As overviewed above,

several interventions have been investigated to break down this

symmetry and induce asymmetric gait in healthy walkers. These

experimental investigations are often used to test rehabilitation or

assistive strategies aiming at restoring walking symmetry before

recruiting actual patients. In general, these interventions cause

alteration on different aspects of the gait pattern, and—as a

reaction—behavioral adaptation for compensating the new body

and/or environment dynamics. Such interventions therefore

modify the gait both through their primary means of action, and

indirectly. For instance, a lateral wedge insole mainly alters the

spatial orientation of the leg joints, but inevitably also creates a

leg length inequity to some extent. Similarly, adding a unilateral

arm weight would also alter the arm swing symmetry. Using a

cast on the elbow will cause effects due to an added weight as to

an induced arm swing asymmetry. The same accounts for a

unilateral bag, a weight or even a crutch since this added weight

will alter the natural swing movement of the arm on that side.
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A unilateral knee brace or ankle-foot orthosis will alter the

corresponding joint impedance while its own weight will also

influence the gait. The magnitude and importance of these

additional or mixed effects depends on the actual weight and

body part to which the weight is added. These interferences

between interventions should be considered when designing an

experiment, as they might have implications for the clinical

condition being emulated.

In general, small interventions result in adaptation towards a

gait pattern back to kinematic symmetry. They induce alterations

on muscle activation patterns, resulting in slight changes in joint

torques, reaction forces or joint kinematics. If retrieving a

symmetrical gait movement is not possible, then spatiotemporal

parameters will change as well. Either spatial parameters like step

length, or temporal parameters like step time, or both will

deviate from a symmetric pattern. Modification of the

participant’s anatomy was mostly done by inducing a leg length

inequity. This caused asymmetry in both spatial and temporal

gait parameters and GRF asymmetry besides asymmetric joint

kinematics. Asymmetric loading of the participant’s body was

mainly done with a unilateral ankle weight, also inducing

asymmetry in spatial and temporal gait parameters.

Modifications of the participant’s joint impedance gave mixed

results depending on the used interventions. Passive and active

ankle-foot orthoses were the most examined interventions in this

category and caused limited GRF asymmetry and asymmetry of

temporal, whether combined with spatial, gait parameters, or not.

Manipulations of the participant’s sensory feedback was mostly

materialized with unilateral vibrotactile stimulation. Depending

on the location of application, asymmetry could be reported in

both spatial and temporal gait parameters. Manipulation of the

environment was done with a split-belt treadmill, also causing

asymmetry in spatial and temporal gait parameters, though this

tends to be mitigated after an adaptation period.

To induce significant asymmetry, it is thus important to select

the right parameters for a given perturbation type. The used

scoring system tends to promote the use of an artificial leg

length inequity as the most favorable intervention to generate

asymmetric gait patterns in overall. In this case, our

recommendation would be to use insoles of at least a couple of

cm’s high. Yet depending on the objectives of a given

experimental study, other interventions might be more

appropriate. Bigger effects are to be expected with added

unilateral weights of about 10% of the total body weight.

Altering the natural arm swing of the dominant arm would

result in a higher chance of asymmetry compared to the non-

dominant arm. We would advise against the use of crutch(es)

because of low reproducibility of the results and the need for

high cooperation of the subjects. Moreover, they were among the

few techniques with confirmed weak effects on the ground

reaction forces, along with unilateral shoulder loading and the

use of an active ankle-foot orthosis. We would also advise

against the use of vibrotactile, electrical or auditory stimulation,

for now, since the evidence on these techniques and their

capacity of inducing asymmetrical gait are mitigated. We would

moreover advise against the use of combinations of interventions
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TABLE 2 Overview of the given scores per intervention and the global score.

Intervention Efficacy (weighting factor 0.5) Maturity (weighting factor 0.3) Applicability
(weighting factor 0.2)

Global
score

Spatial gait
parameters

Temporal
gait

parameters

Joint
kinematics

Ground
reaction
force

Joint
contact
forces

Joint
torques

Overall
relative
score

Number
of

articles

Biggest
study

population

Overall
relative
score

Set-
up
time

Costs Overall
relative
score

1.A Leg length inequity 2 2 1 1 1 0a 0.88 3 2 1.00 2 2 1.00 0.938

1.B Lateral wedge
insoles

0 0 0a 1 0a 1 0.25 1 2 0.60 2 2 1.00 0.505

2.A Unilateral ankle
weight

1 2 1 0a 0a 0a 0.50 3 2 1.00 2 2 1.00 0.750

2.B Unilateral arm
weight

1 1 1 1 0a 1 0.63 2 2 0.80 2 2 1.00 0.753

2.C Unilateral shoulder
load

2 2 1 0 0a 0a 0.63 2 2 0.80 2 2 1.00 0.753

2.D Added weight to
the pelvis

0 2 1 1 0a 0a 0.50 1 1 0.40 2 1 0.75 0.520

2.E Crutch(es) 2 2 1 0 0a 0a 0.63 1 1 0.40 2 2 1.00 0.633

3.A Knee brace 0 0 1 1 0a 1 0.38 2 2 0.80 2 2 1.00 0.628

3.B Asymmetrical arm
swing

1 1 0a 0a 0a 0a 0.25 1 2 0.60 2 2 1.00 0.505

3.C Active ankle-foot
orthosis

0 1 1 0 0a 0a 0.25 1 1 0.40 1 1 0.50 0.345

3.D Passive ankle-foot
orthosis

2 2 1 0.5 0a 1 0.81 3 1 0.80 2 1 0.75 0.796

3.E Hip orthosis or
impedance modulation

2 0a 1 1 0a 0a 0.50 1 1 0.40 1 1 0.50 0.470

3.F Unilateral
metatarsophalangeal
joint constraint

2 2 1 1 0a 1 0.88 1 1 0.40 2 1 0.75 0.708

4.A Vibrotactile
stimulation

1 1 1 0a 0a 0a 0.38 2 1 0.60 1 1 0.50 0.468

4.B Electrical
stimulation

0a 0a 1 1 1 0a 0.38 1 1 0.40 1 1 0.50 0.408

4.C Auditory or visual
stimulation

2 2 0a 0a 0a 0a 0.50 2 2 0.80 2 2 1.00 0.690

5.A Split-belt treadmill 2 2 0a 0.5 0 0.5 0.63 3 2 1.00 2 1 0.75 0.763

Italic values report intermediate scores, i.e., the overvall relative score of each scoring criterion, while bold values correspond to the global weighted score.
aNot reported in the literature.
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since the limited research on this topic showed no additional

effects, although more evidence is needed to support this

last recommendation.

Besides the asymmetry-inducing procedure, reported

asymmetries also depend on the equipment used to collect data

and the experiment duration. Firstly, differences in experimental

set-up, e.g., using a forearm cast or using a bag as a unilateral

arm weight, might influence the results considering that there is

most likely a difference in mass and inertia between a cast and a

bag and both objects might additionally influence arm movement

in a different way. Secondly, for every intervention, there is an

adaptation phase to what is causing asymmetry in gait pattern.

The duration of this learning phase depends on the type of

intervention. For example, when adding a unilateral ankle weight,

this can take up to 10 min of adaptation to this additional weight

before reaching a new steady state (71, 72). In contrast, when

walking on a split-belt treadmill, the adaptation period is much

shorter (174). This means that the intervention effects are similar

neither over time nor over different set-ups and this should be

taken into account when designing and performing experiments.

The proposed scoring system enables researchers to select an

intervention based on specific criteria. For instance, if the

intervention main objective is to alter the pattern of the ground

reaction forces without affecting the symmetry of step lengths or

phases durations, we would encourage the choice of knee braces

or lateral wedge insoles. Similarly, if looking for the intervention

with the fastest set-up time and lowest costs, we would advise an

intervention with a relative score of 1.00 for applicability, like

wearing a unilateral load on one limb or phase-shifted auditory

stimuli. However, we recognize that there might be potential

biases in our estimates of installation time and cost, that could

for instance vary as a function of geographic location and pre-

existing laboratory equipment.
4.1 Limitations

Asymmetries in healthy walkers were overviewed after

application of specific interventions altering the walking pattern.

Yet, the gait patterns of real patients were not compared to those

of these healthy walkers. Thus, this review cannot outpoint

which pathology is best imitated by which intervention.

Furthermore, even if an intervention succeeds in modifying the

gait profile of healthy subjects to mimic a pathological walking

pattern, sensorimotor functions remain fundamentally different

between these healthy persons and disabled patients. This will

therefore play a role in the evaluation of assistive devices aiming

at symmetrizing gait, since the mechanisms behind gait

adaptation will be different in both populations.

Besides the interventions included in this review, other

interventions might be designed to induce an asymmetric gait

pattern in healthy walkers. During the overall search strategy, we

found only one article examining the effects of an asymmetric

movement support device on muscle activities (189). This study

did not investigate or report effects on spatiotemporal

parameters, joint kinematics, or kinetics. Therefore, future
Frontiers in Rehabilitation Sciences 14
research needs to be done to investigate if the effects of

asymmetric movement support are limited to muscle activity.

Since gait can be described with a large variety of parameters,

there is a need for better standardization in the analyses if one

wants to compare different types of interventions (190) or

different patient populations (25). These interventions should

also be compared in future research to real conditions causing

asymmetrical gait, enabling the reader to choose an intervention

based on the desired medical condition to be examined. As

previously stated, experimental conditions should be more

standardized, especially with regard to the data collection devices

and the duration of the experiments. When designing a study,

attention should also be paid to the diversity of confounding

factors, like age, physical condition, walking speed and leg

dominance of the participants.

Finally, care must be taken regarding the maturity level of the

selected intervention. For instance, until now, only a restricted

number of studies investigated the constraining of the

metatarsophalangeal joints of one foot, although this particular

intervention seems promising to significantly influence spatial

and temporal symmetry metrics during walking; while, as

mentioned above, the absence of additional effects when

combining interventions requires more evidence. Another

example is the discussion on the minimal LLI inducing

kinematic changes in the leg joints. On the other hand, some

existing technologies may also indirectly induce gait asymmetry,

although this specific effect has not yet been investigated. For

example, (191) showed that electrical stimulation below the

motor threshold produced illusory movements of the fingers that

were sensed by the subject. As the upper limbs proprioception is

thus affected, and considering that an induced asymmetrical arm

swing reduces lower limbs coordination (113), future research

should investigate whether electrical stimulation could also

indirectly alter gait, trough proprioception changes.
5 Conclusion

In this review, interventions were divided into five parent

categories based on the mode of action. Effects did not only

differ between categories but also amongst interventions in the

same category, implicating that every intervention resulted in a

specific set of compensating mechanisms and gait alterations.

Yet, as expected, most of the examined interventions caused an

asymmetry in joint kinematics and/or muscle activation.

Although most interventions alter the gait pattern with their

main mode of action, they would also induce mixed effects.

With the proposed scoring system, we aimed at comparing the

different interventions in a broad way, enabling the reader to get a

quick and rough estimation of pros and cons of each type of

intervention. However, not all gait parameters have been

examined for the 16 identified interventions and there is a large

heterogeneity in methodological approaches in the different

articles. To accommodate for this heterogeneity, we proposed a

macroscopic “efficacy” score capturing the global effect of a given

intervention on the spatiotemporal parameters, joint kinematics,
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contact forces and joint torques. With the overall score for

“applicability”, we aim at comparing the time required to install

the perturbing equipment on the participant, and its costs. These

two scores therefore provide a rapid reflection of the merits and

limitations of each asymmetric gait intervention. Finally, with the

overall score for “maturity”, we aim at assessing the quality and

amount of the currently available evidence, by scoring the effect

regarding the size of the population on which an intervention

has been tested, and the number of studies that tested it.
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