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Objective: This study aimed to assess the utility of musculoskeletal ultrasound

(MSUS) in the rehabilitation of stroke patients with hemiplegic shoulder pain.

Methods: We conducted a study involving 80 stroke patients with hemiplegia

and concomitant shoulder pain on the affected side, admitted to our hospital

between April 2020 and March 2021. MSUS was used to evaluate shoulder

structures, including the long head of the biceps brachii tendon (BICT) and its

sheath, rotator cuff, subacromial–subdeltoid (SA–SD) bursa, labrum,

acromioclavicular ligament, acromiocoracoid ligament, and acromion–greater

tuberosity (AGT) distance. We compared pre- and post-rehabilitation

measurements of supraspinatus tendon (SST) thickness, BICT sheath effusion

thickness, SA–SD bursa effusion thickness, AGT distance, and visual analog

scale (VAS) scores. Statistical significance was set at P < 0.05.

Results: Post-rehabilitation, the SST thickness on the hemiplegic side showed a

statistically significant reduction (P= 0.023). No significant difference was

observed in the mean maximum rupture diameter (P= 0.796). Both BICT

sheath effusion (P < 0.001) and SA–SD bursa effusion (P < 0.001) exhibited

significant decreases. The AGT distance on the hemiplegic side also

demonstrated a statistically significant change (P < 0.001). Additionally, the VAS

score significantly improved post-rehabilitation (P < 0.001).

Conclusion: MSUS is a feasible and reproducible tool for monitoring

rehabilitation progress in stroke patients with hemiplegic shoulder pain.
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1 Introduction

Shoulder pain is a frequent complaint in stroke patients with hemiplegia, with reported

incidence rates ranging from 5% to 84% (1–3). This pain often restricts both active and

passive shoulder movement, impairing joint mobility and ultimately hindering

rehabilitation progress, thereby delaying the recovery of upper limb function (4). The

pathophysiology of poststroke shoulder injury is complex, primarily attributed to

impaired motor control and alterations in peripheral and central nervous system activity

(5). Contributing factors include glenohumeral subluxation (GHS) and various soft tissue

injuries (STIs), such as effusion of the long head of the biceps brachii tendon (BICT)

sheath, rotator cuff lesions, and subacromial–subdeltoid (SA–SD) bursal effusion (6).

Musculoskeletal ultrasound (MSUS) offers distinct advantages in diagnosing shoulder

disorders and periarticular soft tissue pathologies by providing a clear visualization of soft

tissue lesion extent, morphological changes, and vascular distribution patterns (7). Unlike
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other imaging modalities, MSUS enables dynamic assessment of

musculoskeletal structures during movement, facilitating the

detection of subtle abnormalities that may remain undetected

during static examination (7). Furthermore, MSUS permits

frequent repeat examinations, allowing for dynamic, multiplanar

evaluation of pathological progression. Comparative analysis with

contralateral healthy structures enhances diagnostic accuracy,

with studies demonstrating comparable specificity to magnetic

resonance imaging (MRI) for certain indications (8).

In poststroke hemiplegic shoulder pain, where soft tissue

injuries (STIs) and glenohumeral subluxation (GHS) frequently

coexist, clinicians require practical imaging tools to guide

rehabilitation strategies. While MRI remains the gold standard,

MSUS presents a viable alternative for monitoring rehabilitation

outcomes. This study investigates whether MSUS can provide

objective indicators correlating with subjective pain improvement,

thereby validating patient-reported outcomes. We hypothesize

that MSUS may serve as a feasible imaging modality for (1)

evaluating rehabilitation efficacy, (2) identifying objective

markers of clinical improvement, and (3) informing

rehabilitation program adjustments. Our findings aim to establish

the clinical utility of MSUS in managing hemiplegic shoulder

pain during stroke rehabilitation.

2 Materials and methods

2.1 Patients

2.1.1 Sample size determination
The sample size was calculated using the standard formula for

paired quantitative data studies:

n ¼ [(Za=2 þ Zb)2 � s2] = d2

Where:

• n = required sample size per group

• Zα/2 = 1.96 (two-tailed, α = 0.05)

• Zβ = 1.28 (power = 90%, β = 0.1)

• σ = 1.3 (standard deviation from pilot data)

• δ = 0.5 (clinically meaningful difference)

Accounting for an anticipated 10% dropout rate, the final sample

size was determined to be 80 participants.

2.1.2 Study population
This study retrospectively analyzed 80 stroke patients with

hemiplegic shoulder pain who underwent MSUS evaluation at

our institution between April 2020 and March 2021. Age- and

sex-matched stroke patients without shoulder pain served

as controls.

2.1.3 Ethical considerations

This study was conducted in accordance with the:

1. Declaration of Helsinki (1964) and its subsequent amendments

2. Institutional review board approval (include approval number

if available)

3. National research ethics guidelines

Written informed consent was obtained from all participants prior

to study enrollment.

2.1.4 Inclusion criteria
Participants were included based on the following criteria:

1. Diagnosis of first-ever stroke confirmed by CT or MRI

according to standardized cerebrovascular disease criteria

2. Presence of hemiplegia with unilateral upper limb involvement

and concomitant shoulder pain

3. Absence of pre-existing shoulder pain or prior shoulder surgery

4. Medically stable condition poststroke with:

(1) Stable vital signs

(2) Clear consciousness

(3) Ability to comply with complete examination protocols

2.1.5 Exclusion criteria
Patients were excluded if they met any of the following

conditions:

1. History of shoulder dysfunction or prior shoulder pathology

2. Comorbid myopathic disorders or peripheral nervous

system diseases

3. Inability to maintain a seated position independently or with

minimal assistance (defined as requiring >1 person for

support).

2.2 Equipment and methods

Musculoskeletal ultrasound examinations were

performed using a high-resolution ultrasound system (LOGIQ

E9, GE Healthcare, Chicago, IL, USA) equipped with a

linear-array transducer (frequency range, 9–16 MHz). The

system’s preset musculoskeletal imaging parameters

were optimized for shoulder evaluation, including

appropriate depth settings (3–5 cm) and focal zone

adjustments to ensure optimal visualization of superficial and

deep shoulder structures.

2.3 Examination protocol

2.3.1 Soft tissue injury (STI) assessment
Ultrasonographic evaluation of shoulder structures was

performed according to standardized protocols established by

Martinoli (9), with the following specific assessment criteria:

1. Biceps brachii tendon (BICT) and sheath:

(1) Tendon morphology: assessment for abnormal thickening,

focal hypo-/hyper-echoic regions, or structural discontinuity

(2) Sheath evaluation: presence of pathological effusion

(>2 mm in width)

2. Rotator cuff components:
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Systematic evaluation of all four tendons (SUBT, SST, INFT,

TMT) for:

(1) Morphological abnormalities (thickening)

(2) Focal echo texture alterations (hypo-/hyper-echoic regions)

(3) Structural integrity (tears or defects)

(3) Subacromial–subdeltoid (SA–SD) bursa:

Quantitative assessment of bursal effusion (>2 mm threshold)

(4) Glenoid labrum:

Evaluation for pathological fluid accumulation in both anterior and

posterior regions.

(5) Ligamentous structures:

Acromioclavicular and coracoclavicular ligaments assessed for:

(1) Structural injury (tears)

(2) Functional integrity (laxity)

2.3.2 Assessment of glenohumeral subluxation

(GHS)
GHS was quantitatively evaluated using the standardized

ultrasound measurement protocol described by Kumar et al. (10).

The examination procedure included:

1. Acromion–greater tuberosity distance (AGT):

(1) Measurement of the maximal perpendicular distance

between the lateral border of the acromion and the apex

of the greater tuberosity

(2) Bilateral assessment (affected vs. unaffected side) for

comparative analysis

(3) Measurements obtained in standardized shoulder position

(specify if applicable, e.g., neutral position with arm

adducted)

2. Measurement protocol:

(1) Three consecutive measurements performed to

ensure reliability

(2) Mean value used for final analysis

(3) All measurements conducted by experienced sonographers

using identical transducer positioning

2.4 Pain assessment using visual analog
scale (VAS)

The VAS was employed to quantify pain intensity according to

standardized protocols. The assessment methodology comprised:

2.4.1 VAS administration protocol

1. A 10 cm horizontal line was presented to patients, anchored with:

(1) 0 cm (left terminus): “no pain”

(2) 10 cm (right terminus): “worst imaginable pain”

2. Patients were instructed to mark their current pain level on

the line.

3. Measurements were recorded to the nearest millimeter using a

calibrated ruler.

2.4.2 Scoring interpretation

Pain severity was categorized as follows:

1. 0: pain-free

2. 1–3: mild, intermittent pain (does not interfere with daily

activities)

3. 4–5: moderate pain (tolerable but affecting sleep quality)

4. 6–7: substantial pain (frequent, significantly impairing sleep)

5. 8–9: severe pain (persistent, causing sleep deprivation)

6. 10: excruciating pain (completely debilitating)

2.4.3 Clinical classification

Following Lindgren’s criteria:

1. VAS≥ 4: diagnosed as hemiplegic shoulder pain

2. VAS < 4: classified as non-hemiplegic shoulder pain

2.5 Examination protocol

2.5.1 Sonographic examination procedures
All MSUS examinations were performed by an experienced

sonographer (>5 years of musculoskeletal specialization) who was

blinded to patient clinical status. The standardized protocol was

adapted from Martinoli’s (9) shoulder examination methodology,

with the following implementation details:

1. Patient positioning:

(1) Seated position facing the examiner

(2) Upper limbs maintained in standardized positions by

an assistant

(3) Bilateral examination (hemiplegic and unaffected sides)

2. Systematic scanning protocol:

Sequential evaluation of:

(1) BICT and sheath

(2) Rotator cuff tendons (SUBT, SST, INFT, TMT)

(3) Glenoid labrum

(4) Acromioclavicular and coracoclavicular ligaments

(5) Subacromial–subdeltoid (SA–SD) bursa

2.5.2 Pre-rehabilitation assessment
1. SST evaluation:

(1) Thickness measurement (hemiplegic vs. unaffected side)

(2) Maximum tear diameter quantification

2. Effusion assessment:

(1) BICT sheath effusion thickness

(2) SA–SD bursal effusion thickness

3. Glenohumeral stability:

(1) Acromion–greater tuberosity (AGT) distance measurement

(2) Comparative analysis of GHS (hemiplegic vs.

unaffected side)
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4. Pain quantification:

(1) VAS scoring for hemiplegic shoulder pain

2.5.3 Post-rehabilitation assessment
Identical protocol performed following rehabilitation

intervention, with additional comparative analyses:

1. Longitudinal comparison of all parameters (pre- vs. post-

rehabilitation)

2. Maintained contralateral comparison (hemiplegic vs.

unaffected side)

2.6 Rehabilitation treatment

A comprehensive rehabilitation protocol was implemented,

consisting of programmed manual therapy, extracorporeal shockwave

therapy (ESWT), kinesio taping (KT), and orthotic intervention.

1. Programmed manual therapy: This intervention included

muscle tension reduction, joint range-of-motion training, soft

tissue mobilization, and joint mobilization. The primary

objectives were to decrease muscle tone and improve joint

mobility. Muscle tension reduction and joint motion training

were administered twice daily, while soft tissue and joint

mobilization were performed once daily.

2. ESWT: Treatment was delivered using a 15 mm probe at an

impact frequency of 6–10 Hz and a pressure of 1.5–3.0 bar,

with 2,000 shocks per session. Sessions were conducted

twice weekly.

3. KT: Type I KT was applied with the anchor fixed at the

superior aspect of the humeral greater tubercle and

terminated at the scapular supraspinatus fossa. Each

application remained in place for 48 h, followed by a 24 h

rest period before reapplication.

4. Orthotic intervention: A dual-support orthosis was utilized to

stabilize both proximal and distal segments. The device was

designed to offload arm weight, correct glenohumeral

subluxation, and minimize passive shoulder movement.

Orthotic use was gradually tapered rather than abruptly

discontinued, with daily wear time progressively reduced.

However, the orthosis was reapplied if pain recurred.

The total duration of rehabilitation was 12 weeks for

all interventions.

2.7 Statistical analysis

All statistical analyses were performed using SPSS 25.0 (IBM

Corp., Armonk, NY, USA). Continuous data are presented as

mean ± standard deviation (SD). To evaluate the effects of

rehabilitation across time (pre- vs. post-rehabilitation) and

between groups (hemiplegic vs. unaffected side), a two-way

repeated-measures analysis of variance (ANOVA) was conducted

with time (pre, post) and group (hemiplegic, unaffected) as

within-subject factors. The interaction effect (time × group) was

included in the model to assess whether changes over time

differed between groups. For significant interaction effects, post

hoc pairwise comparisons were performed using paired t-tests

with Bonferroni correction to control for Type I error. A two-

tailed P-value of <0.05 was considered statistically significant.

3 Results

The study included 80 stroke patients (47 males, 33 females)

aged 52–82 years (mean, 72 ± 7.68 years). The mean poststroke

duration was 2.3 months (range, 1–3 months). The cohort

comprised 65 cases of cerebral infarction and 15 cases of cerebral

hemorrhage. Hemiplegic shoulder involvement included 45 left-

sided and 35 right-sided cases.

All patients exhibited shoulder disorders on the affected side,

confirmed by MSUS, with concomitant shoulder pain (VAS score

≥4) (Table 1).

3.1 SST findings

MSUS revealed abnormalities exclusively in the SST (11), with

no pathological changes observed in the subscapularis (SUBT),

infraspinatus (INFT), or teres minor (TMT) tendons.

3.1.1 SST thickness

Repeated-measures ANOVA revealed significant main effects

of time (F(1,79) = 18.32, P < 0.001) and group (F(1,79) = 145.67,

P < 0.001), as well as a significant time × group interaction

(F(1,79) = 6.89, P = 0.011). Post hoc analysis demonstrated a

significant reduction in SST thickness on the hemiplegic side

post-rehabilitation (8.46 ± 0.67 mm vs. 8.23 ± 0.36 mm;

P = 0.023), whereas no significant change was observed on the

unaffected side (6.54 ± 0.59 mm vs. 6.60 ± 0.42 mm; P = 0.462)

(data presented in Table 2; Figure 1).

TABLE 1 The demographic data for all the patients.

Patients Gender Age Stroke Hemiplegia
shoulder

Male Female Cerebral infarction Brain blood Right Left

80 47 33 72 ± 7.68 65 15 35 45
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3.1.2 Tendon tears

All identified tears were localized to the SST. The mean

maximum tear diameter showed no significant change following

rehabilitation (pre, 4.34 ± 0.47 mm; post, 4.56 ± 0.41 mm;

P = 0.796).

3.2 BICT findings

3.2.1 Pre-rehabilitation findings

Among the 80 patients, 44 (55%) exhibited biceps tenosynovitis

(BICT involvement), which presented as:

1. Isolated tendon sheath effusion (>2 mm) in 32 cases (mean

thickness, 2.98 ± 0.61 mm)

2. Tenosynovitis with concomitant effusion in 12 cases

3.2.2 Post-rehabilitation outcomes
The prevalence of BICT pathology decreased to 18 cases

(22.5%), consisting of:

1. Eight cases with isolated sheath effusion (>2 mm)

2. Ten cases demonstrating tenosynovitis with effusion

In the subgroup with initial effusion (n = 32), post-treatment

measurements showed a significant reduction in sheath thickness

(1.82 ± 0.45 mm vs. baseline; P < 0.001) (Figure 2).

3.3 SA–SD bursa findings

3.3.1 Pre-rehabilitation assessment
Ultrasound examination identified SA–SD bursal effusion

(>2 mm) in 21 of 80 patients (26.3%), with a mean effusion

thickness of 2.55 ± 0.34 mm.

3.3.2 Post-rehabilitation outcomes

The prevalence of bursal effusion decreased significantly to

nine cases (11.3%). Among the initial 21 patients with effusion,

post-treatment measurements demonstrated a marked reduction

in mean thickness (1.12 ± 0.64 mm vs. baseline; P < 0.001)

(Table 3; Figure 3).

3.4 GHS findings

For AGT distance, repeated-measures ANOVA showed

significant main effects of time (F(1,79) = 32.15, P < 0.001) and

group (F(1,79) = 89.43, P < 0.001), with a significant time × group

interaction (F(1,79) = 12.76, P < 0.001). Post hoc comparisons

confirmed a significant decrease in AGT distance on the

hemiplegic side post-rehabilitation (25.54 ± 5.32 mm vs.

21.48 ± 3.79 mm; P < 0.001), while the unaffected side remained

stable (17.36 ± 3.35 mm vs. 16.76 ± 3.76 mm; P = 0.816)

(Table 4; Figure 4).

3.5 VAS pain scores

3.5.1 Pre-rehabilitation distribution
The baseline VAS scores demonstrated moderate-to-severe

pain among participants:

1. 4–5 points: 48 patients (60%)

2. 6–7 points: 22 patients (27.5%)

3. 8–9 points: 8 patients (10%)

TABLE 2 Repeated-measures ANOVA results for SST thickness.

Factor F-value
(df)

P-value Post hoc comparisons
(Bonferroni-adjusted)

Time 18.32 (1,79) <0.001 Pre vs post (Hemiplegic): P = 0.023

Group 145.67 (1,79) <0.001 Hemiplegic vs unaffected (pre):

P < 0.001

Time × group 6.89 (1,79) 0.011 Hemiplegic vs unaffected (post):

P < 0.001

FIGURE 1

Ultrasonographic findings of supraspinatus tendinitis in the hemiplegic shoulder (A) before and (B) after rehabilitation therapy. The arrows indicate the

affected supraspinatus tendon.

Liu et al. 10.3389/fresc.2025.1576890

Frontiers in Rehabilitation Sciences 05 frontiersin.org

https://doi.org/10.3389/fresc.2025.1576890
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


4. 10 points: 2 patients (2.5%)

No patients reported mild pain (1–3 points) or absence of pain

(0 points).

3.5.2 Post-rehabilitation outcomes
Following treatment, we observed significant pain reduction:

1. 1–3 points (mild pain): 54 patients (67.5%)

2. 4–5 points: 22 patients (27.5%)

3. 6–7 points: 2 patients (2.5%)

4. 8–9 points: 2 patients (2.5%)

No patients reported severe pain (10 points).

The intervention resulted in a statistically significant VAS score

reduction (P < 0.001) (Table 5).

4 Discussion

The increasing global incidence of stroke in recent years has

brought heightened attention to poststroke rehabilitation

strategies (12). As an integral component of comprehensive

stroke management, rehabilitation therapy has been well-

established as the most effective approach for reducing disability

and improving functional outcomes (1–4). A frequently observed

complication during rehabilitation is the acute onset of shoulder

pain, which often presents as a clinically significant symptom

requiring prompt medical attention. This pain manifestation not

only compromises patient comfort but also substantially

impedes the rehabilitation process. Current evidence indicates

that STIs and GHS represent two primary etiological factors

contributing to this debilitating pain syndrome in poststroke

patients (6). The pathophysiological mechanisms underlying

these conditions involve complex interactions between

neuromuscular impairment, biomechanical stress, and

inflammatory responses, which collectively exacerbate shoulder

dysfunction and hinder recovery progress. This study aimed to

assess the clinical utility of musculoskeletal ultrasound in

monitoring rehabilitation outcomes among stroke patients

with hemiplegic shoulder pain. Our findings demonstrate that

musculoskeletal ultrasound represents a reliable and

reproducible modality for tracking rehabilitation progress in

this patient population.

The pathogenesis of STIs in poststroke patients involves a

multifactorial interplay between intrinsic and extrinsic factors

(13). Intrinsic predisposing factors primarily consist of diminished

neuromuscular activation, compromised biomechanical properties

of musculoskeletal tissues, and impaired vascular perfusion.

Extrinsic contributors encompass traumatic insults, inappropriate

therapeutic exercise regimens, and iatrogenic surgical

complications. This vulnerability is particularly pronounced in

elderly stroke populations due to age-related degenerative changes

in tendon structure and function, which markedly reduce tissue

resilience. The pathophysiological cascade is further exacerbated

by characteristic poststroke musculoskeletal alterations, including

restricted glenohumeral mobility, abnormal scapulohumeral

kinematics, and impaired movement patterns. These pathological

changes render both active and passive rehabilitation maneuvers

potentially injurious, frequently precipitating STIs. The resultant

shoulder pain establishes a vicious cycle by progressively limiting

the joint range of motion, compromising functional recovery, and

ultimately undermining rehabilitation outcomes. This complex

FIGURE 2

Transverse ultrasound images showing BICT sheath effusion (A) pre-rehabilitation and (B) post-rehabilitation. The arrows demarcate the fluid-

distended BICT synovial sheath.

TABLE 3 Comparison of the maximum value of rupture, BICT, and SA–SD
bursal before and after rehabilitation therapy.

Rehabilitation
therapy

Average
maximum

value of SST
rupture
(mm)

Thickness
of BICT
sheath
effusion
(mm)

Thickness
of SA–SD
bursal
effusion
(mm)

Before 4.34 ± 0.47 2.98 ± 0.61

(44/80)

2.55 ± 0.34

(21/80)

After 4.56 ± 0.41 1.82 ± 0.45

(44/80)

1.12 ± 0.64

(21/80)

P-value >0.05 <0.01 <0.01
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pathophysiology underscores the need for carefully tailored

rehabilitation approaches in this vulnerable patient population.

The development of STIs in poststroke patients primarily results

from neuromuscular dysfunction during both the early hypotonic

and late hypertonic phases following cerebral hemorrhage or

infarction. During these phases, rotator cuff muscles exhibit

significantly reduced activation due to impaired neural innervation,

while simultaneously being subjected to continuous mechanical

stress from humeral head displacement. This pathophysiological

state leads to sustained tensile loading of the SST, SUBT, and

BICT, precipitating a sterile inflammatory cascade characterized by

initial edema and synovial effusion, followed by progressive tendon

degeneration marked by fibrosis, reduced elasticity, and increased

susceptibility to partial or complete rupture (14).

Our imaging findings revealed several clinically significant

observations: First, we documented substantial SST thickening on

the hemiplegic side compared with the unaffected side at baseline

(P < 0.001), with post-rehabilitation measurements showing

significant reduction (P = 0.023), though persistent inter-limb

differences remained (P < 0.001). This residual asymmetry

suggests the chronic nature of rotator cuff pathology may

necessitate extended rehabilitation beyond our 12-week

intervention period. Second, while we observed no SUBT

abnormalities—contrasting with Murie-Fernandez et al.’s report

(15)—our findings regarding SST improvements aligned with

their therapeutic outcomes (15). Third, rehabilitation produced

marked reductions in both the prevalence and severity of BICT

tenosynovitis (P < 0.001) and SA–SD bursal effusions (P < 0.001),

indicating our protocol effectively addressed inflammatory

components of STI. These improvements in tendinopathy and

effusion parameters, consistent with established literature (16),

demonstrate the efficacy of our rehabilitation approach in modifying

the pathological progression of hemiplegic shoulder pain.

GHS represents a frequent complication of poststroke

hemiplegia, with an estimated incidence of 30%–80% in

affected patients (17). This condition predominantly develops

during the early hypotonic phase following stroke, when the

profound weakness of the shoulder girdle musculature fails to

counteract the gravitational pull on the affected upper limb,

resulting in inferior displacement of the humeral head relative

to the glenoid fossa. The resultant malalignment creates

excessive traction on periarticular structures, including the

subacromial bursa and rotator cuff neural elements, leading to

mechanical irritation and subsequent soft tissue damage that

manifests clinically as shoulder pain (18). Without timely

intervention, this pathological process may progress to a

cascade of secondary complications including chronic shoulder

pain, STIs, and shoulder–hand syndrome, ultimately

compromising upper limb functional recovery and impairing

activities of daily living (19, 20).

Current clinical assessment of GHS primarily relies on two

modalities: physical palpation and radiographic imaging. While

palpation offers the advantage of being readily accessible and

inexpensive, this technique suffers from significant limitations

including operator-dependent subjectivity, limited accuracy

(particularly for mild subluxation), and poor sensitivity for early-

stage detection (21). Conventional radiography, although

providing objective measurements, presents practical challenges

in rehabilitation settings due to repeated radiation exposure and

poor suitability for serial monitoring. In contrast, MSUS has

emerged as an ideal imaging modality for GHS evaluation,

offering three distinct advantages: (1) complete absence of

ionizing radiation, making it safe for repeated assessments; (2)

capacity for real-time, dynamic evaluation without temporal

restrictions; and (3) simultaneous visualization of periarticular

soft tissues, enabling comprehensive analysis of contributing

factors to GHS pathogenesis. These characteristics make MSUS

particularly valuable for both diagnostic evaluation and

therapeutic monitoring in the rehabilitation setting.

TABLE 4 Repeated-measures ANOVA results for AGT distance.

Factor F-value
(df)

P-value Post Hoc comparisons
(Bonferroni-adjusted)

Time 32.15 (1,79) <0.001 Pre vs post (hemiplegic): P < 0.001

Group 89.43 (1,79) <0.001 Hemiplegic vs unaffected (pre):

P < 0.001

Time × group 12.76 (1,79) <0.001 Hemiplegic vs unaffected (post):

P < 0.001

FIGURE 3

SA–SD bursal effusion demonstrated on ultrasonography (A) at baseline and (B) following rehabilitation. The arrows highlight the pathological fluid

accumulation within the SA–SD bursa.
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MSUS has emerged as a reliable imaging modality for

quantifying GHS in clinical practice. Pioneering work by Park

et al. (22) established the excellent test–retest reliability of MSUS

measurements for AGT distance in poststroke hemiplegia, a

finding subsequently corroborated by Kumar et al. (23) who

further demonstrated its minimal measurement error in clinical

applications. In our cohort study, MSUS evaluation revealed

significant GHS in all 80 hemiplegic patients at baseline, with the

affected side demonstrating markedly greater AGT distances

compared with the unaffected side (P < 0.001). Post-rehabilitation

assessments showed substantial improvement in GHS parameters,

evidenced by significant reductions in AGT measurements on the

hemiplegic side (P < 0.001), consistent with the therapeutic

outcomes reported by Türkkan et al. (24). However, unlike

Türkkan’s findings, persistent inter-side differences remained

after treatment (P < 0.001), potentially attributable to the

relatively short 12-week intervention period in our study.

Importantly, our results confirm that MSUS maintains excellent

reliability and discriminant validity for serial AGT measurements

throughout the rehabilitation process, making it particularly

suitable for both initial assessment and longitudinal monitoring

of GHS progression in poststroke patients.

VAS serves as a well-validated instrument for quantitative pain

assessment in clinical research (25). Our findings demonstrated a

statistically significant reduction in VAS scores following

rehabilitation intervention (P < 0.001), indicating substantial

improvement in patients’ subjective pain experience. This clinical

improvement was corroborated by objective ultrasonographic

measures, including (1) decreased SST thickness; (2) stabilization

of pre-existing tendon tears without further expansion; (3)

reduction in BICT sheath effusion; (4) diminished SA–SD bursal

effusion; and (5) decreased AGT distance. The concordance

between these objective imaging parameters and patients’

subjective pain relief provides robust evidence for the therapeutic

efficacy of our rehabilitation protocol, validating both its

structural and functional benefits.

In conclusion, MSUS represents a feasible imaging alternative

to MRI for evaluating STIs and GHS in poststroke hemiplegic

patients with shoulder involvement. As a readily accessible

imaging modality, MSUS offers distinct advantages in accurately

identifying pathological changes in the hemiplegic shoulder while

enabling serial examinations to objectively monitor rehabilitation

progress. This retrospective study demonstrates significant

correlations between ultrasonographic improvements (including

reduced tendon thickness, effusion volumes, and AGT distances)

and pain reduction as measured by VAS scores. However, the

relative contribution of each parameter to clinical improvement

warrants further investigation through prospective studies.

Additionally, future research should incorporate extended

rehabilitation durations to address the temporal limitations

identified in our current protocol, thereby providing more

comprehensive insights into the long-term therapeutic outcomes.
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