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Calcitonin gene-related peptide (CGRP) is an active peptide composed of 37

amino acids that functions through specific receptors. It is widely distributed

in small-diameter dorsal root ganglion neurons, trigeminal ganglion neurons,

and nerve fibers innervating the spinal cord and brainstem dorsal horn. CGRP

regulates various physiological functions, including vasodilation, inflammation

modulation, and cardiac protection, and plays a key role in pain transmission.

Pain is a global health challenge closely associated with the activity of

neuropeptides such as CGRP. Although progress has been made in the

application of CGRP in treating various diseases, research in the field of

rehabilitation remains in its early stages. This article summarizes the roles of

CGRP in peripheral nerve injury, central injury, cardiovascular rehabilitation,

and pain rehabilitation. In terms of treatment, common physical therapies

such as laser therapy and shock wave therapy have been shown to influence

CGRP expression levels. However, the specific effects of these physical

interventions on CGRP require more systematic future research and analysis to

achieve more efficient and personalized rehabilitation strategies.
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1 Introduction

Pain, a global health burden and rehabilitation challenge, disrupts biopsychosocial

functioning through multifactorial pathophysiology involving cellular signaling

networks. Neuropeptides critically engage receptors and inflammatory mediators in

nociceptive processing, driving persistent pain states.

Current research advancements in neurogenic inflammation and pain-related

disorders, including migraine and arthritic conditions, have established calcitonin gene-

related peptide (CGRP) as a crucial neuromodulator in pain pathophysiology. Extensive

scientific evidence demonstrates that CGRP functions as both a key mediator and

amplifier in nociceptive transmission pathways, with its expression levels directly

correlating with pain intensity and duration across various clinical manifestations (1).

This review examines CGRP’s dual roles in pain pathophysiology and its translational

potential as a therapeutic target in precision rehabilitation medicine.

Calcitonin gene-related peptide (CGRP) is an active polypeptide composed of 37 amino

acids, formed through specific splicing of the calcitonin gene (CALCA). In humans,

CGRP exists in α and β forms, which share 94% structural similarity. CGRP binds to

specific receptors and is widely distributed in the body, particularly in small-diameter
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dorsal root ganglion neurons, trigeminal ganglion neurons, and

nerve fibers controlling the spinal cord and brainstem dorsal horn.

α-CGRP and β-CGRP exhibit similar biological activities, with α-

CGRP being the predominant form in the central and peripheral

nervous systems, while β-CGRP plays a more significant role in

intestinal function. The expression of calcitonin and CGRP mRNA

is tissue-specific. Calcitonin (CT), a well-known peptide hormone

isolated from the parathyroid gland, is involved in calcium ion

homeostasis. Early studies on CT gene cloning revealed alternative

RNA processing in neuronal tissues, leading to the synthesis

of mRNA encoding CGRP (2).CGRP mRNA is synthesized

by splicing the first three exons of CALCA to the fifth and

sixth exons, followed by post-translational modifications and

proteolytic cleavage to form the mature peptide (3–5). CGRP’s

pleiotropic activity encompasses vasodilation, immunomodulation,

cardioprotection, and nociceptive signaling.

2 Functions and mechanisms of CGRP

2.1 Advances in basic medical research
on CGRP

CGRP critically mediates nociceptive signaling, facilitating pain

transmission from peripheral nociceptors to the amygdala via

spinal dorsal horn release during inflammatory and noxious

stimuli. In chronic pain states, CGRP upregulation in sensory

neurons—particularly C fibers (mediating chronic dull pain) and

Aδ fibers (processing acute sharp pain)—drives peripheral and

central sensitization mechanisms (6–8). CGRP potentiates central

sensory neuron excitability, augmenting spinal nociceptive

transmission and driving central sensitization in chronic pain.

Arthritis models demonstrate amplified synaptic facilitation by

CGRP, contrasting its dual modulation (excitatory/inhibitory) in

physiological states (6). CGRP signaling critically mediates visceral

pain, notably bladder-colonic cross-sensitization in pelvic pain

pathways, as evidenced by preclinical models (7, 9). Emerging

evidence links spleen deficiency-associated functional dyspepsia to

dysregulated motility-modulating brain-gut peptides, particularly

CGRP (10). In murine TMD models with joint inflammation and

masticatory muscle injury, TRPV4 activation in trigeminal

ganglion neurons drives CGRP release, suggesting therapeutic

potential of TRPV4/CGRP blockade for TMD pain (11).

In rat OA pain models, CGRP antibody blockade alleviated

pain with sustained (>60 days) analgesia in NSAID-refractory

cases, demonstrating therapeutic potential across OA pain

subtypes (12).Pota et al. found that short-term exposure to 17β-

estradiol increased CGRP release in F11 cell lines at 200 mg/kg,

highlighting the role of sex hormones in pain transmission and

potential explanations for sex differences in pain sensitivity (13).

Additionally, the dual role of CGRP in inflammation

modulation is increasingly recognized. In a rat asthma model,

CGRP released by pulmonary neuroendocrine cells (PNECs)

enhances ILC2 activity, leading to airway smooth muscle

contraction and mucus cell hyperplasia, exacerbating allergic

responses (14, 15).

CGRP, the potent vasodilator central to migraine

pathophysiology, induces migraine-like attacks when administered

exogenously. Anti-CGRP therapies demonstrate dual efficacy in

acute and prophylactic migraine management without triptan-

like vasoconstriction, supported by consistently positive clinical

trial outcomes and favorable safety profiles (2, 14, 16–19). While

propelling anti-CGRP drug development, a 1994 study

paradoxically found spinal CGRP administration failed to

alter nociceptive responses, highlighting methodological

discrepancies (model systems, dosing, nociceptive assays)

underlying outcome variability (16).

CGRP exerts therapeutic potential in cardiovascular disease

through its potent vasodilatory effects, enhancing regional

perfusion to confer adjuvant benefits in hypertensive and

coronary conditions. Crucially, CGRP antagonizes multiple

vasoconstrictors (serotonin, endothelin, neuropeptide Y) while

promoting hemodynamic optimization and cardioprotection in

cardiovascular pathologies (20, 21).

Beyond neurodegeneration, CGRP exhibits neuroprotective

potential via PKA-mediated hippocampal metabolic regulation

and anti-inflammatory mechanisms, positioning it as an

emerging therapeutic target in Alzheimer’s disease research (22).

Denervation can lead to bone density changes, occasionally

progressing to neurogenic osteoporosis. Studies confirm that

CGRP stimulates bone formation. Bone density maintenance

relies on intact innervation, and CGRP directly or indirectly

modulates osteoporotic processes (23, 24). Both osteoblasts and

osteoclasts express CGRP receptors, enabling CGRP to promote

bone formation and inhibit resorption. In mice with CGRP gene

overexpression, trabecular bone density increased, alleviating

osteoporosis (25, 26).

Over the past decades, CGRP’s roles in digestive, nervous,

cardiovascular, skeletal, and respiratory systems have been

extensively studied, with clinical advances in CGRP antagonists.

However, the biological functions and therapeutic potential of

CGRP in rehabilitation medicine remain underexplored.

2.2 Potential roles of CGRP in rehabilitation
medicine

CGRP’s applications in rehabilitation are not yet mainstream

due to limited research on its direct links to rehabilitation-related

dysfunctions. Nevertheless, understanding CGRP’s distribution

and mechanisms can inform future rehabilitation strategies.

Further research may enhance pain biology understanding and

offer new approaches for chronic pain management, improving

patients’ quality of life and rehabilitation outcomes.

2.2.1 Role of CGRP in peripheral nerve injury
rehabilitation

CGRP is highly enriched in spinal dorsal horn and primary

afferent fibers, serving as a neuroregeneration biomarker.

Following nerve injury, its upregulated expression triggers

p-CREB/c-fos signaling cascades that enhance neuroplasticity, as

evidenced by massage-induced CGRP modulation in rat sciatic

Zhencheng and Aiguo 10.3389/fresc.2025.1593487

Frontiers in Rehabilitation Sciences 02 frontiersin.org

https://doi.org/10.3389/fresc.2025.1593487
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


injury models where dorsal root ganglia alterations correlate with

spinal cord repair (27).

Post-injury upregulation of CGRP in DRG neurons exhibits

pain-associated neuroinflammatory effects. Neural mobilization

therapy in rabbit sciatic injury models demonstrated DRG CGRP

downregulation, attenuating neuroinflammation, suppressing central

sensitization, and enhancing functional recovery (28). Thus, CGRP

has dual roles in peripheral nerve injury: promoting nerve survival

and regeneration while potentially exacerbating acute inflammation.

2.2.2 Role of CGRP in central injury rehabilitation
Emerging evidence implicates CGRP in acupuncture and

neurorehabilitation mechanisms for CNS injuries. In rat ischemic

stroke models, CGRP/NGF co-administration suppressed pro-

apoptotic mediators (ICAM-1/Fas), exerting neuroprotection via

dual anti-inflammatory and anti-apoptotic pathways (29). GV26

electroacupuncture modulated neurovascular homeostasis in

cerebral ischemia by elevating CGRP and downregulating AVP/

Ang-II (21). Multimodal early rehabilitation (sensorimotor

stimulation, environmental enrichment) in neonatal HIBI models

upregulated pan-tissue CGRP expression, correlating with

enhanced neuromotor recovery and cognitive improvement (30).

In rodent TBI models, CGRP attenuated edema, regulated

autophagic-apoptotic crosstalk through Akt/mTOR axis modulation,

and mitigated neuroinflammatory responses (31). CGRP

upregulation in cerebral ischemia predicts survival, implicating

preconditioning-mediated ischemia tolerance (32).

Experimental investigations in spinal cord injury (SCI) models

have revealed dense CGRP-positive fiber proliferation within the

deeper laminae of the dorsal horn post-injury. This pathological

sprouting potentiates maladaptive sensory afferent recruitment in

segmental spinal reflex circuits, thereby exacerbating autonomic

dysreflexia (AD)—a life-threatening autonomic dysfunction.

Given the conserved neuroanatomical reorganization patterns

between animal models and human SCI pathophysiology, these

findings underscore a paradoxical risk: therapeutic strategies

aimed at neurorestoration may inadvertently promote AD

pathogenesis through aberrant circuit reinnervation (33).

2.2.3 Role of CGRP in cardiovascular rehabilitation
CGRP-positive fibers innervate atrial/ventricular myocardium,

coronary vasculature, and cardiac conduction systems. Rodent

studies reveal endurance training upregulates plasma/cardiac CGRP,

contributing to physiological cardiac remodeling. In contrast,

exhaustive exercise suppressed DRG CGRP synthesis, while exercise

preconditioning preserved CGRP levels to promote cardioprotective

adaptation (20). CGRP exerts cerebroprotective effects against

diabetic cerebrovascular remodeling via triple mechanisms:

antagonizing AngII-induced hypertension, suppressing apoptosis,

and mitigating oxidative stress (32).

As previously discussed, CGRP exerts potent vasodilatory effects

and can reduce blood pressure by modulating peripheral resistance.

However, in a phenol-induced hypertensive animal model, while

administration of an α2 receptor antagonist restored the reduced

CGRP levels, it failed to lower blood pressure—indicating a loss of

CGRP’s blood pressure regulatory capacity. The authors propose

that α2 receptor-mediated enhancement of sympathetic tone

amplifies pressor effects, thereby counterbalancing CGRP’s blood

pressure-lowering activity (1).

2.2.4 Role of CGRP in pain rehabilitation
Myofascial pain is commonly associated with trigger points and

elevated substance P, CGRP, and bradykinin (34). Manual therapy in

rodent myofascial pain models attenuated nociceptive neuropeptides

(CGRP/SP), alleviating neuromuscular hyperactivity and tissue

rigidity (35). Degenerated IVDs in chronic LBP drive pathological

crosstalk by releasing inflammatory mediators (TNF-α, IL-1β) and

neurotrophins (NGF/BDNF) that upregulate DRG neuronal CGRP

(36). Meta-analyses implicate CGRP elevation across multimodal

pain states (somatic/visceral/neuropathic). Clinical evidence shows

marked CGRP increases in OA synovial fluid, whiplash syndrome,

and post-disc herniation cases, with elevated serum/synovial levels

correlating with pain severity (37–39). CGRP antagonists inhibit

capsaicin-induced dermal blood flow increases, supporting

their role in pain modulation (40). Mechanical stress upregulates

CGRP in degenerative IVDs, potentially contributing to chronic

discogenic pain (41).

2.2.5 Effects of physical therapies on CGRP
Expression

Photobiomodulation therapies (LLLT/LED) differentially

modulate neuropeptide release; 808-nm LLLT selectively

upregulated SP without affecting CGRP in rodent dermal models

(42). Conversely, LLLT elevated CGRP levels in gingival crevicular

fluid (43). In a rat sciatic nerve injury model, low-power laser

initially increased CGRP expression, which later declined as

physical interventions dominated (44).

In rodent models, Extracorporeal Shock Wave Therapy dose-

dependently attenuated epidermal CGRP-positive fibers, with

parallel reductions in DRG and spinal cord CGRP levels,

implicating peripheral-central nociceptive modulation (45).

In fructose-induced metabolic syndrome models, chronic

fructose exposure suppressed CGRP levels, while 2-week TENS

intervention elevated CGRP by 14.5% to normal levels alongside

metabolic improvements, indicating CGRP’s critical role in

TENS-mediated sympathetic modulation (46).

Exercise therapy studies reveal paradoxical effects: treadmill-

exercised rats showed amplified migraine susceptibility via CGRP

upregulation, suggesting exercise-induced CGRP elevation may

increase pain sensitivity. This necessitates cautious exercise

prescription for migraine-prone patients (47).

3.1 Research prospects of CGRP in
rehabilitation medicine

While mechanistic insights advance, CGRP research remains

preclinical (rodent-focused) with human translational gaps

persisting in functional rehabilitation. Combination therapies

require rigorous validation for sustained efficacy.

For example, I would like to raise a doubt here. TENS, as a

recognized physiotherapy for pain relief, should be more inclined to

Zhencheng and Aiguo 10.3389/fresc.2025.1593487

Frontiers in Rehabilitation Sciences 03 frontiersin.org

https://doi.org/10.3389/fresc.2025.1593487
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


reduce the level of CGRP to reduce the sensitization of pain pathways,

but for some studies, its level increases (46, 48).Whether there are other

influencingmechanisms needs more verification. And there is another

research of exercise therapy suggest the opposite than the other (e.g.,

low-intensity muscle contraction reduces CGRP in a arthritis

research (49), while high-intensity running increases it (47), perhaps

the effects of different forms of exercise on CGRP (especially in

humans rather than rats) need to be explored.

In chronic pain management, physical modalities (thermal/

mechanical) may exert CGRP-mediated analgesia, though

systematic clinical substantiation remains imperative. Notably,

psychoneuroimmunological interactions may potentiate CGRP

modulation, optimizing rehabilitation paradigms (50).

Current rehab modalities (electrotherapy/ultrasound) lack

CGRP mechanistic insights. Elucidating CGRP-pathway modulation

could enable precision rehab protocols through biomarker-guided

intervention strategies.

Priority research axes should dissect CGRP’s disease-

specific mechanisms and quality-of-life impacts to develop

combined physio-pharmacological strategies for personalized

therapeutic optimization.

3.2 Conclusion

Calcitonin gene-related peptide (CGRP), a pivotal neuropeptide

in humans and mammals, plays a central regulatory role in pain

processing, neurological functions, and cardiovascular homeostasis.

These physiological processes hold direct clinical relevance to

rehabilitation medicine, particularly in conditions requiring clinical

interventions such as musculoskeletal pain syndromes, post-spinal

cord injury rehabilitation (including motor function recovery and

chronic pain management), and cardiovascular rehabilitation.

Emerging evidence suggests that the pathophysiological

mechanisms underlying these disorders are intricately linked to

sensory neural pathways, thereby implicating CGRP signaling in

their pathogenesis and therapeutic management.

This brief discussion talks about CGRP-mediated mechanisms

in disease etiology and treatment response. Significantly, it

proposes a novel conceptual framework for understanding how

physiotherapeutic approaches might exert their therapeutic effects

through modulation of CGRP expression—a hypothesis that

warrants empirical validation through targeted mechanistic

studies. Such investigation could potentially reveal new

dimensions in optimizing rehabilitation protocols through

neuropeptide pathway regulation.
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