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Estimation of elbow flexion
torque using equilibrium
optimizer on feature selection of
NMES MMG signals and
hyperparameter tuning of
random forest regression
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Background: The assessment of limb joint torque is essential for understanding
musculoskeletal system dynamics. Yet, the lack of direct muscle strength
measurement techniques has prompted previous research to deploy joint
torque estimation using machine learning models. These models often suffer
from reduced estimation accuracies due to the presence of redundant and
irrelevant information within the rapidly expanding complex biomedical
datasets as well as suboptimal hyperparameters configurations.
Methods: This study utilized a random forest regression (RFR) model to estimate
elbow flexion torque using mechanomyography (MMG) signals recorded during
electrical stimulation of the biceps brachii (BB) muscle in 36 right-handed
healthy subjects. Given the significance of both feature engineering and
hyperparameter tuning in optimizing RFR performance, this study proposes a
hybrid method leveraging the General Learning Equilibrium Optimizer (GLEO)
to identify most informative MMG features and tune RFR hyperparameters.
The performance of the GLEO-coupled with the RFR model was compared
with the standard Equilibrium Optimizer (EO) and other state-of-the-art
algorithms in physical and physiological function estimation using
biological signals.
Results: Experimental results showed that selected features and tuned
hyperparameters demonstrated a significant improvement in root mean square
error (RMSE), coefficient of determination (R2) and slope with values improving
from 0.1330 to 0.1174, 0.7228 to 0.7853 and 0.6946 to 0.7414, respectively
for the test dataset. Convergence analysis further revealed that the GLEO
algorithm exhibited a superior learning capability compared to EO.
Conclusion: This study underscores the potential of the hybrid GLEO approach
in selecting highly informative features and optimizing hyperparameters for
machine learning models. These advancements are essential for evaluating
muscle function and represent a significant advancement in musculoskeletal
biomechanics research.
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1 Introduction

Joint torque is a critical measure of skeletal muscle function (1).

This parameter reflects the degree of muscle activation,

which holds substantial importance in clinical studies of muscle

strength (2). For instance, studies have shown that during

muscle education, improved muscle strength is closely associated

with functional outcomes (3). However, assessment of

muscle performance under low-efforts conditions remains

largely underexplored.

Previous studies have primarily relied on manual muscle

testing to examine muscle capacity. Yet, its reliability heavily

depends on the tester’s proficiency, making it unsuitable for low

muscle activity (4). At the joint level, isokinetic dynamometers

can quantify the mechanical loads by measuring the joint torque

produced by synergistic muscle groups. Nevertheless, their

applicability is limited to fixed laboratory setups, underscoring

the need for alternative methods capable of real-time

quantification of joint torque measurement and bioelectric

potentials generated during muscle contraction.

One of neuromuscular function screening is surface

electromyography (sEMG) (4), which quantifies the electrical

activity of the muscle used for joint torque estimation. However,

previous studies have predominantly focused on high efforts of

muscle contraction experiments, which render the interpretation

of sEMG not generalizable at low muscle activation accounted

for in degenerative conditions of muscles caused by ageing,

trauma, or neuromuscular disorders (5). In addition, sEMG is

prone to artefacts from recording equipment, body motion,

and tremors. These results compromise the effectiveness of

sEMG for real time physical activity estimation in upper limb

exoskeleton control (6).

In response to these limitations, recent research has explored

mechanomyography (MMG) as a non-invasive technique that

records the lateral oscillations of muscle fibers providing a

mechanical counterpart to electromyography (EMG) generated

by the contraction of skeletal muscle fibers (7). MMG reflects

both the magnitude and patterns of motor unit recruitment, as

well as the rate coding accounted for during the force-production

typically measured by the root mean square (RMS) value and

mean power frequency (MPF). Specifically, analysis of the RMS

and MPF from the biceps brachii (BB) muscle vs. torque

relationship at incremental muscle contraction found non-

significant difference [p > 0.05 (8)] in their relationship with

torque. Compared to EMG, MMG is immune to artefacts from

electrical cabling or recording equipment, insusceptible to skin

sweating, and sensor-skin impedance mismatch (9), and

eliminated the needs for extensive skin surface preparation before

electrode attachment (10). Furthermore, MMG signals can be

captured using lightweight accelerometers with a low signal-to-

noise ratio, which are insensitive to sensor positioning on any

area of the skin surface over the muscle (11). Nevertheless,

MMG signals from voluntary muscle contractions is prone to

interference with crosstalk from adjacent muscles (12), making it

difficult to fully isolate specific muscle activities at a joint. To

address this gap and obtain muscle-specific behaviors at low
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intensity of muscle activity, neuromuscular electrical stimulation

(NMES) has emerged as a promising approach for isolating

specific muscle behaviors (13). Furthermore, NMES-MMG is

more sensitive to neuromuscular changes improving the accuracy

of torque estimation (14). MMG has been proven crucial for

upper limb mobility assessment and supports the development of

MMG-based muscle strength models capable of capturing real-

time muscle fiber oscillations (15). Unlike Hill-type models,

which requires complex mathematical assumptions about muscle

tendon units, MMG based torque estimation models eliminates

these constraints (16), which are also time-consuming burdening

the research (17). However, the inherent magnitude attenuation

with the sensor mass, adipose tissue and lower frequency band

(5–100 Hz) of MMG signals poses challenges in the direct

correlation of muscle efforts and evoked contractions (18). These

constraints motivated recent research to develop machine

learning algorithms disrupting the non-linearity and non-

stationarity characteristics of MMG signals. These simulation

algorithms leverage several MMG features inspired by its direct

mapping with joint torque production (13).

Building on these advantages, a recent study employed the

RMS and zero crossing rate (ZCR) features from MMG signals

of the BB and brachioradialis muscles to estimate elbow flexion

force using artificial neural networks (ANN) and multiple linear

regression achieving a prediction accuracy of 0.883 (19). Another

study (20) developed a RFR model to map MMG and elbow

joint torque levels, leveraging RMS, mean power frequency

(MPF), and sample entropy features, achieving 0.6828 accuracy

on an unseen dataset. To further improve the relationship

between MMG signals and muscle strength, the study in (21)

integrated RMS, mean absolute value, ZCR, MPF, sample

entropy, and band energy features. Complementing these efforts,

research in (22) expanded the features set by incorporating

MMG frequency band energy, wavelet packet energy, and

approximate and fuzzy entropy features and achieved improved

root mean square error (RMSE). Despite these advancements,

further exploration of the acoustic (23) and Hjorth features (24)

is essential given the stochastic nature of MMG signals. However,

the inclusion of additional features escalates computational

complexity, emphasizing the need to assess feature relevance

and redundancy (25).

The use of selected features plays a pivotal role to improve the

performance of supervised machine learning models by enhancing

the learning speed and the generalization capacity (26). These

methods are classified into filter methods that rank the features

based on the data characteristics; wrapper methods that use

machine learning algorithms to select significant features; and

embedded techniques that integrates both feature selection and

model predictions in a single process (27).

Supervised machine learning models benefit from the high-

dimensional complex dataset for better generalization.

Specifically, ANN (19), and support vector regression (SVR) (20)

have demonstrated remarkable efficacy in mapping non-linear,

high-dimensional relationship between muscle activity and joint

torque. While the random forest regression (RFR), an ensemble

learning technique, has shown prominence in correlating
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complex features and observations (28), yet it has not been used to

explore torque estimation models during NMES-evoked

contraction. Moreover, developing effective machine learning

models, require efficient hyperparameter tuning (29).

Recent methodologies have increasingly adopted metaheuristic

algorithms, which dynamically adjust search agents based on

objective functions. Among these, the Equilibrium Optimizer

(EO), a physics-inspired algorithm, has outperformed traditional

metaheuristic methods (30). Introduced in 2020, EO’s uses a

fixed population size which leads to candidate solutions getting

trapped into the local optima. To address this, in 2021, Jingwei

Too introduced the General Learning Equilibrium Optimizer

(GLEO), which allows the particle candidate to learn from

multiple dimensions to explore promising regions of the search

space (31). In 2023, a bi-phasic mutation scheme was evaluated

across the k-nearest neighbor algorithm (KNN), support vector

machine (SVM), random forest, and discriminant analysis (32).

While GLEO has demonstrated considerable promise in

biomedical feature selection, it also holds the potential for

optimizing RFR model parameters. Nevertheless, the GLEO

framework suitable for both feature selection and hyperparameter

tuning has not yet been reported. Thus, there remains a room to

explore the use of GLEO for joint torque estimation.

Leveraging the promising performance of MMG signals in

muscle strength prediction, and the underlying accuracy factors

of the RFR model, this study aims to develop a joint torque

estimation model from NMES-evoked MMG signals using RFR.

Notably, this study is the first to employ GLEO for tuning the

number of predictors used at each split of NMES MMG features

(mTrees), the number of independent variable splits or

minleafesize of the tree (MinLeafSize), the optimal number of

trees (Ntrees) and maximum splits of trees (Nsplits) in RFR

model. Model performance was assessed using the coefficient of

determination (R2) to capture the correlation between predicted

and observed values. Additionally, the RMSE quantified how well

the model’s predictions align with actual data by assessing the

average magnitude of error, and the slope assessed the degree of

the model’s calibration, revealing the tendency towards

overprediction or underprediction, ensuring minimal bias of the

model across specific datasets.

The performance of the developed model was benchmarked

against state-of-the-art models, including the backpropagation

neural network (BPNN) and SVR. While both BPNN (19) and

SVR (20) demonstrated a high estimation accuracy in prior

studies, these findings primarily relied on data collected from a

single hand posture. Although (33) reported a notable torque

estimation accuracy, it is crucial to investigate whether NMES-

MMG and torque dataset collected from varied forearm postures

and elbow joint angles can yield generalizable results for torque

estimation (34). However, while this study did not explicitly

evaluate the effects of posture and angle on torque estimation,

the performance of the generic model suggests that complex

NMES MMG from BB muscle is valuable in musculoskeletal

studies. This novel approach could facilitate intelligent

biomechanical analysis and provide significant clinical utility and

research utility.
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2 Methods

2.1 Subjects

Thirty-six male participants (mean age, 22.24 ± 2.94 years;

height 172 ± 0.5 cm; and weight, 67.01 ± 7.22 kg) with no prior

history of neuromuscular disorder or surgical procedures

voluntarily participated in this study. Participants are limited to

middle BMI range excluding overweight and malnutrition

categories. Each participant signed a written informed consent

following a comprehensive briefing of the purpose of the study.

Ethical approval [NMRR-20-2613-56796 (IIR)] was granted by

the Medical Research Ethics Committee of Malaysia, Ministry of

Health adhering to the principles of the Declaration of Helsinki.

The experiment took place at the Laboratory of the Faculty of

Electronics and Computer Technology and Engineering,

Universiti Teknikal Malaysia Melaka (UTeM), Malaysia.
2.2 Experimental protocol

Participants attended the experiment on three separate

occasions. The first visit involved collecting anthropometric data

for the placement of NMES and familiarization with performing

maximum voluntary isometric contraction (MVIC) at 90° of

elbow flexion. An error margin of 5% or less was allowed

between two consecutive MVIC trials, with a minimum of 5 min

of recovery between trials to avoid muscle fatigue.

Subsequently, participants familiarized themselves with the

sensation of the electrical signal. A motor point at the BB was

located using a pen electrode and a protocol of 30 Hz frequency,

110 µs pulse width, and 30 mA current amplitude was

determined to be comfortable for all subjects. Participants

refrained from vigorous muscle activity for at least 24 h before

each subsequent NMES session. Participants unable to reach

about 15% MVC of equivalent NMES were excluded from

the study (34).

During the experiment, the forearm was positioned in either

neutral, pronation, or supination postures of the hand and

secured to a customized wooden lever arm. The angle of elbow

flexion was adjusted to 10°, 30°, 60°, and 90°, measured using a

digital goniometer. Following the guidelines of the International

Society of Electromyography and Kinesiology (ISEK), a self-

adhesive electrode (4 cm × 4 cm, Hercusense TENS/EMS, V2U

Healthcare Pte. Ltd., Singapore) was applied to the motor point,

labelled with an indelible pen, while the distal electrode was

positioned at the opposite end of the BB muscle belly. Electrical

Muscle Stimulator (EMS 7500, V2U Healthcare Pte. Ltd.,

Singapore) was used to administer stimulation intensity to the

BB muscle. The position of the muscle belly was identified

through palpation with the elbow flexed at 90°, ensuring accurate

placement of the MMG sensor.

For consistency, the lever arm was standardized across all

participants using an adjustable table fitted with vises and screws,

ensuring the same setup across participants as illustrated in
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Figure 1. Two trained observers were present throughout the

experiment to oversee and maintain the arm posture and

elbow joint angle, thus ensuring accurate and ethical data

collection. Participants were provided with a 10-minute rest

period between posture or angle adjustments, and an

additional 5-minute rest between consecutive trials to promote

muscle recovery. Each trial lasted 30 s, and participants

contributed two recordings per configuration taken at each of

four angles (10°, 30°, 60°, and 90°) and 3 forearm postures

(neutral, pronation and supination).
FIGURE 1

Block diagram of the proposed GLEO-RFR model illustrating key
components: (1) electrical stimulation electrode pads, (2) MMG
transducer, (3) adjustable lever arm (defined by forearm length), (4)
force sensor fixture (underneath brace), (5) wrist posture fixture, (6)
elbow joint angle fixture, (7) force and acceleration interface
connected to the computer, and the signal processing steps for
torque estimation.
2.3 Data acquisition and signal processing

Acceleration and Torque signals were concurrently recorded

using a customized LabVIEW program (NI LABVIEW 2021,

64-bit) at a sampling rate of 1 kHz. An Arduino Uno R3 was

interfaced with acceleration and force transducers. Acceleration

data were acquired using a 3-axis digital accelerometer,

ADXL-313 model (weight <2.6 g), featuring a flexible and

reconfigurable range, operates from 10-bit resolution (±0.5 g) to

13-bit resolution (±4 g) across its three axes. Capable of

maintaining full range resolution across any g-range, it effectively

captures muscle fiber contraction propagating in three directions

at frequencies ranging from above 5 to 100 Hz. The

accelerometer was sourced from SparkFun (Colorado, USA).

The ADXL-313 sensor was affixed to the muscle belly using

3MTM VHBTM 4920 double-side adhesive tape (Center St. Paul,

MN, USA) (Figure 1). To account for the static acceleration

across varied elbow flexion angles and forearm postures, and

emphasize muscle activation dynamics, a zero-g bias correction

was applied using built-in offset registers on the ADXL-313

sensor. Torque was measured using a force transducer (FS2050

Compression LC1500 GRAM, TE Connectivity, Schaffhausen,

Switzerland) and the lever arm length was determined by

measuring the distance from the olecranon process to the styloid

process of the ulna. The dataset consisted of acceleration signals

across three axes and torque information corresponding to

different postures and angles and was stored on a hard disk in a

personal computer for offline processing.

To suppress the transients’ effects associated with torque

development and relaxation, the first and last 6 s of each

recording were excluded, retaining 18 s for processing as input to

the torque estimation model. The power spectrum of MMG

signals is well known to be below 100 Hz. MMG data underwent

preprocessing by applying a fourth-order Butterworth bandpass

filter of 5–100 Hz to the acceleration signals, effectively

eliminating artefacts from electrical cabling and body motion.

Additionally, torque data were filtered using a fourth-order

Butterworth low-pass filter with a cutoff frequency set at 5 Hz

(see Figure 3).
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2.4 Feature extraction

The physiological features in both the time and frequency

domain were extracted, alongside acoustic, H-Jorth mobility

parameter, and the energy across each frequency band of MMG

to explore the relationship between NMES MMG and torque

signals. Specifically, the RMS of torque signals, as well as RMS,

MPF, median frequency (MDF) and ZCR of MMG signals were

computed. The RMS value of MMG reflects the number of active

motor units, MPF correlates with the motor unit recruitment

and firing rates, MDF indicates the contraction speed with force

production (34), and ZCR reflects changes in muscle contraction

dynamics. Additionally, features including spectral flatness

(SPFlt), spectral spread (SPsp), spectral centroid (SPC) (23),

spectral flux (SPFlx) (35) along with Hjorth mobility parameter

(24) were also calculated to characterize how the muscle

responds to sustained stimulation and evaluate changes in muscle

fiber recruitment. Energy contributions from muscle relaxation

(5–12 Hz), slow twists motor units (12–40 Hz) and fast twists

motor units (40–100 Hz) were also computed (36) to measure

the dynamic states of muscle fibers required for optimizing

MMG and torque.

To extract detailed information for training RFR, SVR, and

BPNN models, a sliding window of 100 ms with a 50% overlap

was used for the 12 features from NMES MMG signal length.

Each feature of the NMES MMG signal consisted of 311,176

segments. Prior to developing the MMG-Torque models, the

uneven magnitude of NMES MMG features, and elbow joint

flexion torque were normalized using the Z-score method (37).

However, the Z-normalized datasets exhibited outliers that could

affect the prediction. Therefore, the segments with Z-score

exceeding ± 3 were eliminated (38). The remaining 292,122
FIGURE 2

Mean correlation (mean GRD) of MMG and torque data. The amount
of data in each bin is obtained from indices of torque and MMG data
whose correlation falls into the given minimum and maximum GRD
bounding each bin.

Frontiers in Rehabilitation Sciences 05
segments for each dimension were normalized between 0 and 1

before being used for NMES torque estimation.

An inspection of the grey relational degree (GRD) revealed a

moderate to high correlation between each NMES MMG feature

and elbow joint flexion torque value (37) as shown in Figure 2.

When feeding these features into machine learning models, it is

crucial to ensure an equal percentage of data distribution to

avoid bias caused by disproportionate feature representation.

Data binning was employed, which groups NMES MMG features

into bins at similar frequencies of occurrence (39) ensuring even

distribution of the features before being processed by the

machine learning model.
2.5 Random forest regression model

A RFR model leverages an aggregation of decision trees to

make predictions. Each decision tree is an hierarchical set of

decisions systematically structured from the root to the terminal
FIGURE 3

Typical representation of raw torque (a) and acceleration MMG
signals (b), and filtered torque (c) and filtered MMG signals (d)
during one cycle of recording (6 s).
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node of the tree. Each tree in the forest is built using a random

subset of input features (40). At each node of the tree, a split

point is selected from the training data to maximize information

gain. This splitting continues recursively until a minimum node

size is reached.

In this study, a subset of data was randomly chosen from 12

input features to build a binary tree structure, where each internal

node represents a decision based on a specific feature and

threshold, and each leaf node represents the outcome or final label.

The ensemble of trees works independently to estimate the output

for new data points, enabling the model to efficiently explore the

complexity of the data. The final estimation is made by averaging

the combined estimations from all trees. The splitting of data at

each tree node continues until the lowest RMSE is achieved.

The developed RFR model involves four key parameters

namely the Ntrees in the forest, mTrees, MinLeafSize, and Nsplits.

The default Ntrees is 500 (40), with the mTrees value set to one-

third of total input variables and MinLeafSize set to 5. However,

the optimization of these parameters was based on the initial

values empirically determined in a pretest session, which gave

Ntrees from 200 to 1,500, mTrees of 1 to 12, MinLeafSize of 1 to

10, and the Nsplits from 100 to 200.
2.6 GLEO on MMG feature selection and
hyperparameter tuning of RFR (GLEO-RFR-
FS-HT)

The bootstrap sample was randomly chosen from the

12-dimension dataset. At each tree node, the most promising

split of MMG features was built from the root node based on the

lowest RMSE between the observed and predicted torque labels

during the training phase. The data-splitting process continued

until the final stopping criteria were satisfied.

70% of data was allocated for the training and 30% was used to

test the performance of the model on unseen data. This data split

was stratified using histogram-based binning to ensure equal

percentage of distribution of NMES MMG and torque data (39),

as illustrated in Figure 2. We have chosen 50 bins with a bin size

of 0.02 whose training resulted in a low RMSE for both the

training and testing experiments. This process helped to detect

overfitting and provides confidence in the model’s estimation

performance in real-world scenarios. The MATLAB software

(MATLAB® 2022b MathWorks, Inc., Natick, MA, USA) installed

on a 64-bit operating system on Windows 11, 12th Gen Intel(R)

Core (TM) i7-12700 2.10 GHz, was used for the signal

processing and model development.

Optimizing the RFR model involves the feature selection and

tuning of its hyperparameters. Due to the vast number of

possible combinations of RFR parameters and reliable NMES

MMG features, GLEO was used to identify the best features and

hyperparameters configurations. For each portion of the training

subset, the decision variable RMSE was utilized to select the

NMES MMG signal features and the parameters of the RFR

(Ntrees, mTrees, MinLeafSize, and the Nsplits) were recorded.

MMG signal feature was selected if its corresponding flag was
Frontiers in Rehabilitation Sciences 06
greater than 0.5. This process was repeated for every random

combination of feature subset and RFR hyperparameters,

converging on the best fitness value after 100 iterations. The

optimal set of NMES MMG features and the RFR

hyperparameters were noted and used for the final model

performance evaluation on the test subset.

Given the goal of combining feature selection and

hyperparameter tuning in RFR model, the GLEO-RFR and EO-

RFR models were developed and assessed for their effectiveness

in feature selection, hyperparameter tuning, and a combination

of both using a specified performance measure (fitness), which is

typically the RMSE of the model trained using the NMES MMG

features and hyperparameters of RFR at each iteration t.

RMSEt
i ¼

ffiffiffi
1
n

r Xn
i¼1

(yi � y0i) (1)

where n is the number of observations, yi and y0i are the observed

and the predicted target values respectively for observation i,

RMSEt
i measures the deviation between the estimated values y0i .

and the observed values yi. Lower RMSE values indicate better

model performance, with a value of 0 indicating perfect

estimation. In this study, fitness is evaluated on the training

subset during the model development.

The hybrid feature selection and hyperparameter tuning GLEO-

RFR-FS-HT) model begins with initializing the parameters of the

GLEO and setting up the candidate population solution consisting

of the four hyperparameters of RFR (41) and MMG features flags

(31). Next, the algorithm selects the top four candidate solutions

based on their performance and calculates their average to form an

equilibrium pool. A candidate is then randomly chosen from this

pool, and its corresponding index is recorded. Each vector solution

is updated iteratively, with the optimal MMG features and RFR

tuned hyperparameters being identified and outputted.

As depicted in Figure 4, the proposed algorithmmences with a

preprocessing stage, where NMES MMG and torque data are

filtered, relevant NMES MMG features are specified, and outliers

are removed. Subsequently, 70% of the dataset is allocated for

training the model. Feature selection and hyperparameters tuning

for RFR are then conducted at each time the candidate solution

trains the RFR model. After 100 iterations (Max Iter), the

optimal features and RFR hyperparameters are determined.

Thereafter, the tuned RFR model is used to assess the estimation

accuracy using unseen test dataset.

The R2, the slope and RMSE are used to evaluate the accuracy

of estimation, the goodness of fit and the prediction error

respectively. Higher R2 and slope values along with lower RMSE

values indicate improved precision and accuracy in correlating

the observed and estimated torque value with the proposed model.
3 Results

We devised three distinct models for feature selection,

hyperparameter tuning, and a hybrid model integrating both
frontiersin.org
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TABLE 3 Comparison of proposed GLEO with GRD.

Feature GRD Ranking by
correlation

Ranking by
GLEO

RMS 0.8173 1 1

High band 0.7752 2 2

Lower band 0.7608 3 3

Tremor 0.7456 4 NS

SPFlx 0.7261 5 4

MDF 0.6598 6 5

SPC 0.6261 7 6

SPsp 0.6259 8 7

MPF 0.6093 9 8

ZCR 0.5947 10 NS

Mobility 0.5782 11 NS

SPFlt 0.5734 12 NS

NS, not selected.

FIGURE 4

Flowchart of the proposed RFR model for hybrid feature selection
and hyperparameter tuning for 100 training iterations (Max iter).

TABLE 1 Perfomance of the RFR model based on GLEO.

Model R2 RMSE Slope
RFR 0.7228 0.1335 0.6910

GLEO-RFR-FS 0.7265 0.1298 0.6896

GLEO-RFR-HT 0.7573 0.1253 0.7060

GLEO-RFR-FS-HT 0.7853 0.1174 0.7391

HT, hyperparameter tuning; FS, feature selection.

TABLE 2 Performance of the RFR model based on EO.

Model R2 RMSE Slope
RFR 0.7228 0.1335 0.6910

EO-RFR-FS 0.7255 0.1298 0.6896

EO-RFR-HT 0.7443 0.1282 0.6986

EO-RFR-FS-HT 0.7625 0.1281 0.7021
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using GLEO. To assess the effectiveness of these GLEO-based

approaches, the initial mean values of RMSE, R2 and slope values

were calculated before feature selection and hyperparameter

tuning. For the training subset, these metrics were 0.0963,

0.8882, 0.7903, respectively, while for the testing subset, the

corresponding values were 0.1330, 0.7228, 0.6946.

Tables 1–3 present the performance metrics for different

approaches of feature selection, and hyperparameter tuning of

the RFR model. Notably, the performance metrics of the

developed hybrid GLEO for NMES feature selection and

hyperparameter tuning improved to RMSE of 0.0461, R2 of

0.9665, and slope of 0.8983 respectively for the training subset
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and RMSE of 0.1174, R2 of 0.7853 and slope of 0.7414 for the

testing subset. The improvement in R2 and the slope was

accompanied by a significant decrease in RMSE.

The model demonstrated improved estimation accuracy,

achieving a 33.33% reduction in the feature size. These

performance metrics were derived from the optimized RFR

model, which comprises Ntrees of 847, MinLeafSize of 1, mTrees

of 4, and Nsplits of 46,942. The results were compared with those

of hyperparameter tuning of RFR for biological dataset (see

Table 4), and with the extended version of EO for feature

selection as described in the literature (31). The comparisons

encompassed various EO extensions including the equilibrium

optimizer with a divided population based on distance factor

(46), gaussian (47) and biphasic mutation (32).

The results from the literature underscore the reliability of

GLEO for biological feature selection based on the wrapper

method. Specifically, Table 3 highlights the capability of the

model to select high informative NMES MMG features which

accurately reflect muscle physiology and related biomechanical

activity. Figure 5 provides a comparative illustration of the

convergence error during training process of EO-RFR and

GLEO-RFR for both feature selection and hyperparameter
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FIGURE 5

(a) training curve of feature selection using EO and GLEO, (b)
hyperparameter tuning using EO-RFR and GLEO-RFR.

TABLE 4 Hyperparameter tuning of RFR for biological dataset.

Ref. Dataset Method Observation
(42) Breast cancer

data
Semi-automatic
parameter
adjustment

Pre-tuning R2 of 0.7078 was
reported. Post-tuning R2 0.7453
was reported.

(43) Torque and
sEMG data

10-Fold cross-
validation and
Grid Search

Post-tuning R2 of 0.74 ± 0.05,
0.72 ± 0.05, 0.69 ± 0.06, and
0.61 ± 0.06 respectively for four,
three, two and one FMG band were
reported. Pre- tuning R2 were not
reported.

(44) Forces data PSWO, SSA, GA, Post-tuning R2 of 84.4 was
reported. Pre-tuning R2 was not
reported.

(20) MMG and
torque data

Hilbelt 10-Fold
cross-validation

Post-tuning R2 of 0.68 was
reported. Pre-tuning R2 was not
reported.

(45) sEMG and joint
angle data

RFR-PCA Pre-tuning and post-tuning tuning
R2 values were not reported.

Ours MMG and
torque signal
data

Grid Search Pre-tuning R2 of 0.7228 was
reported. Post-tuning R2 of 0.7327
was reported.

MMG and
torque signal
data

GLEO Pre-tuning R2 was 0.7228 and post-
tuning R2 was 0.7853.
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tuning, as well as their hybrid combination. Figures 5 demonstrate

that GLEO consistently achieved the lowest RMSE during the

training process. Additionally, Figures 6 depict the training

process for hybrid feature selection and hyperparameter tuning

respectively using EO and GLEO. The training curve showed

smooth trend and improved RMSE with increasing training

iterations, consistent with the observation in Tables 1, 2.

Taken together, Figures 7, 8 indicate that the results of the

proposed GLEO combined with RFR demonstrate its

effectiveness in addressing both NMES feature selection and

hyperparameter tuning, achieving improved accuracy in complex

biological experimental datasets.
3.1 Effect of integrating GLEO in RFR
models

As seen in Figure 2, the histogram plot indicates that the

features of MMG signals exhibited a low to moderate correlation

with torque. Tables 1, 2 demonstrate that the GLEO-RFR-FS and

EO-RFR-FS yielded improved performance. Furthermore, the

GLEO feature ranking from Table 3 reflected the coherence of

NMES MMG features and muscle physiology in estimating elbow

joint flexion torque. On average, the final model exhibited R2 of

0.7853 with a standard deviation of 0.0041.

The model with all 12 features exhibited lower performance

metric than the other models with optimal features and RFR

hyperparameters. The mean values of the GLEO-RFR-FS-HT

model outperformed the other models; with average metrics of

0.7853, 0.1174 and 0.7414 respectively for R2, RMSE, and slope.

The scatter and cross plots in Figure 7 illustrate the correlation

between measured and estimated elbow flexion torque. This

correlation indicates that tuned RFR model leveraging NMES
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MMG signals effectively estimated the torques from unseen

dataset. Based on the performance metrics, the GLEO-RFR-FS-

HT model with Ntrees of 847 trees, MinLeafSize of 1, mTrees of

4, and Nsplits of 46,942 emerged as the optimal configuration for

achieving a considerable torque estimation.
3.2 Comparison of GLEO with other
hyperparameters tuning approaches that
used biological datasets

In this section, we compared the performance metrics of our

model with the other techniques for hyperparameter tuning of

RFR-based estimation models found in the literature. Table 4

compares GLEO with state-of-the-art hyperparameter tuning

methods regardless of the estimation accuracy but focusing on

their improvement. The results highlight that semi-automated

mechanisms involving feature selection before hyperparameter

tuning are popular. However, these techniques are often time-

consuming, prone to error and constrained by the fixed space of
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FIGURE 6

Training curve for hybrid feature selection with hyperparameter
tuning using (a) EO-RFR and (b) GLEO-RFR.

FIGURE 7

Correlation of measured and predicted torques for the training (a)
and testing (b) subsets using RFR hyperparameters and MMG
features obtained by use of GLEO-RFR.

FIGURE 8

Cross plots of measured torque Vs estimated torque for 60
test subsets.

TABLE 5 Experimental results from 3 different machine learning models.

2
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model hyperparameters. Interestingly, despite GLEO’s novelty in

the literature, the results of this research underscore its ability to

deliver enhanced outcomes.

In Table 5, we observe the effect of integrating GLEO with the

BPNN, SVR and RFR. It is evident that integrating GLEO with RFR

provides higher estimation accuracy of 0.7853 compared to 0.5963

for BPNN and 0.5613 for SVR. This shows the efficacy of the RFR

model for handling complex biomedical datasets.
 Model R RMSE Slope
GLEO-BPNN 0.5963 0.1697 0.5917

GLEO-SVR 0.5613 0.1717 0.5514

GLEO-RFR 0.7853 0.1174 0.7414

BPNN, back propagation neural network; SVR, support vector regression; RFR, random
forest regression.

Bold indicate the model with the highest performance.
4 Discussion

This study presents a GLEO-based framework for MMG

feature selection and tuning hyperparameters of the RFR to

estimate elbow flexion torque elicited by NMES of the BB muscle

in healthy subjects. Distinct models developed using GLEO-RFR

(Table 1) and EO-RFR (Table 2) methods were evaluated for

their effectiveness in feature selection, hyperparameter tuning

and hybrid approach combining both methods. The model’s
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performance was evaluated on unseen data using tuned

hyperparameters and selected features by averaging outcomes

from 100 testing iterations. All models demonstrated consistent

reduction in RMSE alongside improvements in R2 and slope
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values. The hybrid GLEO-RFR-FS-HT model exhibited superior

performance evidenced by lower RMSE, higher R2 and increasing

slope trend, highlighting its capability. These results highlight

the model’s effectiveness in dynamic and isometric muscle

contraction scenarios, where optimal hyperparameters are subject

to change in response to the non-stationary nature

of the dataset (29).

Previous research has explored torque estimation using MMG

features such as RMS, MPF, and ZCR of MMG signals applying

artificial neural networks (ANN) model (19). Additionally, SVR

model has incorporated the sample entropy and reported

favorable performance based on the correlation coefficient and

RMSE. A wrapper-based approach using GRD has been

employed to identify optimal feature combinations for MMG-

based torque estimation (37), achieving a high estimation

accuracy. However, the GRD lacks the discriminatory power to

discern subtle feature differences crucial for muscle physiology.

These models, however, were trained on short segments of stable

muscle force and MMG, raising uncertainty about their

performance in dynamic scenarios. The GLEO-RFR-FS-HT

model addresses the challenging feature selection tasks and

achieves improved elbow joint flexion torque estimation accuracy.

Machine learning models rely heavily on hyperparameters,

driving the need for various optimization techniques previously

deployed for torque estimation using MMG signals features and

achieving a high estimation accuracy as measured by R2 (37).

Conversely, study (48) reported lower R2 values of 0.46 for the

training and 0.44 for the testing dataset collected from one

channel MMG sensor across 6 subjects. The study showed that

R2 improved with data from multiple channels, though the

challenge of accommodating multiple channels on small muscles

persists. Furthermore, it is noteworthy that these studies utilized

data from a limited number of subjects, potentially affecting the

generalization of their findings.

The proposed model, developed using NMES MMG features

from a cohort of 36 subjects, achieving an R2, slope and RMSE

of 0.7853, 0.7414, and 0.1174 respectively on the test dataset.

This performance compares favorably to an R2 of 0.68 reported

for unseen datasets from a previous study (20). The results of the

developed algorithm with SVR outperformed the study (48) with

R2 of 0.5613 and 0.5514 for the training and testing subset.

These findings confirm the potential of the proposed approach to

handle non-deterministic components in the fitness function of

machine learning and dynamic muscle contraction which affect

the configuration of optimal hyperparameters at each iteration

(29). Despite relying on a high informative channel of MMG

sensor, MMG might hold informative features that may have

been affected by several factors.

MMG signals provides valuable insights into skeletal muscle

activation levels with RMS typically indicating the intensity of

motor unit recruitment (49). However, conflicting findings

regarding MPF variations with muscle activation levels reflect the

complexity introduced by muscle fiber type composition (11, 50),

elbow joint angle (34), skinfold thickness (51), muscle size, rate

of recruitment and torque development, middle upper arm

circumference, upper arm length and body composition (52).
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While the abovementioned studies have evaluated these factors

under varying intensities of voluntary muscle activation, the use

of uniform NMES stimulation intensity at the BB muscle in this

study obtained varying MPF characteristics at changing elbow

joint angle (34). Given the spatial selectivity of MMG signals

(53), further investigations are guaranteed to evaluate the

performance of the proposed torque estimation model in relation

to these factors.

While this study did not quantify crosstalk from other elbow

flexor muscles such as the brachialis and brachioradialis, it is

likely that NMES has minimized these effects. Given that the

brachioradialis is synergetic to the elbow flexion tasks, activation

of these muscles across participants and experimental trials could

potentially refine torque estimations (54). Moreover, previous

research has shown improved performance of estimated torque

from multiple sites (48), suggesting that exploration of MMG

signals using arrays of transducers could further enhance torque

estimation models.

Neurological pathologies such as stroke, spinal cord injury, and

neurodegenerative diseases profoundly impair skeletal muscle

structure, resulting in muscle atrophy, fibrosis, altered muscle

fiber type distribution, and composition in stroke survivors (55).

These conditions also compromise the integrity of

neuromuscular junction, further exacerbating functional deficits

in the upper limbs (56). Given that MMG signals are influenced

by the physical characteristics of the muscle being assessed, these

pathologies underscore the urgent need for effective intervention

strategies to mitigate their defects and promote functional

recovery. While the developed model features the ability to

process a huge complex data, its implantation into computing

systems can process information from arrays of sensors (57) such

as inertial measurement unit (IMU). Thus, improves clinical

identification of movements disorders and muscle strength

estimation required in post-surgical training (58). Advances in

assistive technologies have identified muscle re-education using

robots as effective way to rebuild lost neuromotor plasticity.

NMES promotes neuroplasticity and enhances the expression of

various neurotrophic factors, leading to greater axonal growth

and the formation of new neuromuscular junctions for atrophic

muscle mass in geriatric and loss of physical training of muscles

(59). The developed model use myography and force sensors to

record the muscle activation, strength, and movement dynamics,

and thus estimating the amount of torque needed to support or

augment the exoskeleton’s movement for walking, lifting, or

performing activity of daily living. Therefore, the integration of

developed model into the robot-exoskeleton systems may

augment the precision and range of motion in disabled limbs (60).

Previous research demonstrated that the spinal excitability to

the BB muscle is independently influenced by the joint angle and

muscle length, with these effects observed when muscle length or

elbow joint angle was maintained constant (61). These

observations suggest that MMG data used in this study could

similarly be influenced by independent influence of both elbow

joint angle and the forearm posture (62). While the existing

literature showed that there is no significant difference between

joint angle specific and generic torque estimation models (33),
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this study investigated the capability of GLEO-RFR-FS-HT to select

optimal feature from MMG recorded at four elbow joint angle and

three forearm postures during elbow flexion tasks. Should the

NMES activation of the BB muscle also have received the

influence of angle and posture, the performance metrics of

GLEO-RFR-FS-HT method needs to be further investigated,

given independent limitations identified in this study.

Male subjects were specifically selected due to their typically

higher force steadiness and lower variation in motor unit action

potential and inter-pulse interval compared to females. Study

(63) showed that NMES in young male subjects yield induced %

MVIC torque that is clinically significant than female at mean

age of 27.6 ± 5.8 yrs. In addition, male tolerated higher phase

charge than female for varies NMES for a one-week experimental

sessions and improves the tolerance of NMES (64). While the

level of NMES induced contraction is muscle dependent, the

developed model is useful for the continuous monitoring of the

level of muscle susceptibility to NMES intensity using controlled

induced % MVC torque and muscle responses detection in

young and old male and female individual undergoing controlled

NMES training of impaired limb muscles (65).

Taken together, this study focused exclusively on the BB

muscle and employed 12 features extracted from the transverse

axis of MMG signals. The developed GLEO algorithm extracted

8 features that improved the prediction accuracy. RMS feature

reflects the level of motor unit recruitment was used to quantify

the amplitude of MMG and force output of the signal which

reflect the joint torque (10). Despite a consistent NMES intensity

was used, noting the stochastic nature of MMG signals, MPF

identified the spectral distribution of the signals, revealing the

changes associated with induced slow and fast twitches muscle

fiber recruitment. The MDF mirrors changes in muscle

recruitment patterns over time course of NMES delivery and

divide into two equal halves where a drop in MDF into the

lower half can quantify slow twitch muscle fiber recruitment.

MPF, and MDF can shift toward lower frequencies during slow-

twitch fibers recruitment, but they may not provide the same

level of sensitivity to high-frequency components or subtle

changes in muscle activation across the entire spectrum. The

energy of each MMG band could reflect the dynamics of slow,

fast, and resting states of muscle fibers, valuable for optimizing

NMES parameters and torque outcomes and monitoring fatigue

and recovery. The selected lower and higher energy bands of

MMG features confirm the usefulness of NMES to mitigate the

muscle tremor, which was identified by the GLEO algorithm.

The selected acoustic features include SPC indicative of the

global frequency at which the power of MMG signal is

concentrated (23), the SPFlx distinguishes the rate of change of

MMG signal behaviors over time, and the SPF measures the

degree of uniformity in the energy distribution within the

frequency domain (66), where abrupt changes in the spectral

content reflect the failure to maintain a consistent muscle

contraction. The SPsp which measures the energy dispersion

across MMG frequencies also reflects the fibers recruitment

patterns. Research has shown that Hjorth mobility parameter is

sensitive to fatigue state in dynamic contraction (67). MMG in
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this research was obtained from NMES, which is not varied in

temporal dynamics, thus, was not selected for this study as the

tremor effect also avoided in the design of the experimental

protocol. The introduction of selected acoustic features to the

RMS, MPF, and MDF highlights the relevance of these features

in torque estimation models. The use of hybrid GLEO is

essential and showed the capacity to tune and select significant

physiological relevant features. MMG being at infant

development stage, these features are useful for future exploration

of MMG behaviors on other skeletal muscles.

Evidence suggesting that MMG signals from multiple sites and

muscles improve torque estimation performance suggests that

future research should incorporate MMG data from additional

elbow flexor muscles. Furthermore, the MMG signals in this

study were collected from participants with relative, but not

identical, anthropometric characteristics, which may imply

differences in muscle capacity, fiber type composition, and rate

coding. Although equal proportions of data from various

postures and angle-specific configurations were used, afferent

pathways and individual variations in muscle responsiveness to

varied NMES could influence the outcomes. Future studies

should address these factors to further evaluate and enhance

prediction performance of torque estimation models.

Recent research on assistive technology predominantly relies

on modes developed from simulated data, which is unlikely to

not reflect underlying muscle physiology. These models often use

inverse dynamics, predefined physical laws, and mathematical

simplification (68). While polynomial regression can fit the data

too well, it lacks the ability to lean relevant features, and requires

manipulation of polynomial terms (69). This process is time

consuming and prone to numerical instability with increased

polynomial degree (70), and struggles with intricate patterns

involving multiple interacting variables, where models like

random forest excels (45). Despite the prevalence of machine for

learning hyperparameter tuning and feature selection (31), a

hybrid combination of both was not previously developed using

complex physiological and non-physiological datasets. This study

proposes GLEO based hybrid approach for feature selection and

hyperparameter tuning of the random forest regression and

showed improved torque estimation metrics, with the ability to

identify underlying physiological features from a complex dataset.

The outcomes show the ability to process big data size obtained

from wearable sensors for posture recognition (58), post-surgical

monitoring, and treadmill muscle re-education (71).
5 Conclusion

This study proposes a novel hybrid approach GLEO-RFR-FS-

HT for optimizing the hyperparameters of the RFR and

identifying optimal subsets of MMG features for elbow flexion

torque estimation. The method was tested against various models

including SVR, BPNN and RF using NMES MMG signals and

torque datasets. The study revealed the capability of the model

for selecting optimal MMG signals features and tuned

hyperparameters of the RFR yielded significant estimation
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accuracy, measured by R2, slope and RMSE of 0.7853, 0.7414, and

0.1174 respectively on the test dataset. These metrics reveal that the

developed model captures the underlying relationship between

MMG variables and torque measurements. While the study’s

findings are promising, it is crucial to acknowledge that the data

was from healthy subjects which may influence the model’s

generalizability. MMG signals from pathological muscles may

exhibit differences in amplitude and frequency. Furthermore, the

study used data obtained from a single elbow flexor muscle,

assessing four angles and three forearm postures. Future research

should explore the model’s application to MMG signals from

pathological muscles, healthy muscles at varying angles and

postures, and synergistic muscles involved in elbow flexion, such

as the brachialis and brachioradialis. This would enhance the

model’s robustness and applicability across a broader range of

clinical and functional scenarios.
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