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Introduction: Physiological tremor arises due to stress, anxiety, fatigue, alcohol or

caffeine. Under conventional circumstances, the physiological tremor would not

be detrimental. Still, the mere presence of such a tremor during any

microsurgical procedure can be catastrophic. In these instances, it is necessary

to predict the progression of the tremor. This article proposes a novel sensing

methodology and adds a distinctive feature to aid in classification. The

classification of the progressive stages of fatigue-induced physiological tremor

(FIPT) is based on the hybrid bidirectional long short-term memory neural

network with a Gated Recurrent Unit (BiLSTM-GRU) presented in this work.

Methodology: Twenty healthy participants volunteered in the study, where a

teleoperation stage was set up using the Geomagic Haptic device—Touch. On

the master end, the participants were seated comfortably and asked to trace

the patterns embedded over an image of an organ that was displayed on the

screen. The EMG and MMGACC signals from the Mindrove Armband and cross-

sectional area changes, MMGCSAC, calculated from area measurement using

the vision sensor, were recorded. The pattern-tracing task (PTT) was carried

out over five repetitions, with fatigue-inducing exercise occurring between

task epochs, thus accumulating fatigue throughout the data collection

process. The extracted features from human movement aid the classification

of the stages of tremor using BiLSTM-GRU, showing the significance of a

cross-sectional area informed model.

Results: The stages of progression of tremor are classified into five levels in this

study, and classified using BiLSTM GRU with four different input feature sets. The

performance evaluation metrics, such as the accuracy, precision, recall and F1

score, have been reported to ascertain the efficiency of the proposed feature

group. The proposed feature set and classification strategy are capable of

estimating stages of FIPT with 99% classification accuracy. This can be used to

design state-of-the-art movement training platforms for both experienced and

novice surgeons that allow informed decision making to attend to their tremor

condition, either by taking a break or including a limb support to minimize its

effects. At the same time, the identification methodology can be extended to

pathological tremor rehabilitation and any other movement disorder diagnostics.
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GRAPICAL ABSTRACT

1 Introduction

Neurological conditions that affect human movement have

been of interest for decades in sports, medicine, rehabilitation,

and robotics. Some of these disorders require immediate

rectification, while others require assistance and rehabilitation for

an extended duration. The movement rectification strategy is

needed when the person’s movement disorder affects activities of

daily living to a greater degree, or may affect task accuracy (1, 2).

Tremor is the phenomenon where the body parts oscillate with

undesirable amplitude and frequency, hindering regular

movements. Based on the movement type, tremor can be

classified into rest, postural, and action tremors based on the

activity during which it occurs (3). During rest tremors, it can be

noticed that the person has their body parts in a resting

condition during which tremor occurs. Postural tremor occurs

when the body part is held against gravity, while action tremor is

found when some intentional activity is performed. Parkinson’s

tremor is a case where the high amplitude of the tremor causes

inconvenience, and physiologic tremor is the form of induced

tremor without pathological origins, which may be detrimental in

some cases (4, 5). The physiological tremor is enhanced by

fatigue, stress, anxiety, caffeine, alcohol or drugs, but is a

reversible phenomenon (6, 7).

In robot-assisted manipulation systems, the human interaction

with the robot makes the resultant motion unpredictable in cases

involving hand tremor, affecting its application. This interaction

needs to be studied to make conclusive decisions on improving

the controllability of robotic platforms in collaborative

environments. Robot-assisted micromanipulation has become

increasingly crucial in diverse applications like laparoscopic

surgery, micro-manufacturing, and micro-electronics assembly,

extending to even nanoscale-level movements (8). In robotics-

assisted surgery, the occurrence of cognitive and physical fatigue

during long hours of surgery may adversely affect the outcomes.

These tasks require precision and stability beyond the capabilities

of a human operator. However, even with the assistance of

robots, human hands are involved in supervising and controlling

these robots, where FIPT can compromise the accuracy of such

micromanipulation tasks. Assessment of surgeon fatigue is

necessary to provide all-around support to surgeons and patients,

avoiding any adverse events. In such scenarios, quantification of

tremor is a primary step that can aid in identifying the onset of

tremor for implementation of corrective actions, minimize work-

related injuries and help in evaluating the levels of inaccuracy

due to fatigue, which is pertinent for skills training in activities

like suturing, teleoperation, and micro-pipetting. This necessitates

the need to study the tremor level progression at the muscle level

to provide key insights in suppressing it.

An attempt at quantification and evaluation of FIPT requires

a basic understanding of the neurophysiological conditions that

may affect the execution of smooth motion. The type of tremor

can be characterised based on the frequency characteristics of

the muscle activity or by estimating the external motion. The

frequency of fatigue-induced physiological tremor is 8-14 Hz,

and the indicator for the type of tremor is the increase in the

root mean square amplitude of the signal and the decrease in

the median frequency (9, 10). The measurement and

characterization of physiological tremor has been carried out

by many researchers and the same is discussed in the
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following sections shedding light on the various sensing

methodologies and machine learning models that were built to

serve the purpose.

1.1 Related research

Existing studies (11, 12) demonstrate that the amplitude of

oscillations can be used to study both pathological (associated

with high amplitude and low frequency) and physiological

tremor (characterized by high frequency and low amplitude). The

amplitude of oscillations can be a distinctive feature in

identifying the progression of pathological tremors due to

Parkinson’s disease, Cerebral damage, or Diabetes Mellitus (13).

Considering the trend of the amplitude of physiological tremors,

a similar increase is also observed due to muscle fatigue, which

can further induce a change in muscle contraction dynamics

(14). Tremor frequency, on the other hand, can categorize

whether the body part is at rest or moving. Micromanipulation

focuses primarily on physiological tremor, which can be further

classified into rest, postural, and kinetic tremors. Based on the

frequency of motion, these oscillations can be distinguished into

rest tremor (where no voluntary action is performed: 3–6 Hz),

postural tremor (where the body part is held at a static pose

against gravity: 4–12 Hz) and kinetic tremor (where particular

target specific activity is performed to induce tremor: 3–10 Hz).

This section discusses the multiple techniques used to

characterize tremor and highlights the challenges of

dimensionality reduction, technological complexity, and

interpretability of such results.

Empirical classification and quantification of tremor require

reliable measurement techniques. Several methodologies have

been employed to quantify tremor, including wearable devices

like accelerometers, gyroscopes, and electromyography (EMG)

sensors. Accelerometers and gyroscopes provide physical

motion characteristics, i.e., displacement, velocity, and

acceleration, allowing researchers to analyze the frequency and

amplitude of tremor (15). EMG measures electrical activity in

muscles, giving insights into muscle fatigue. However,

wearable sensors can be challenging to access indoors, leading

to the development of optical trackers or pose measurement

techniques to collect this data, trained on supervised learning

human models (16). These techniques have enabled

researchers to collect empirical data and classify fatigue-

induced tremors based on their characteristics.

These quantitative measurements can study tremor features,

but cannot provide a more subjective assessment of the tremor

type, which requires learning of specific features independent of

the movement or the body extremity involved. Since wearable/

non-wearable sensors provide high-frequency data measurements

that are voluminous, ever-changing, and user-dependent,

machine learning algorithms can be effectively used to learn

features from such complex datasets. A prerequisite step for any

such learning algorithm is to extract useful regions of the data

and summarize the entire data into a few training features,

known as feature extraction. After extracting a few sets of

parameters, they can be fed into the machine learning models.

Machine learning models extract different features from the

frequency and time domain of collected data (power distribution,

median frequency, frequency dispersion) to differentiate typical

human activity from tremor and characterize their source based

on the activity performed.

Multiple studies provide evidence showing applications of

machine learning algorithms to identify tremor and characterize

their origin based on time and frequency-dependent parameters

(18). Kostikis N et al. applied a tree-bagged classifier method to

process a smartphone’s accelerometer and gyroscope signals for

remote classification of Parkinson’s patients (18). In order to

filter sensor noise and reduce data dimensionality, Jeon et al.

implemented a support vector machine (SVM) for feature

extraction and objectively analyzed the data using k-means

nearest neighbour to cluster Parkinson’s tremor severity (19).

Demonstrated an intelligent joystick user interface that utilized

SVM for feature extraction and a heterogeneous ensemble-based

voting classifier capable of classifying activities of daily living

from fatigue states with a detection accuracy of 92%. Probabilistic

models like Markovian models were also utilized to measure the

gait features before and after exhaustion, and such models were

capable of detecting the onset of the fatigued stage with an

RMSE of 0.83 ± 0.43.

Despite the potential of learning models in classifying tremors,

segmenting tremor into multiple stages is not reported because of

the requirement for large human subject data and a lower learning

rate. Hence, this paper presents the methodology for the empirical

classification of FIPT using recurrent neural networks and

summarizes the performance of classification based on the

feature sets utilized. This allows the user to decide on the ways

to address FIPT based on its levels.

1.2 Potential contribution

The potential contributions of this work are:

1. Novel pipeline for evaluation of physiological tremor

parameters and progression of tremor during dynamic

actions. The transition into tremor must be identified to

encounter the undesirable effects that can become

detrimental in some cases. Hence, this paper proposes a

BiLSTM-GRU neural network to aid in the classification of

the stages of tremor progression.

2. New sensing methodology that measures cross-sectional area

(CSA) from the volumetric changes of muscles during limb

movement. An evaluation of the CSA-informed tremor

classification is performed by feeding different combinations

of the features to the network and evaluating the

performance metrics.

2 Materials and methods

This work attempts to identify the levels of progression of

FIPT by following the methodology as illustrated in Figure 1.
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The data is acquired from human participants who are made to

perform progressive fatigue-inducing tasks. The EMG and

MMG signals acquired during the process are cleaned by

filtering and smoothing, and the process is explained in detail

in Section 2.4, followed by labelling the data as per the class to

which it belongs. In the “Level 1” stage (“No Tremor” stage),

the participant does not have any tremor and is well-rested. In

the “No Tremor” stage, the activities performed will not show

any characteristics of fatigue or tremor. In the transition stage,

“Level 2”, it is found that the participant begins to endure

minimal fatigue. From the “Level 3”, the participants enter the

fatigue stage. This is an important class to consider while

evaluating the performance of the neural networks. In “Level

4” and “Level 5”, fatigue increases, manifesting in FIPT. These

levels are classified based on the verbal inputs received from

the participants during data collection to train the

neural network.

Twenty healthy participants were recruited based on the

inclusion criteria, such as the dominant hand being the right

hand. The exclusion criteria for the participants are the

presence of any movement disorders and a history of upper

limb injuries. The participants were recruited based on social

media advertisements within the Indian Institute of

Technology, Madras, and the participant demographics are as

given in Table 1. The signals acquired from human

participants are electromyogram (EMG), accelerometer

(MMGACC) and cross-sectional area changes (MMGCSAC). The

sensors used to acquire these signals are explained in Section

2.1, and the protocol implemented for data collection is

discussed in Section 2.2.

2.1 Sensors

2.1.1 EMG and accelerometer armband

Eight channels of EMG, along with accelerometer

recordings, were collected from the forearm and upper arm

muscles of the dominant hand of each human participant

using the Mindrove EMG armband (Mindrove Kft, Budapest,

Hungary) as shown in Figure 2A. The custom software

Visualizer 2.3.2 was used to acquire and record the data at a

sampling frequency of 500 Hz.

The muscles of interest in the upper arm are Biceps brachii,

Triceps, and Brachialis, while the forearm muscles are Flexor

Carpi Ulnaris (FCU), Flexor Digitorum Superficialis (FDS),

Extensor Carpi Ulnaris (ECU), Extensor Carpi Radialis Brevis

(ECRB), Extensor Carpi Radialis Longus (ECRL), and

Brachioradialis. These are the muscles at the superficial layer

and in contact with the EMG electrodes. The contribution of

the extensor and flexor muscles during tremor plays a vital

role (20), and this acquired using the 8-channel configuration

as shown in Figure 2B. The MMGACC is present along with

the EMG armband and is placed on top of the Biceps Brachii

at the upper arm and the Brachioradialis muscle for the

forearm. The cross-sectional area changes were monitored

using an externally modified EMG armband as shown in

Figure 2C, which will be discussed in detail in the

subsection below.

2.1.2 Cross-sectional area change measurement
using modified EMG armband

The cross-sectional area changes were studied using a modified

EMG armband with fiducial markers to measure them. Fiducial

markers are employed in computer vision to identify objects,

ascertain their spatial position as well as orientation, and

reconstruct motion (21, 22). Despite their widespread utilization

in odometry and navigation for mobile robotics, their application

for measuring physiological changes while undergoing

rehabilitation exercises is rarely explored. Visual-based fiducial

markers, particularly ArUco markers, offer a portable and precise

method for estimating changes in physiological cross-sectional

area or girth resulting from muscular deformation. In contrast to

flex sensors used for manual girth measurement, which restrict

the range of motion and may impede precise microsurgical tasks

prone to inducing tremors, this research focuses on exploring

marker-based techniques. Traditional imaging methods, such as

ultrasound and magnetic resonance imaging (MRI), are

susceptible to background interference and are typically confined

to clinical settings. Fiducial marking techniques, on the other

hand, present a viable alternative for measuring forearm girth

and its correlation with tremor progression. By strategically

placing markers along the muscle belly, fiducial markers can be

tracked in real-time, enabling the measurement of specific

muscular segments for studying tremor progression.

The proposed setup uses two Lenovo 300 FHD cameras (2 MP

CMOS sensor with DFOV 95°) to synchronize the ArUco markers

in orthogonal directions. The input to the system is a stream of

images from the two calibrated cameras. A 6 × 9 grid is used to

calibrate the cameras with a spacing of 25 cm between the

corresponding grids. After obtaining the input stream of data

and the intrinsic properties of the camera distortion coefficients

and principal point, the images are preprocessed to optimize

the visual properties, thereby facilitating enhanced fiducial

marker detection. Two markers, specifically, Marker ID-0 in the

top view and Marker ID-1 in the side view, are detected.

Following the detection of markers, the Euclidean distance

between the centroids of the markers is calculated. The

distances are also processed in pixels in the processed image of

640 × 480 pixels. Consequently, the known ArUco edge length

(25 mm) converts pixel distances to centimeters. The resultant

lengths from orthogonal perspectives are construed as an

ellipse’s major and minor axes, with the ellipsoidal area as an

approximation for the cross-sectional area. The proposed

methodology is represented as a flowchart in Figure 3.

The experimental setup and the orthogonal placement of a pair

of ArUco markers for cross-sectional area estimation are illustrated

in Figure 4. Figure 4A shows the real-time cross-sectional area

acquisition setup, and Figures 4B,C depict the exploded view of

the custom-made hinges with bi-coloured ArUco markers fixed

to the Mindrove EMG armband in orthogonal directions to

measure the cross-sectional area of the forearm.
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These alterations in physiological cross-sectional areas due to

manipulation tasks performed by the participant can be

quantified by monitoring changes in major and minor axis

lengths, achievable through the proposed setup. Figure 4D

illustrates the system output of the forearm on cross-sectional

area estimation using computer vision. The output from the first

camera (top view) and the second camera (side camera) is used

for the area measurement by approximating the forearm to an

ellipsoid with the given major and minor axis lengths.

The accuracy of the setup for its study in biomechanical studies

is performed by measuring known distances. This procedure is

repeated for five trials for both the orthogonal cameras, and it is

observed that both the cameras can measure distance with a

mean average error of ±0.1 mm as shown in Figure 4E. The

proposed measurement methodology can detect the ArUco

markers with a mean averaged error of 6.81% and repeatability

of 0.117 mm. Extensive experimentation has demonstrated the

robustness of the setup for studying tremor progression; however,

certain limitations remain. High-frequency motion and the size

of fiducial markers can impact marker detection. Occlusion and

indoor settings may also induce false positives. Intrinsic

calibration was performed to determine the optimal distance

(60 cm), marker length (25 mm), and frequency of motion

(36 bpm metronome beat) to mitigate these limitations.

FIGURE 1

Schematic of the methodology followed in the classification of fatigue-induced physiological tremor progression for comparing the CSA-informed

classification against the existing approach.

TABLE 1 Participant demographics.

Variable Mean SD

Age (years) 28.2 3.188796

Height (cm) 165.65 11.07997

Weight (kg) 72.1 14.08956

Length

Upper arm (cm) 32.625 2.901338

Lower arm (cm) 27.575 3.001206

Hand (cm) 17.885 1.553019
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2.2 Experiment protocol and data collection

Ten healthy male and ten healthy female participants were

recruited for the study based on social media advertisements.

The participants provided written consent to volunteer for the

study, approved by the Indian Institute of Technology Madras

Ethics Board (IEC/2021-02/TA/09). The participant

demographics are listed in Table 1, along with the upper and

forearm girth measurements. They were given time to get

accustomed to handling and moving the haptic device in the

environment created using Simulink 3D Animation. They were

given a brief explanation regarding the experiment protocol and

the patterns that will be part of the study.

The participants were positioned comfortably in a chair

without an armrest to avoid resting their arms between

sessions, which can impede the development of arm fatigue, as

depicted in Figure 6A. The protocol involves the participants

tracing patterns repetitively with physician-approved fatigue-

inducing tasks between repetitions. The protocol consists of the

participant holding the end effector tool of the haptic device

and tracing the pattern displayed on the screen five times for

the first epoch, followed by a physician-approved fatigue-

inducing exercise (FIE) for 40 s. The FIE involves the

participant carrying a 1 kg dumbbell and performing radioulnar

deviation about the wrist, holding the elbow away from the

body without any elbow support. The participants were asked

to perform sustained maximum contractions when reaching the

maximum angle of flexion and extension as showin in

Figure 5B. This combination of repeated fatigue-inducing

contractions performed between the task epochs helps build

muscle fatigue for the duration of the experiment. Then, the

same pattern is traced five times for the second task epoch,

followed by the fatigue-inducing exercise. A total of five such

task epochs are performed for each pattern as seen in

Figure 5C. The trials were time and speed-controlled using a

metronome to ease the inter-subject signal analysis. To ensure

that the participant is completely rested and muscles are not

fatigued before they begin the next pattern set, an average of

the 24 h interval is provided.

The data acquisition setup is as shown in Figure 6A with the

participant wearing the armbands and tracing patterns using the

haptic device. The haptic device (Geomagic Touch) is connected

to the Simulink environment using a custom S-function block

from Quarc 2020 SP2(4.0.3271) (Quanser Consulting Inc.,

Markham, Canada), which provides the haptic device encoder

output. The end effector position is obtained by calculating the

forward kinematics using Simulink blocks, and the output

position is linked to the 3D Animation Visualizer sink. This

connects the end effector tool of the haptic device to the “pen”

visualized in the 3D gaming environment, as shown in

Figure 6A. The participant holding the end effector tool

(“pen”) of the haptic device will perceive haptic feedback on

touching the kidney in the Simulink environment. The

participant moves this pen to trace the pattern while being able

to perceive the force feedback from the pen while touching the

surface of the kidney (an organ representation in the

interactive simulation environment).

The patterns, as illustrated in Figure 6B, have been

designed to closely represent the manipulation in surgical

motions. This was created using the Simulink 3D Animation

blocks with a 3D view of a kidney with patterns to be

traced embedded, thus providing a gaming environment with

Unreal Engine. The patterns to be traced enforce movements

that replicate simple suturing tasks, assessing the required

FIGURE 2

(A) Mindrove armband with parts labelled, (B) illustration of the muscles of interest and the sensor placement (FCU, flexor carpi ulnaris; FDS, flexor

digitorum superficialis; ECU, extensor carpi ulnaris; ECRB, extensor carpi radialis brevis; ECRL, extensor carpi radialis longus; BR, brachioradialis),

and C. Modified EMG band with fiducial markers.
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dexterous motions. Figure 6B (top) has the static tool holding

task where the participant is asked to hold the tool on the

yellow dot for 20 s and then move to the “line” pattern

where they will be asked to trace the yellow line up and

down using the haptics end effector tool. For the second

pattern set, as shown in Figure 6B (bottom), a zig-zag line

replicating the interrupted suture is presented to the

participant. The tracing begins from the right corner to the

left corner. The signals recorded are to be processed before

they can be introduced to the neural network. The following

section explains the data preprocessing and feature

engineering of the acquired signals. During the experiment,

data were collected from the accelerometers, EMG sensors

and cross-sectional area from vision sensors. The following

section explains the data preprocessing and feature

engineering for tremor level classification purposes.

2.3 Data processing and feature engineering

The preprocessing of all the signals is performed as shown in

the block diagram (Figure 7) using MATLAB 2022a software.

The raw data is cleaned, and the outliers are removed as part of

feature engineering. The preprocessed signals are then segmented

into the tremor stages, followed by time normalization over the

multi-sensor signals, and task epoch-based class labels are

created appropriately.

2.3.1 Electromyogram (EMG) and accelerometer
(MMGACC)

The Mindrove armband is used to acquire EMG and

accelerometer (MMGACC) signal measurements as dimensionless

numbers, which should be later processed to convert into µV for

EMG signals and g value for the accelerometer. The DC offset

correction is performed on the multichannel EMG signals and

then filtered using a Butterworth bandstop filter of the second

order to remove 50 Hz noise interference. This signal is

further rectified, and the signal’s envelope is created. For the

MMGACC, the root sum of squares of the x, y and z direction

acceleration vectors is calculated as a time domain feature

using equation (1).

MMGACC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MMG2
ACCx þMMG2

ACCy þ MMG2
ACCz

q

(1)

2.3.2 Cross-sectional area changes (MMGCSAC)

The cross-sectional area is estimated in real-time and recorded

as explained in Section 2.1, and further processing is performed to

remove outliers using a moving median filter. The filtered data is

then smoothed using the Savitzky-Golay polynomial filter of the

fifth order. This step is necessary to avoid environmental noise

caused by clutter and/or scattered light in the captured frames.

MMGCSAC (i) ¼
Areai � Arearest

Arearest
(2)

where, i is the current frame. The relative change MMGCSAC is

calculated against the resting condition Arearest .

The features are resampled since EMG and MMGACC have

sampling frequencies of 500 Hz, and the cross-sectional area

measurements come from the 50 fps camera. The data

acquisition system is different for the sensing modalities, hence

the signals are resampled to 250 Hz. The signal is normalized to

zero mean and unit variance before feeding it into the classifier

network. The number of participants is 20, and the dataset to

feed a classifier network should be large. Hence, the time series

is augmented using the window slicing method with a desired

window size of 1,000 and the number of windows set to 50,

making the model more robust by introducing variability in the

dataset (23, 24).

The time-frequency domain features were extracted using

multivariate empirical mode decomposition and analysed using

FIGURE 3

Proposed methodology for real-time cross-sectional area

measurement.
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the Hilbert transform to identify the task epoch level distinction

(25). The class labels are created based on the number of the

task epoch, which will be five classes for the increasing levels

of FIPT. The features that were given as input to the neural

network are the eight channels of EMG and MMGACC from

the upper arm and forearm, and the MMGCSAC from

the forearm.

The tremor classification studies performed in the literature

involve either a classification between Parkinson’s and essential

tremor or between the presence and absence of tremor. The

different classification networks and their performance metrics

are listed in Table 2. Some of the neural networks used are the

multilayer perceptron (MLP), Support Vector Machine (SVM)

using radial basis function (RBF) kernel, and k-nearest neighbour

(KNN). The performance metrics are compared, and it can be

seen that the sequential data classifier LSTM performs better in

terms of classification accuracy, and its ability to classify

unbalanced datasets is also good based on its F1 score.

The recurrent neural network (RNN) is a supervised learning

approach that can aid in sequential data classification due to its

ability to store memory and make decisions based on this

memory. The basic RNN consists of a tan h function and suffers

from short-term memory. An advanced version of this is the

Long Short-Term Memory (LSTM) network with a memory cell

state containing gates to decide how much memory will be

retained. In this paper, an enhanced version of the LSTM

network is applied, and this is discussed in detail in the

following section.

3 BiLSTM-GRU network architecture

A recurrent neural network allows prediction (30, 31) and

classification (32) of time series data. The LSTM is a type of

recurrent neural network that can perform selective reading,

writing, and forgetting using a backpropagation loss function

to make these selection decisions (33). This allows the LSTM

to address the vanishing gradient problem of the recurrent

neural network (34). The network contains “gates” to capture

long-term and short-term memory in and out of the cells,

FIGURE 4

(A) Experimental setup of muscular girth measurement using fiducial marker, (B) top camera view of the fiducial markers, (C) Side camera view of the

fiducial markers, (D) real-time display of fiducial marker system distance measurement with output for forearm girth measurement methodology

proposed in this study, (E) evaluation of the accuracy of the proposed setup.
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FIGURE 5

Illustration of the experiment protocol (A) pattern tracing task (PTT) (B) fatigue inducing exercise (C) flow of the task epochs (TE) with pattern tracing

task (PTT) followed by fatigue inducing exercise (FIE) for 5-time.

FIGURE 6

(A) Experimental setup for data collection using modified EMG armband and vision sensor, (B) patterns traced for the study static holding task (SHT)

and dynamic line tracking task (DLT) (top) and interrupted suture task (IST) (bottom).
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thus aiding in the classification of fatigue-induced physiological

tremor time series. The input gate collects the input features

into the cell state, while the forget gate uses weighted

parameters to decide whether it should retain or forget the

information. The output gate is the third gate for the cell

state output.

A BiLSTM is a two-way architecture as shown in Figure 8, thus

performing forward and backward state traversal, which increases

the accuracy for long-time series (35, 36). The Gated Recurrent

Unit is one step less than LSTM since it combines the input and

forget gate into the update gate, thus reducing the number of

parameters and increasing the speed of convergence. The input

to the neural network is x ¼ (x1, x2, . . . xT ) [ R
T through the

LSTM layer, where T ¼ S� N with S as the number of segments

to split the original time series of length L, and N is the number

of features. So, the number of iterations would be I ¼
L
B

where

B is the batch size.

3.1 GRU layer

The chosen neural network is a GRU-based BiLSTM network

owing to the fact that the classification can be performed on the

interdependencies existing in the tremor time series data

acquired. In this sequence-to-sequence classification, the number

of features is in the columns of the input vector. The GRU layer

is added to address the disadvantages of the LSTM neural

network, which again contains 50 hidden units.

3.2 Softmax layer

The softmax layer in a multi-class classification neural network,

such as the BiLSTM-GRU network, allocates the probability that

the input belongs to one of the five classes. The activation

FIGURE 7

Signal preprocessing pipeline for feeding the classifier, depicting the signal acquisition using an EMG armband around the upper arm muscles,

providing EMGUA and MMGUA and a modified EMG armband on the forearm arm muscles, providing EMGUA, MMGUA and with MMGCSAC

calculated from the vision sensor.
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function is generally deployed in the final layer of this network. The

raw output is converted into probability scores using equation (3).

softmax (x)i ¼
exi

PC
j¼1 e

xj
(3)

where, x is the raw output from the BiLSTM-GRU network, i is the

current predicted class, and C is the total number of classes.

3.3 Classification layer

This layer usually comes after the SoftMax layer, and it

computes the cross-entropy loss for C mutually exclusive classes

using equation (4) (37). Based on the outputs from the SoftMax

layer, the classification layer assigns each input sequence to one

of the five classes. The five levels identify the progress from

resting mode to levels of activity, with three sets of feature

groups. The attempt is to identify if the proposed sensing

methodology of features aids in better classification and how the

classification accuracy varies for each feature group. Hence, there

are five classes for any given set of features. The cross-entropy

loss between the predictions and the targets is calculated as:

Cross entropy loss ¼
1

L

X

L

n¼1

X

C

m¼1

wmtnm ln ynm (4)

where L is the number of samples, C is the number of classes, wm is

the weight of the class i, tnm is an indicator that the signal belongs

to the nth input belongs to m class and ynm the output of the

softmax layer.

To avoid overfitting and enhance learning, dropout layers are

introduced after the BiLSTM layer and the GRU layer that

selectively removes a set of neurons from participating in the

forward and backpropagation. Also, L2 regularization is

performed to aid in achieving better classification accuracy by

imposing a penalty on the loss function. The chosen optimizer is

the Adam optimization technique. These aid in better learning

for the classifier and faster convergence.

4 Results

The neural network was trained and tested in a system with a

hardware configuration of CPU: Intel Core i90 10900, GPU:

NVIDIA GeForce RTX 2060 SUPER and 16 GB DDR4 RAM.

The BiLSTM -GRU neural network was built using MATLAB

R2022a software with dedicated deep learning toolboxes installed.

The training details and the layers employed are listed in

Table 3. The BiLSTM layer contains 50 hidden units and the

GRU layer contains 50 hidden units.

The zero-mean unit variance features are labelled and fed into

the neural network. In this, the data is divided into ten parts: nine

parts for training (training set) and one part for validating (test set)

the neural network. The test set is then evaluated for performance

metrics, and the comparison is discussed in the following sections.

The network is trained using different combinations of the feature

sets to evaluate the significance of the proposed sensing

methodology. The feature sets are

• Feature Set 1—EMG, MMGACC and MMGCSAC

• Feature Set 2—EMG and MMGACC

• Feature Set 3—EMG and MMGCSAC

• Feature Set 4—MMGACC and MMGCSAC

The EMG contains eight channels each for the upper arm and the

lower arm, hence the time series obtained is sixteen. The MMGACC

contains two time series of signal magnitude vector calculated over

the x,y and z axes acceleration vector, each for the upper arm and

lower arm. The MMGCSAC contains one time series calculated for

the forearm. Hence, feature set 1 contains 19 inputs, feature set 2

contains 18 inputs, feature set 3 contains 17 inputs, while feature

set 4 contains 3 inputs.

The neural network performance during training is evaluated

using training loss as a parameter. The number of iterations for

TABLE 2 Comparison of classification networks in the literature used for differentiating tremor.

Author &
Year

Classification Network Sensing
modality

Classification
categories

Accuracy Precision Recall F1
score

(26) MLP using Scaled-conjugate (SCG) learning

algorithm

EMG ET vs. PD vs. Normal 88 89 88 -

MLP using Broyden–Fletcher–Goldfarb–Shanno

gradient learning algorithm (BFGS)

91 87 92 –

(27) SVM using RBF kernel EMG, Acc PD vs. ET 83 – – –

(28) MLP EMG, Acc 92.5 95 89.7 –

(29) KNN EMG Tremor vs. No Tremor 84 95.5 68 79.8

SVM using RBF kernel 90.5 89 91.5 85

RF 84.5 84 96 84.5

LSTM 97.5 97 98 98.5

KNN Kinematics 94 90 89 94.5

SVM using RBF kernel 91 86 84 91

RF 95.5 96 95.5 95.5

LSTM 96 96 96 96

ET, essential tremor; PD, Parkinson’s disease; Acc, accelerometer.
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the training is 2,130, considering the total sample size is 1,020, the

maximum number of epochs is set to be 30, with a mini batch size

of 64. Figure 9 shows the training loss for each of the feature sets,

showing that the feature sets 1, 2 and 3 tend to learn faster than

feature set 4, which has the training loss starting to set at around

750th iteration, while the rest of the feature sets have a steep

decrease at around 200th iteration. Once the model is trained, it

is evaluated using the test set, and the performance metrics are

calculated to visualize the model’s classification capability, which

is discussed in the following subsection.

4.1 Training performance metrics

The performance metrics of the network are accuracy, F1 score,

recall, precision, sensitivity, and specificity. The true positive (TP)

is the number of correctly predicted labels, and the true negative

(TN) is the number of classes that have been predicted wrong.

The false positive (FP) is the number of predicted labels that

have been predicted to belong to a certain class but do not

belong to that class. The false negative is the predicted label

which does not belong to the class into which it has been

categorized. The accuracy, sensitivity, precision, recall, and F1

score of classification are calculated using equations (5), (6), (7),

and (8), respectively. Recall provides information on whether the

model is able to identify all the groups in the dataset correctly,

while precision provides how precisely the classification occurs

using the model.

Accuracy ¼
TP þ TN

TP þ FP þ TN þ FN
(5)

Precision ¼
TP

TP þ FP
(6)

Recall ¼
TP

TP þ FN
(7)

F1 ¼ 2�
Precision � Recall

Precisionþ Recall
(8)

The macro-averaged performance metrics are listed in Table 4.

With the main objective being identifying the best feature set for

the classification and identification of tremor progression, it can

be seen that the proposed new sensing methodology and

parameters work well in accordance with gold standards such as

the EMG and MMGACC. It is able to provide a classification

accuracy which is competing with that of the remaining sets.

On looking at the performance metrics of the feature sets per

class as indicated in Figures 10A, it is notable that Feature set 2

has comparatively lesser classification accuracy of 98.04% with

FIGURE 8

Architecture of BiLSTM-GRU neural network for three combinations of input feature groups.

TABLE 3 Hyperparameters for the BiLSTM-GRU neural network.

Hyperparameter Value

No. of hidden units in LSTM 50

No. of hidden units in the GRU layer 50

Dropout layer 0.5

Optimizer Adam

L2 regularization 0.01

Mini Batch size 64

Maximum Epochs 30

Initial learning rate 0.001

Learn Rate Schedule piecewise

Learn rate drop factor 0.1

Learn rate drop period 10

Gradient threshold 1

Execution environment GPU
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respect to the other sets with a classification accuracy of 99%. The

confusion chart shown in Figure 10B provides summarised results

for true positive, true negative, false positive and false negative

with normalized results along row and column. This is also noted

in the macro-averaged performance metrics, as seen in Table 4,

such as the accuracy and F1 score. The F1 score shows if the

classifier can classify both positive and negative sets correctly. The

proposed parameter MMGCSAC works on par with the EMG and

MMGACC, as shown by the F1 score of Feature Sets 1, 3, and

4. On looking at Feature Set 1 and Feature Set 4, it can be seen

that the precision for Feature Set 4 is less than Feature Set 1 for

the Level 3 class. The Level 3 class identifies tremor transition,

and it can also be found that the recall of Feature Set 1 is low

again in Level 3. From the F1 score, it can be seen that Feature set

4 gives a better classification. At the same time, consideration has

to be given to the classification of Level 5 since it is the final

tremor achievement level. There are high possibilities for Level 4

and Level 5 to be interchanged, as is the case for Level 3 and

Level 2. Hence, more emphasis is laid on the classification of

these levels. All the training and performance metrics are provided

in the Supplementary Material and Multimedia Link for

better understanding.

5 Discussion

The main objective of this paper is to present an alternate

sensing methodology that can capture the volumetric changes

of muscles during movement. The proposed fiducial marker

system effectively captures the cross-sectional area changes used

to classify the tremor progression stages. The BiLSTM-GRU

neural network designed in this work could perform the

classification with an accuracy of 99% with the proposed feature

set for an augmented dataset of sample size 1,020. The

computational complexity reduces since this is a single-channel

input feature, unlike EMG, which has multiple channels for

assessing multiple muscles. MMGCSAC provides a lumped input

of the volumetric changes of all the muscles considered in the

extremity chosen. This hybrid network thus aids in efficiently

classifying the tremor progression stages using the proposed

sensing modality.

In manipulation tasks requiring non-tremulous movements,

capturing the origin and transition stages along with

quantification of the tremor. This aids in effectively controlling

the tremor by implementing filters that will remove the tremor

from normal movement or by suppressing mechanisms that can

FIGURE 9

Training loss calculated for each feature set over the epochs, with feature sets 1,2,3 a loss reduction at the 200th iteration (blue line), while feature set

4 shows a loss reduction at the 750th iteration (red line).

TABLE 4 Averaged performance metrics for the different feature sets for sample size = 1,020.

Feature set Accuracy (%) Recall (%) Precision (%) F1-score (%)

EMG +MMGACC +MMGCSAC 99 99 99.05 99

EMG +MMGACC 98.04 98.04 98.13 98.04

EMG +MMGCSAC 99 99 99.05 99

MMGACC +MMGCSAC 99 99.05 99 99

Palani et al. 10.3389/fresc.2025.1474203

Frontiers in Rehabilitation Sciences 13 frontiersin.org

https://www.youtube.com/watch?v=Jqwb4Pm65I4
https://doi.org/10.3389/fresc.2025.1474203
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


absorb or mitigate the tremor. In robot-assisted surgery, studying

and characterizing surgical movements without hindering the

surgeon’s normal motions is crucial. This can be carried out

using the proposed cross-sectional area change feature measured

using the simple fiducial markers, which can successfully aid in

the classification of the tremulous motions. The drawbacks of the

sensor used here are the size of the ArUco marker and the

sensitivity of the vision sensor employed. An improvement in

these hardware properties would ease the practical

implementation of this classification pipeline in real-time in a

challenging environment. With respect to the proposed

classification pipeline, a cross-validation approach with the test

dataset can improve the model. Also, finding the perfect sample

size for the training without overfitting the model is quintessential.
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