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Introduction: Spinal cord injury (SCI) presents a significant burden to patients,

families, and the healthcare system. The ability to accurately predict functional

outcomes for SCI patients is essential for optimizing rehabilitation strategies,

guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to

a single acute rehabilitation facility and used the dataset to train advanced

machine learning algorithms to predict patients’ rehabilitation outcomes. The

primary outcome was the Functional Independence Measure (FIM) score at

discharge, reflecting the level of independence achieved by patients after

comprehensive inpatient rehabilitation.

Results: Tree-based algorithms, particularly Random Forest (RF) and XGBoost,

significantly outperformed traditional statistical models and Generalized Linear

Models (GLMs) in predicting discharge FIM scores. The RF model exhibited the

highest predictive accuracy, with an R-squared value of 0.90 and a Mean

Squared Error (MSE) of 0.29 on the training dataset, while achieving 0.52 R-

squared and 1.37 MSE on the test dataset. The XGBoost model also

demonstrated strong performance, with an R-squared value of 0.74 and an

MSE of 0.75 on the training dataset, and 0.51 R-squared with 1.39 MSE on the

test dataset. Our analysis identified key predictors of rehabilitation outcomes,

including the initial FIM scores and specific demographic factors such as level

of injury and prehospital living settings. The study also highlighted the superior

ability of tree-based models to capture the complex, non-linear relationships

between variables that impact recovery in SCI patients.

Discussion: This research underscores the potential of machine learning models to

enhance the accuracy of outcome predictions in SCI rehabilitation. The findings

support the integration of these advanced predictive tools in clinical settings to

better guide decision making for patients and families, tailor rehabilitation plans,

allocate resources efficiently, and ultimately improve patient outcomes.
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Introduction

Spinal cord injury (SCI) is a devastating condition that results

in significant physical, psychological, and social disability that

impacts not only patients but also their families and the

healthcare system. SCI is a highly heterogenous disease, with

variability in mechanism of injury, levels of injury, and severity

of injury among other factors. The complexity of SCI necessitates

a multifaceted approach to both acute treatment and

rehabilitation, involving multimodal clinical care and various

clinical and functional assessments to track patient progress and

outcomes. It is estimated that approximately 273,000 people in

the U.S. suffer from SCI with 12,000 new cases each year, leading

to significant healthcare utilization and long-term disability (1,

2). Patients often face a spectrum of physical and mental health

issues, including chronic pain, spasticity, autonomic dysreflexia,

cardiovascular disease, pressure ulcers, urinary tract infections,

respiratory complications, and psychological disorders, which

severely impact their quality of life and independence (3, 4).

These issues also contribute to increased healthcare utilization,

including clinic and ED visits to address the sequelae of SCI. For

these reasons, SCI patients require extensive social and financial

support to manage their condition and associated comorbidities (2).

Predicting functional outcomes for SCI patients is crucial for

guiding patient, family, and clinician decision-making in the

acute setting as well as for optimizing rehabilitation strategies.

Traditional outcome measures, such as the American Spinal

Injury Association (ASIA) Impairment Scale and the Functional

Independence Measure (FIM), provide a standardized approach

to assessing patient status but fall short in predicting long-term

outcomes with the desired granularity and accuracy. The

Functional Independence Measure is a validated score that

includes 18 items divided into motor and cognitive domains,

each scored on a scale from 1 (total assistance) to 7 (complete

independence). The total FIM score ranges from 18 to 126, with

higher scores indicating greater independence (5). FIM has been

widely used in various settings and populations, including SCI

patients. Studies have demonstrated its reliability and validity in

assessing functional outcomes. For instance, Saltychev et al.

highlighted the high internal consistency of FIM (5). Similarly,

Barbetta et al. demonstrated its validity in SCI, showing a

correlation between FIM scores and level of injury (6).

Importantly, prior work has suggested improvements in function

obtained after SCI are likely to be permanent. Osterthun et al.

examined the long-term functional independence of individuals

with motor complete SCI using the SCIM III showing that

functional gains are often long-lasting (7).

The heterogenous nature of SCI with wide variability in injury

mechanisms, levels, and severity as well as diverse patient

demographics and clinical characteristics results in non-linear

recovery trajectories that are challenging to predict using

traditional statistical models. Machine Learning (ML) offers a

powerful alternative, as its algorithms are designed to process

vast amounts of high-dimensional data and identify complex

patterns and non-linear relationships without pre-specified

assumptions (8–17). By leveraging demographic information,

injury characteristics, and initial functional assessments, ML can

generate personalized predictions that guide clinical decision-

making and rehabilitation strategies with greater accuracy than

traditional methods (18–21). This capability is essential for

moving towards more precise and individualized patient care in

SCI rehabilitation.

Previous studies have demonstrated the potential of machine

learning in predicting outcomes of various neurological

conditions, such as traumatic brain injury, cervical spinal cord

injury, and strokes (22–26). In the study by Say et al., machine

learning models, particularly tree-based algorithms like Random

Forests and XGBoost, were successfully applied to predict

improvements in Functional Independence Measure scores in

patients with traumatic brain injuries undergoing inpatient

rehabilitation (25). The ML models demonstrated high accuracy

and outperformed traditional statistical methods, showcasing

their potential to enhance personalized patient care and optimize

resource allocation in rehabilitation settings. While ML has been

applied to SCI populations, most prior studies have focused on

predicting neurological recovery following surgery or during

acute care. For instance, Shimizu et al. developed ML models to

predict motor outcomes after cervical SCI surgery and integrated

MRI and clinical data to forecast post-surgical outcomes (9, 14,

27). Meanwhile, inpatient rehabilitation is a cornerstone of SCI

recovery, providing structured, multidisciplinary care that

maximizes functional independence. Accurate prediction of

functional status at discharge is especially valuable in this setting,

as it helps clinicians tailor therapy intensity, prioritize

interventions, and set appropriate recovery goals. A smaller

number of studies have explored ML applications during

rehabilitation, but these typically focus on single outcome

measures, namely ASIA grade or a specific motor task, and do

not capture the full scope of patient independence as assessed by

all 18 FIM items (12, 23, 28).

To our knowledge, no prior work has used ML to

comprehensively predict discharge outcomes across all FIM

domains based on data available at admission to inpatient

rehabilitation. Therefore, we aimed to address this knowledge gap

by applying advanced ML algorithms to a large, comprehensive

SCI rehabilitation dataset. Specifically, we evaluated a diverse

suite of machine learning models, each selected for its unique

strengths in handling the complex and heterogeneous data

characteristic of spinal cord injury rehabilitation. We investigated

traditional but powerful regression techniques, including

Generalized Linear Models (GLMs) and ordinal regression. The

use of ordinal regression is specifically motivated by the nature

of the FIM score, which is an ordinal variable where the intervals

between values are not uniform. These models are highly

interpretable, as their coefficients offer clear insights into the

magnitude and direction of each feature’s impact on

rehabilitation outcomes. To enhance these models and prevent

overfitting, we applied regularization techniques such as Lasso

(L1), Ridge (L2), and Elastic Net. Lasso regression performs

automatic feature selection by forcing the coefficients of less

important features to zero, while Ridge regression is effective at

handling multicollinearity by shrinking coefficients without
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eliminating them. Elastic Net combines both L1 and L2 penalties,

often providing a balanced and robust solution.

More centrally, we focused on advanced tree-based ensemble

algorithms, which the study found to be superior at modeling the

complex, non-linear relationships inherent in SCI recovery.

Random Forest (RF), which emerged as the top-performing

model, operates by constructing a multitude of decision trees and

averaging their predictions to reduce variance and protect against

overfitting. We also evaluated gradient boosting models like

XGBoost and CatBoost, which build trees sequentially, where

each new tree is trained to correct the errors of the ones before

it. XGBoost is a highly efficient and powerful implementation of

this method. CatBoost offers a key advantage with its novel,

built-in algorithm for processing categorical data, which avoids

the need for extensive manual preprocessing and reduces the risk

of overfitting, making it a reliable model for datasets with

numerous categorical features.

By systematically comparing these distinct approaches, this

study provides several novel contributions specifically for the

spinal cord injury rehabilitation. First, we conducted a

comprehensive and systematic comparison of eleven distinct

models, ranging from regularized linear regressions to advanced

tree-based ensembles. Our results demonstrate the superior

performance of tree-based models, such as RF and CatBoost, in

capturing the complex, non-linear dynamics of functional

recovery after SCI, thereby establishing a benchmark for future

predictive modeling efforts in this domain. Second, beyond pure

prediction, our study performs a detailed feature importance

analysis using interpretable GLMs and RF. This allows us to

identify and quantify the impact of key clinical and demographic

predictors, including initial FIM scores, level of injury, and

prehospital living settings, offering actionable insights for

clinicians. Finally, we articulate a clear pathway for integrating

these predictive tools into clinical practice to enhance patient

counseling, tailor rehabilitation plans, and optimize the allocation

of healthcare resources, bridging the gap between advanced

computational analysis and practical clinical decision-making.

Materials and methods

Ethical approval and data acquisition

This study was approved by the Institutional Review Board

(IRB) of the University of California, Los Angeles (IRB

#15-001380). Due to the retrospective nature of the study, the

requirement for informed consent was waived. All data were

anonymized to ensure patient confidentiality and privacy.

Study design and participants

This study undertakes a comprehensive retrospective analysis

of a prospectively collected dataset, focusing on all patients with

traumatic spinal cord injury admitted to the Casa Colina Acute

Rehabilitation Unit in Pomona, CA, USA. The dataset

encompasses patient admissions spanning from 2010 to 2015,

providing a robust longitudinal perspective on rehabilitation

outcomes. A total of 589 patients were included in the study.

The target inclusion criteria for this study centered on adult

patients who had sustained a spinal cord injury and required

inpatient rehabilitation following their initial hospital discharge.

Only patients with complete functional outcome data, those with

FIM scores recorded at both admission and discharge, were

included in the final dataset used for analysis. This criterion

ensured the reliability and completeness of outcome assessments

across all individuals analyzed. To ensure the accuracy and

relevance of the findings, specific exclusion criteria were applied.

Pediatric patients, defined as individuals under the age of 18,

were excluded due to the different nature of pediatric SCI and

the distinct rehabilitation protocols typically employed for

younger patients. Pregnant patients were also excluded to avoid

confounding variables related to pregnancy that could impact

rehabilitation outcomes and to adhere to ethical considerations

regarding the inclusion of vulnerable populations. Additionally,

patients who passed away during rehabilitation were excluded, as

mortality prediction falls outside the scope of this study.

Data collection

Demographic and clinical data were collected from electronic

medical records (EMRs). Collected variables included age, sex,

race, level of injury (cervical, thoracic, lumbar, sacral), ASIA

Impairment Scale (AIS) grade, duration of injury, comorbid

conditions, and length of stay (LOS) in the rehabilitation

program. FIM scores were documented for each patient. These

scores were recorded at two critical time points: at the time of

admission to the rehabilitation facility and at the time

of discharge.

FIM scores

The FIM instrument encompasses 18 items across motor and

cognitive domains to assess patients’ abilities to perform daily

activities. The 18 items are: eating, grooming, bathing, dressing

the upper body, dressing the lower body, toileting, bladder

control, bowel control, bed transfer, toilet transfer, tub transfer,

walking/wheelchair use, stair navigation, comprehension,

expression, social interaction, problem-solving, and memory.

Each item is scored individually as an integer value ranging from

1 to 7, where 7 represents “complete independence,” and 1

indicates “total dependence.” FIM scores were treated as ordinal

data rather than points on a continuous scale.

Upon admission, FIM scores served as a baseline measure to

capture the severity of the impairment and the initial functional

capabilities. At discharge, FIM scores were measured again to

assess the degree of improvement achieved during the

rehabilitation stay. The difference between admission and

discharge FIM scores provided a quantifiable measure that

reflected the effectiveness of the rehabilitation interventions.
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Predictive parameters

In our effort to develop prediction models, we utilized a

comprehensive dataset incorporating 28 numerical features and

10 categorical features. This robust dataset was designed to

accurately predict rehabilitation outcomes, leveraging a blend of

quantitative and qualitative data to enhance model performance.

During the data preprocessing phase, values for certain features

were absent. To address missing values in numerical features, we

employed mean imputation due to its simplicity and minimal

risk of introducing information leakage or artificial variance. This

technique involves calculating the mean of the observed values

for each numerical feature and substituting this mean for any

missing entries. By doing so, we ensured that the imputed values

reflected the central tendency of the data without introducing

significant bias. Mean imputation is particularly beneficial as it

leverages available data to fill in gaps, preserving the dataset’s

integrity and variability and is a well-established method for

addressing missing data. More sophisticated techniques, such as

multiple imputation or k-nearest neighbors (kNN), often use

inter-variable correlations to predict missing values. If not

perfectly nested within a cross-validation framework, and in lack

of sufficient training data, these methods can lead to data leakage

from the validation set to the training set, resulting in overly

optimistic performance estimates and a model that generalizes

poorly. Our approach prioritized the avoidance of such

algorithmic bias that could jeopardize the generalization and

applicability of our conclusions. By using the mean—a single

measure of central tendency calculated solely from the training

data within each validation fold—we ensured that no artificial

relationships are introduced into the dataset for the model to

learn from, thereby maintaining the integrity of the model

validation process.

For categorical features, absent entries were treated by the

model as a distinct category. Subsequently, we applied a one-hot

encoding technique to transform categorical features into a

binary format suitable for machine learning algorithms. One-hot

encoding converts each categorical feature into a set of binary

(0 or 1) variables, with each binary variable representing the

presence or absence of a particular category. This transformation

expanded the dataset to include 85 predictive variables,

significantly increasing its dimensionality and ensuring that all

categorical information was comprehensively captured.

Machine learning model development

Our objective was to identify optimal machine learning models

that minimize prediction error for rehabilitation outcomes,

specifically focusing on FIM scores at discharge. We used both R

(R Studio Version 2023.03.1 + 446) and Python (version 3.10.9)

to evaluate the performance of eleven different models. These

included three ordinal regression models [Lasso ordinal

regression, Elastic-Net (EN) regression, and Ridge regression],

three generalized linear models (Lasso, EN, and Ridge GLM),

four tree-based methods (XGBoost, Random Forest, CatBoost,

and LightGBM), and a baseline approximation. A baseline

model, in which the admission FIM scores were considered as

the predicted discharge scores, served as a control.

To perform ordinal regression, we utilized the “ordinalNet”

package (v 2.12) in R. Ordinal regression is suited for predicting

ordinal variables, which are variables with a clear ordering but

unknown intervals between values. This type of regression serves

as an intermediate approach between standard regression and

classification problems. To mitigate overfitting, we applied three

regularization techniques: Lasso, Elastic Net (EN), and Ridge

regression. These techniques introduce a penalty term to the loss

function to control the complexity of the model. Lasso regression

employs a penalty proportional to the L1 norm of the parameter

vector, Ridge regression uses the L2 norm, and Elastic Net

combines both L1 and L2 penalties. Similar regularization

methods were applied to GLMs using the “glmnet” package

(v 4.1.7) in R.

Hyperparameter optimization of tree-based
models

To enhance the performance of our tree-based models, we

conducted hyperparameter optimization using a 10-fold cross-

validation method. This process involves fine-tuning the

following hyperparameters:

• XGBoost: We optimized seven hyperparameters—max_depth,

nrounds, eta, gamma, colsample_bytree, min_child_weight,

and subsample.

• Random Forest: Four hyperparameters were tuned—mtry,

maxmode, ntree, and Nodesize.

• CatBoost: Three hyperparameters were optimized—iterations,

learning_rate, and depth.

• LightGBM: Three hyperparameters were adjusted—

learning_rate, max_depth, and num_leaves.

The optimal parameter sets, determined based on test set

performances, were used to train the final models.

Model validation

To prevent overfitting and ensure robust model performance,

we employed a standard five-fold cross-validation technique

during model training. This method involves randomly dividing

the dataset into five equal-sized folds. In each iteration of

training, one fold is used for validation while the remaining four

folds are used for training. This process is repeated five times,

resulting in five distinct models. The model with the highest

accuracy from these five iterations is selected as the final model.
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Evaluation of model performance

We assessed the performance of our models in predicting FIM

scores at discharge using two key metrics: Mean Squared Error

(MSE) and R-squared (R2) values. MSE is calculated as the

average squared difference between the predicted values and the

actual values, with lower MSE indicating better predictive

accuracy. R2 measures the proportion of variance in the

dependent variable that is predictable from the independent

variables, with higher R2 values indicating better model fit. This

means that high-performing models exhibit low MSE and high

R2 values.

Feature importance

In addition to evaluating overall model performance, we

examined the importance of individual features within the GLM

models. GLMs provide selected features along with their

respective coefficients, which indicate the strength and direction

of the relationship between each feature and the predicted

outcome. By analyzing the frequency with which each feature is

included in the models and the magnitude of its coefficient, we

can identify the most influential features in predicting

rehabilitation outcomes.

Software and tools

All data preprocessing, model development, and statistical

analyses were conducted using Python (version 3.10.9) and R

(R Studio Version 2023.03.1 + 446). Key libraries included scikit-

learn for machine learning models and pandas for data

manipulation, while data visualization was performed using the

matplotlib and seaborn libraries.

Results

Study participants

Table 1 provides a breakdown of demographic and clinical data

points of patients. Overall, 589 SCI patients were included in the

study, and 369 patients were male (63%). The average age was

58.5 years. Comorbidities, which can significantly influence

functional ability after SCI, were assessed using ICD codes (29).

Diabetes mellitus was present in 88 participants (15%), and

coronary artery disease in 22 participants (4%), with other

comorbidities (e.g., dementia, metastatic cancer) absent in this

cohort. For pre-admission living situation, the vast majority, 558

patients (95%), resided at home, with others living in settings

such as board and care, transitional living, and skilled nursing

facilities. Prior to admission, 479 (81%) lived with family or

relatives, 60 (10%) lived alone, and the remainder lived with

friends, attendants, or others. During admission, most patients,

458 (78%), had a regular diet, 103 (17%) required modified food

consistency or supervision, and 25 (4.2%) needed tube or

parenteral feeding. For ambulation, measured as the ability to

walk or requirement of a wheelchair, 311 patients (53%) were

categorized as Walk (W), 257 (44%) as Wheelchair (C), and 21

(4%) as Both (B). Comprehension is categorized as Auditory (A),

Visual (V), or Both (B) with 344 patients (58%) as B (i.e.,

comprehending both auditory and visual cues), 227 (39%) as A,

and 18 (3%) as V. Similar categories are used for expression,

with 314 (53%) as B (i.e., using both vocal and nonvocal

expressions), 273 (46%) as V, and 2 (0.3%) as Nonvocal (N). The

average LOS of patients in rehabilitation facilities is 22.78 days.

Functional assessments and measures

Table 2 provides a summary of various functional assessments

and measures for the patient population, captured at the time of

TABLE 1 Baseline categorical characteristics of the study population,
N = 589.

Features N (%)

Gender Female 220 (37%)

Male 369 (63%)

Diabetes mellitus True 88 (15%)

False 501 (85%)

Coronary artery disease True 22 (4%)

False 567 (96%)

PreHospitalLivingSetting Home 558 (95%)

Board and care 3 (0.51%)

Transitional living 4 (0.68%)

Intermediate care 1 (0.17%)

Skilled nursing facility 1 (0.17%)

Rehabilitation facility 1 (0.17%)

Assisted living residence 4 (0.68%)

Other 4 (0.68%)

Unknown 13 (2.2%)

PreHospitalLivingWith Alone 60 (10%)

Family/Relatives 479 (81%)

Friends 12 (2.0%)

Attendant 4 (0.68%)

Other 3 (0.51%)

Unknown 31 (5.3%)

Admit-Swallowing Status Tube/Parenteral Feeding 25 (4.2%)

Modified Food Consistency/

Supervision

103 (17%)

Regular Food 458 (78%)

Unknown 3 (0.51%)

Admit-

FIMWalkWheelchairMeasured

B 21 (4%)

C 257 (44%)

W 311 (53%)

Admit-

FIMComprehensionMeasured

A 227 (39%)

B 344 (58%)

V 18 (3%)

Admit-FIMExpressionMeasured B 314 (53%)

N 2 (0.3%)

V 273 (46%)

Complications Intraspinal abscess 12 (2.0%)

Late effect of intracranial

abscess or pyogenic infection

3 (0.51%)
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admission to the rehabilitation facilities. The table reports average

scores with standard deviations for activities of daily living (ADLs).

In addition to the scores for FIM items (AdmitFIM), it also reports

the level of assistance required for bladder and bowel management,

frequency of accidents, and modifications needed for walking and

wheelchair use (AdmitFnMod). The data indicate a quantitative

summary of the patient’s functional status upon admission,

which is critical for planning rehabilitation and care interventions.

Figure 1 displays a Pearson correlation heatmap between

variables related to patient functional status at admission

(AdmitFIM) and discharge (DischFIM) as well as other potential

factors such as LOS. The variables on both axes are the same,

allowing for a symmetrical comparison of correlations. The color

gradient ranges from yellow to dark green, with yellow indicating

a strong positive correlation (1.0) and dark green indicating a

moderately negative correlation (−0.4). Gradients between these

colors indicate the respective strength of correlation. FIM scores

associated with physical activity (such as Bladder Control,

Toileting, Tub Transfer, etc.) positively correlate with one

another, while FIM scores associated with social activity (such as

Comprehension, Expression, Social Interaction, etc.) correlate

very strongly with each other. Furthermore, there appear to be

very few strong negative correlations, as evidenced by the lack of

dark green squares in the heatmap. Notably, LOS of the cohort

shows strong negative correlations with all other variables,

indicating connections between lower FIM scores and longer

stays in the rehabilitation facilities. As would be expected, the

admission FIM score for a given domain (i.e., grooming) tended

to correlate strongly with the discharge FIM score for the

same domain.

Figure 2 presents bar graphs that detail the mean scores of

various FIM items before and after rehabilitation. The yellow

bars represent the FIM scores prior to rehabilitation, while the

green bars indicate the scores after rehabilitation. Each graph is

labeled with the specific FIM task being measured. Error bars

are included to represent the standard deviation, providing a

visual depiction of the variability within each dataset and

underscoring the reliability of the measurements. This figure

shows significant improvements in functional independence

following rehabilitation. The scores for dressing, eating, toileting,

bathing, grooming, bed transfer, tub transfer, bladder control,

bowel control, stairs, cognitive comprehension, expression,

memory, problem solving, and social interaction, all show

significant improvements. The results of paired t-tests comparing

admission and discharge FIM scores reveal statistically significant

improvements across all 18 FIM scores (Figure 2; p < 0.001),

providing strong evidence of the positive impact of rehabilitation

on patient outcomes. These findings highlight the efficacy of

rehabilitation programs in enhancing patients’ functional

independence, consistent with our current understanding of the

importance of rehabilitation after SCI.

Unsupervised classification using principal
component analysis (PCA)

To explore the underlying structure of the data and identify

patterns, we performed a Principal Component Analysis (PCA)

using the FactoMineR package (v 2.9). The PCA was conducted

on the dataset comprising the eighteen dependent variables. The

discharge FIM scores ranged from 1 to 7, with higher scores

represented by lighter colors and lower scores by darker colors.

The eigenvalues indicate the amount of variance captured by

each principal component, with higher eigenvalues signifying

greater explained variance. We analyzed the contributions of the

variables to the first and second principal components and

highlighted the top 10 contributing variables for each

component. The overall contributions of the variables were

visualized, the arrows representing independent variables are

color-coded by their contribution values, computed based on the

squared cosine (cos2) values. The cos2 values indicate the quality

of representation of the variable on the principal component.

Figure 3 presents the PCA scatter plots and variable

contributions. The scatter plots (Figure 3A) display individuals

color-coded by their discharge FIM scores, revealing clusters of

individuals with similar functional independence levels. The bar

plots (Figure 3B) show the contributions of the variables

to the first and second principal components, with variables

such as AdmitFIMWalkWheelchair, AdmitFIMBathing, and

AdmitFIMToiletTransfer exhibiting high contributions. The radar

plot (Figure 3C) further elucidates the overall variable

contributions, emphasizing the significant role of specific

TABLE 2 Baseline functional numerical characteristics of the study
population, N = 589.

Features Mean (sd)

LOS 22.78 (16.5)

AGE 58.47 (18.84)

AdmitFIMEating 4.41 (1.96)

AdmitFIMGrooming 3.95 (1.77)

AdmitFIMBathing 2.29 (1.26)

AdmitFIMDressingUpper 3.1 (1.68)

AdmitFIMDressingLower 1.85 (1.19)

AdmitFIMToileting 1.55 (1.05)

AdmitFIMBladderCtrl 2.16 (1.87)

AdmitFIMBowelCtrl 3.04 (2.26)

AdmitFIMBedTransfer 2.03 (1.22)

AdmitFIMToiletTransfer 2.01 (1.36)

AdmitFIMTubTransfer 1.18 (1.63)

AdmitFIMWalkWheelchair 1.88 (1.63)

AdmitFIMStairs 0.49 (0.97)

AdmitFIMComprehension 5.9 (1.22)

AdmitFIMExpression 5.9 (1.32)

AdmitFIMSocialInteraction 5.98 (1.28)

AdmitFIMProblemSolving 5.4 (1.45)

AdmitFIMMemory 5.48 (1.46)

AdmitFnModBladderLvlAssist 2.17 (1.87)

AdmitFnModBladderFreqAccidents 5.8 (0.78)

AdmitFnModBowelLvlAssist 3.04 (2.26)

AdmitFnModBowelFreqAccidents 5.81 (0.71)

AdmitFnModDistWalked 0.93 (0.96)

AdmitFnModDistWheelchair 1.58 (1.01)

AdmitFnModWalk 1.04 (1.22)

AdmitFnModWheelchair 2.07 (1.79)

Rasoolinejad et al. 10.3389/fresc.2025.1594753

Frontiers in Rehabilitation Sciences 06 frontiersin.org

https://doi.org/10.3389/fresc.2025.1594753
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


functional measures at admission in explaining the variance in

rehabilitation outcomes. The PCA results indicate that certain

admission FIM scores, particularly those related to mobility and

self-care, are critical in defining the principal components, thus

influencing the overall rehabilitation outcomes.

Generalized linear models optimization

We performed hyperparameter tuning for GLMs; the principal

tool employed for this purpose was the “glmnet” function, version

4.1–7. This tool, as outlined by the protocols at https://glmnet.

stanford.edu/reference/cv.glmnet.html, facilitated the robust

cross-validation and regularization of our models. We adopted a

5-fold validation strategy to fine-tune the regularization

parameter, lambda, effectively varying it across a logarithmic

scale from 102 down to 10−3.

The choice of lambda depended on achieving the minimal

mean cross-validated error (cvm), a predefined metric provided

by the package. This methodical approach ensured that each

model configuration was optimized for both accuracy and

complexity, mitigating the risk of overfitting while enhancing

predictive performance. The fine-tuning of lambda within the

designated range allowed us to explore a spectrum of model

behaviors, from highly regularized to more flexible fits, thereby

identifying the setting that optimally balanced error

minimization and model complexity.

Tree-based models optimization

We employed a grid search approach to systematically

optimize the hyperparameters for four tree-based models:

Random Forest (RF), XGBoost, LightGBM, and CatBoost. This

method was chosen to ensure the highest possible model

accuracy while preventing overfitting by exploring various

combinations of parameter values and selecting those that

yielded the best performance on the test set. For the Random

Forest model, hyperparameter tuning focused on four key

parameters. The number of variables randomly sampled as

FIGURE 1

Pearson correlation map showing the correlations between all variables. A positive correlation coefficient (yellow) indicates a positive linear

relationship, while a negative correlation coefficient (dark blue) indicates a negative linear correlation.
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candidates at each split was varied between 30, 40, and 50. The

maximum number of terminal nodes per tree was explored

within the range of 5–25. The number of trees in the forest

was adjusted from 50 to 1,000 to balance model robustness

and computational efficiency. Finally, the minimum size of

terminal nodes was tested with values of 5, 10, 15, 100, and

500, which influenced the granularity and detail of the

resulting trees.

In the case of XGBoost, seven parameters were tuned to

enhance both tree complexity and regularization. The maximum

depth of a tree was evaluated at depths of 2, 3, 5, and 7. The

number of boosting rounds was varied from 50 to 500 to

optimize the balance between training duration and performance.

The learning rate was adjusted across 0.01, 0.1, and 1 to control

the step size at each iteration. The regularization parameter was

explored with values of 0, 1, 5, and 10 to manage overfitting.

Additionally, “colsample_bytree,” which controls the number of

features supplied to a tree, was tested with fractions of 0.5, 0.75,

and 1.0. The minimum sum of instance weight needed in a child

node was tuned across 1, 5, and 10 to ensure nodes had enough

data points. Lastly, the subsample ratio of the training instances

was varied at 0.5, 0.6, and 1 to prevent overfitting by

introducing randomness.

For LightGBM, three primary parameters were tuned to optimize

performance. The number of leaves in one tree was tested at values of

5, 50, 100, and 500, which directly impacted the complexity of the

model. The learning rate was adjusted across 0.0001, 0.001, and

0.01 to fine-tune the shrinkage rate during training. The maximum

depth of a tree was evaluated with values of 2, 3, 5, and 7,

providing control over the model’s complexity and depth. For

CatBoost, three parameters were subject to optimization. The

number of boosting iterations was varied between 100, 500, and

1,000 to balance the trade-off between training time and model

accuracy. The learning rate was tested with values of 0.0001, 0.001,

and 0.01 to control the rate of updates to the model. Finally, the

depth of the trees was tuned with values of 2, 3, 5, and 7 to

manage the model’s capacity to learn from the data.

By employing a grid search methodology, we were able to

systematically evaluate and identify the optimal hyperparameters

for each model, thus enhancing their predictive accuracy and

robustness against overfitting. Table 3 shows the results of

hyperparameter tuning for four tree-based models. The results

displayed in Table 3 are generated by averaging the five sets

produced by five-fold validations. The columns display results for

eighteen dependent variables, and the rows present the optimal

parameters for different models.

FIGURE 2

T-test bar plots of FIM scores with pre-rehab scores shown in yellow and post-rehab scores shown in blue. All metrics showed a statistically significant

improvement after rehab. ***p < 0.001.
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Model precision

Figure 4 presents bar plots illustrating the prediction outcomes

of various models. Figure 4A displays the R-squared values, while

Figure 4B shows the MSE values. In both subgraphs, blue bars

represent the training dataset results, and yellow bars represent

the test dataset results. In the training dataset, there are

noticeable variations in model performance. The baseline model,

which uses the same score at admission as the estimate for

discharge, performs poorly, serving as a benchmark for

comparison. Ordinal regression models, including lasso, elastic

net, and ridge parallel models, show consistent performance with

R-squared values around 0.42 and MSE values ranging from 1.77

to 1.79. These models provide a moderate fit to the training data.

Generalized Linear Models demonstrate better performance

than ordinal regression models. Specifically, the GLM with lasso

regularization achieves an R-squared value of 0.6 and an MSE of

1.17. The ridge regularizations within the GLM framework

further improve performance, with the GLM elastic net showing

an R-squared value of 0.62 and an MSE of 1.12, indicating better

predictive accuracy and lower error. Tree-based models exhibit

the strongest performance on the training dataset. Random

Forest achieves the highest R-squared value of 0.90 and the

lowest MSE of 0.29, indicating exceptional model fit and

predictive power. XGBoost and CatBoost also perform well, with

R-squared values of 0.74 and MSE values ranging from 0.75 to

0.80, demonstrating robust predictive capabilities with relatively

low errors.

Validation on the test sets reveals trends consistent with those

observed in the training dataset. The baseline model yields the

poorest fit on the test set, with an R-squared value of −0.57 and

an MSE of 4.93, indicating a significant mismatch between

predicted and actual outcomes. Ordinal regression models show

improvement over the baseline, with R-squared values between

0.32 and 0.33 and MSE values between 2.01 and 2.05, suggesting

they provide a better but still modest fit. GLM models continue

FIGURE 3

PCA scatter plots and variable contributions. The scatter plots (A) visualize individuals color-coded by their discharge FIM scores. Higher scores are

shown with more yellow colors. The bar plots (B) display the contributions of variables to the first and second principal components, and the radar plot

(C) illustrates the overall variable contributions with arrows color-coded by their contribution values.
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TABLE 3 Optimal parameters of tree-based models obtained from hyperparameter tuning.

Model Parameter Description Disch

FIM

Eating

Disch

FIM

Grooming

Disch

FIM

Bathing

Disch

FIM

Dressing

Upper

DischFIM

Dressing

Lower

DischFIM

Toileting

Disch

FIM

Bladder

Ctrl

Disch

FIM

Bowel

Ctrl

Disch

FIM

Bed

Transfer

Disch

FIM

Toilet

Transfer

Disch

FIM

Tub

Transfer

Disch

FIM

Walk

Wheel

chair

Disch

FIM

Stairs

DischFIM

Comprehension

Disch

FIM

Expression

Disch

FIM

Social

Interaction

Disch

FIM

Problem

Solving

Disch

FIM

Memory

XGBoost Nrounds maximal #

iteration

70 230 230 320 230 240 290 370 140 440 280 290 120 160 180 180 330 150

Max_depth maximal

depth of the

tree

4.8 4.2 2 3.8 3.4 2.6 3.6 4.8 4 4.8 4.4 2.2 4.4 4.2 4.4 4.2 3.6 3

Eta learning rate 0.10 0.10 0.26 0.06 0.10 0.08 0.06 0.08 0.08 0.05 0.08 0.10 0.28 0.10 0.10 0.28 0.06 0.10

Gamma regularization 1.2 1.4 2.6 2.2 1.8 2.6 7 10 1.2 2.2 4.2 2.4 5.2 1 1.4 2.4 0.4 2.2

Colsample_bytree controls #

features

supplied

0.5 0.5 0.6 0.6 0.5 0.6 0.7 0.6 0.5 0.6 0.6 0.6 0.7 0.7 0.5 0.7 0.7 0.7

Min_child_weight minimal

samples in a

node

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Subsample controls #

samples

supplied

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RF Mtry variables

selected at a

split

40 50 30 40 30 50 30 30 40 30 30 40 50 30 40 40 50 50

Maxnode maximal #

terminal

nodes

5 23 7 10 19 20 13 5 23 21 23 18 9 20 6 14 21 16

Ntree number of

trees

500 500 100 300 500 300 500 300 50 50 1,000 50 100 1,000 500 100 1,000 500

Nodesize # samples in

terminal

nodes

15 5 20 5 15 20 50 5 5 5 5 5 20 5 5 5 5 5

LightGBM Learning_rate learning rate 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Max_depth maximal

depth of the

tree

7 7 5 5 5 7 3 7 7 5 7 7 5 5 5 5 5 7

Num_leaves maximal #

terminal

nodes

50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 5 50 50

CatBoost Depth maximal

depth of the

tree

5 7 5 5 5 5 3 5 7 5 5 5 3 5 3 5 5 3

Iterations maximal #

trees created

1,000 1,000 1,000 1,000 1,000 1,000 500 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Learning_rate learning rate 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
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to show better performance on the test set compared to ordinal

regression models. The R-squared values for GLM models range

from 0.42 to 0.51, and MSE values range from 1.49 to 1.84,

indicating more accurate predictions and lower errors. Among

the GLM variants, the ridge regularization performs the best,

closely followed by the lasso regularization. Tree-based models

maintain their superior performance on the test set. The

R-squared values for these models range from 0.49 to 0.52, and

MSE values are between 0.82 and 1.42, indicating that these

models not only fit the training data well but also generalize

effectively to new data. CatBoost, in particular, with its tuned

hyperparameters, achieves the highest accuracy and minimal

overfitting, as indicated by its R-squared value of 0.52 and MSE

of 0.82. This suggests that CatBoost is the most reliable model

for predicting discharge performances, combining high accuracy

with robust generalization capabilities.

Figure 5 presents a detailed comparison of model

performance across various dependent variables, measured by

the R-squared values on the test set. Each cell in the heatmap is

color-coded to represent the R-squared value for the

corresponding model-variable pair, with lighter colors

indicating higher R-squared values. The heatmap reveals that

different models fit differently across the various dependent

variables. For instance, all models tend to perform better in

predicting discharge toilet transfer (DischFIMToiletTransfer)

compared to other variables. Conversely, models generally

perform poorly in predicting discharge Walk/Wheelchair status

(DischFIMWalkWheelchair) and discharge social interaction

scores (DischFIMSocialInteraction). When comparing model

types, tree-based models and GLMs tend to outperform ordinal

regression models across most dependent variables. Specifically,

tree-based models exhibit higher R-squared values for variables

such as discharge bladder control (DischFIMBladderCtrl),

discharge bowel control (DischFIMBowelCtrl), discharge

bed transfer (DischFIMBedTransfer), discharge toilet transfer

(DischFIMToiletTransfer), and discharge tub transfer

(DischFIMTubTransfer). This indicates that tree-based models are

more effective in capturing the complexities and interactions

within the data, leading to better predictive performance for

these variables.

FIGURE 4

Model performance measured by R-squared and MSE. (A) Bar plots with error bars of the R-squared of the train and test sets of models. (B) Bar plots

with error bars of the Mean Squared Error (MSE) of the train and test sets of models. The highest R-squared value and the lowest MSE value is noted in

the RF group, suggestive of a highly accurate model.
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Importance of clinical features

According to the frequencies of feature inclusion (non-zero

coefficients) and their values in GLM models, important features

for predicting rehabilitation outcomes are identified. Figure 6

displays the coefficients and frequencies of inclusion in GLM

models. In both sub-figures A and B, the x-axis represents the

three GLM models—Lasso, Elastic Net (EN), and Ridge—while

the y-axis lists all the independent features.

In Figure 6A, the non-zero coefficients extracted from the GLM

models are shown. The color scale indicates the magnitude and

direction of the coefficients, with yellow representing more

positive coefficients and dark green indicating more negative

coefficients. From the density map displayed above the heatmap,

we observed a normal distribution of coefficient values around 0,

depicted by the light green color. The absolute value of a

coefficient indicates the impact of the corresponding feature on

the overall prediction: a higher absolute value signifies a stronger

impact. For visualization and analysis purposes, the order of

independent variables is clustered hierarchically, as shown by the

dendrogram on the left. This hierarchical clustering uses

Euclidean distance to compute the distance between different

clusters of independent variables, merging similar clusters

iteratively until only a single cluster remains. Figure 7A illustrates

the same analysis process but with independent variables

organized based on variable categories.

We found that certain features have the most significant

negative impact on rehabilitation outcomes, such as prehospital

living in intermediate care (PreHospitalLivingSetting 4) or rehab

center (PreHospitalLivingSetting 9), injury at cervical level

FIGURE 5

Heatmap of test R-squared for eleven models and eighteen dependent variables. The fill of the heatmap represents the test R-squared value of the

given model and dependent variable. The density map on the upper left showed that R-squared values skewed to the left and mostly clustered

between 0 and 1. Higher values (shown in yellow) represent higher R-squared values and by extension better model performance.
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(C1-C7), diagnosis of late effects of intracranial abscess or pyogenic

infection, AdmitFIMWalk-Wheelchair Measure B (both walking

and using wheelchair at admission), and AdmitFIMWalk-

Wheelchair Measure C (wheelchair dependent at admission).

Conversely, features like lumbar SCI and intervertebral disc

disorders, along with AdmitFIMWheelchair Measure W (capable

of walking at admission), have the most positive correlation with

rehabilitation outcomes.

Figures 6B, 7B illustrate the frequencies of inclusion of

variables in the GLM models. Frequencies are determined by

how often a particular feature is included (i.e., has a non-zero

coefficient) across 90 prediction iterations. Yellow indicates a

frequency of 1 (included in all 90 predictions), while dark green

indicates a frequency of 0 (never included). The figure shows

that Lasso and Elastic Net tend to select similar variables, while

Ridge regression does not show variable selection in the same

manner. This difference is due to the intrinsic properties of the

Lasso (L1) and Ridge (L2) loss functions. The Lasso penalty

forces some coefficients to shrink to zero, removing insignificant

features and resulting in a sparser model. In contrast, Ridge

regression compresses coefficients without forcing them to zero,

leading to higher inclusion frequencies for a larger number of

features. The results from Lasso and Elastic Net

highlight the variables predictive of rehabilitation outcomes,

such as Age, LOS, AdmitFIMBathing, AdmitFIMDressingLower,

Prehospital Living Setting 4 (Intermediate Care),

AdmitFIMModBowelFreqAccidents, AdmitFIMMemory, and

AdmitFIMWalkWheelchair Measure C (wheelchair-dependent at

admission).

To enhance transparency and provide a balanced interpretation

of our models, we extended our feature importance analysis to our

best-performing tree-based model. While GLMs offer direct

interpretability through their coefficients, they are limited to

linear relationships. To understand the drivers of our most

accurate non-linear model, the Random Forest, we conducted a

feature importance analysis using SHAP (SHapley Additive

exPlanations) values (Figure 8). SHAP values explain the output

of any machine learning model by quantifying the contribution

of each feature to an individual prediction (30, 31). The analysis

consistently revealed that the single most important predictor for

a specific discharge FIM domain was the patient’s admission

score in that same domain (e.g., AdmitFIMBathing for predicting

DischFIMBathing). Other features that were consistently ranked

as highly important across multiple predictive domains included

FIGURE 6

Feature identification using GLM models and dendrogram algorithm. (A) Coefficient of independent variables in three GLM models ranked by

dendrogram algorithm. (B) Frequencies of coefficients being chosen (non-zero) in the three GLM models. On a scale of 0–1, 1 (bright yellow)

indicates the variable is selected 100% of the time (n= 90).
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the length of stay (LOS) and the patient’s age. This analysis

complements the GLM findings and confirms the critical role of

baseline functional status in predicting rehabilitation outcomes.

Discussion

The results of this study highlight the relationships between

baseline patient characteristics and long-term outcomes in SCI

after rehab. By examining tree-based models and GLM models

through a comprehensive grid search and subsequent evaluation,

we have identified initial functional status, level of SCI, and

prehospital living settings as significant predictors for

rehabilitation outcomes. The consistent trends observed across

both training and test datasets underscore the robustness of

our findings.

The baseline model, which simply used admission scores as

estimates for discharge scores, demonstrated the poorest fit,

highlighting the inadequacy of simplistic predictive approaches

for complex rehabilitation outcomes. Tree-based models,

including Random Forest, XGBoost, and CatBoost, consistently

outperformed GLMs and ordinal regression models, suggesting

that these approaches are better suited to capture the complex,

nonlinear interactions inherent in patients with a problem as

heterogenous as SCI. In particular, Random Forest emerged as

the top performing model, exhibiting the highest R-squared

FIGURE 7

Feature identification using GLM models organized by variable categories. (A) Coefficients of independent variables in relation to rehab outcomes, with

yellow representing positive outcome predictions and dark green representing negative predictions. Range =−1.28 to 0.6. (B) Frequencies of

coefficients being chosen (non-zero) in the three GLM models. On a scale of 0–1, 1 (bright yellow) indicates the variable is selected 100% of the

time (n= 90).
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FIGURE 8

SHAP summary plots for the random forest model across 16 of the 18 FIM prediction domains. Each plot shows the features ranked by their mean

absolute SHAP value, indicating their overall importance for the model’s predictions for that specific outcome. The features listed at the top of

each plot are the most impactful for that prediction.
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values, both in training and validation phases. This superior

performance can likely be attributed to the model’s ability to

effectively partition the data and reduce variance through ensemble

averaging. This underscores the necessity of employing more

sophisticated models that can account for the complex nature of

SCI. The performance of GLMs, while generally lower than that of

tree-based models, still provided valuable insights, particularly when

regularization techniques were applied. Among this class of models,

Elastic Net often emerged as the most balanced approach due to its

combined L1 and L2 penalties. This hybrid regularization helped in

maintaining model interpretability while preventing overfitting,

thereby ensuring better generalization to unseen data.

A key aspect of our analysis involved the evaluation of feature

importance, particularly through the lens of GLM coefficients and

their frequencies of inclusion. The hierarchical clustering of

independent variables in GLM models revealed distinct patterns

of influence. For instance, prehospital living in intermediate care

or Rehab Center settings was found to negatively correlate with

rehabilitation outcomes. This may reflect the greater baseline

impairment levels, presence of comorbidities, or more complex

medical needs of these patients, therefore necessitating more

intensive rehabilitation efforts. It may also reflect an impact of

socioeconomic status on SCI outcomes. In contrast, positive

predictors of rehabilitation outcomes included lower level of

injury, consistent with the current literature (32, 33). These

findings suggest that current approaches to rehabilitation may be

more effective for thoracic or lumbar SCI and support the idea

of tailoring rehab based on specific patient characteristics in SCI.

Additionally, functional measures at admission, such as the

ability to walk, were strong positive predictors, a finding that is

supported by prior studies (34–36). This emphasizes the critical

role of initial functional status in determining recovery trajectories.

The heatmap analysis of feature coefficients in GLM

models provided further granularity to our understanding.

Features with high absolute values of coefficients, such as

AdmitFIMWalkWheelchair and AdmitFIMBathing, consistently

emerged as significant predictors. These features not only had

strong individual impacts but also demonstrated high frequencies of

inclusion across multiple model iterations, indicating their

robustness as predictors. Tree-based models, while less interpretable

in terms of individual feature importance, demonstrated superior

predictive power. The ability of these models to handle interactions

and nonlinear relationships without extensive preprocessing made

them particularly effective in this context. The complexity and

heterogeneity of SCI likely explain why such a model is necessary

for good prediction of outcomes. For instance, CatBoost, with its

advanced handling of categorical variables and gradient boosting

approach, showed minimal overfitting and high predictive accuracy,

making it an excellent choice for modeling rehabilitation outcomes.

The differences in model performance across various FIM scores

also provided valuable insights into the specific areas of rehabilitation

that are more predictable. Models consistently performed better in

predicting outcomes related to physical transfers, such as bed and

toilet transfers, compared to more complex functional areas like

walking/wheelchair status and social interaction. This may be

due to the more straightforward nature of physical transfers,

which can be more directly influenced by rehabilitation

interventions such as practicing those tasks compared to the

complicated and context-dependent nature of social

interactions and mobility in diverse environments.

Our analysis underscores the advantages of sophisticated

modeling techniques in predicting rehabilitation outcomes. Tree-

based models, with their ability to handle interactions and

nonlinearities, provided the most accurate predictions, while GLMs

offered valuable insights into feature importance and the

relationships between predictors and outcomes. The combination of

these approaches enables a comprehensive understanding of the

factors driving rehabilitation success and emphasizes the value of a

multi-layered approach to model selection and feature evaluation.

The strong predictive power of initial functional measures suggests

that timely and individualized rehabilitation plans can significantly

enhance recovery trajectories. On an individual level, one of the

most common questions clinicians encounter following SCI is how

much function the patient will recover, if any. Our model takes

steps towards answering this question and can hopefully be a part

of clinical practice for counseling patients and families. More

broadly, the data here suggest that patients with higher functional

status after the acute phase of care from their injury tend to have

the best outcomes after rehab, as would be expected.

Extending beyond individual patient care, the identification of

robust predictors and high-performing models also provides

guidance for resource allocation and advocates for targeted

interventions that are tailored to the specific needs of patients. For

example, by identifying patients who may require more intensive or

specialized care, such as those living at intermediate care facilities

before injury, with lower FIM scores at admission, or injured at

higher spinal level, healthcare providers can allocate resources

accordingly to improve the efficiency and efficacy of rehabilitation

programs. By leveraging models like RF and CatBoost, clinicians

can more accurately predict patient trajectories and adjust

rehabilitation plans accordingly, ensuring that resources are directed

towards interventions with the highest potential for impact. By

integrating these findings into clinical practice, we can enhance the

precision and efficacy of rehabilitation efforts, ultimately leading to

better patient outcomes and more efficient use of healthcare resources.

While our machine learning models demonstrated strong

predictive performance and highlighted key factors that influenced

rehabilitation outcomes in our SCI patients, several limitations

should be noted. First, the data were collected from a single acute

rehabilitation center, which may limit the generalizability of our

findings to other institutions with different patient demographics,

injury characteristics, and rehabilitation protocols. Nonetheless, the

large sample size and consistent data collection standard ensured

strong internal validity of our results and provided the framework

for future multiple-center studies for external validation. Future

studies would also benefit from a prospective design to allow more

precise control of potential confounding factors such as pre-injury

comorbidities, injury severity, and rehabilitation intensity.

Another potential limitation is that in 2019, there was a

transition from the FIM scoring system to a newer system,

Section GG codes, as required by the Centers for Medicare and

Medicaid Services to enhance data standardization across post-
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acute care settings (37). Our data collection period (2010–2015)

was prior to the transition, and FIM was used to evaluate

patients’ functional status due to its high internal consistency

and wide implementation as an SCI outcome measure in

rehabilitation settings (5, 6, 38–41). Despite of the scoring system

difference, the Section GG scale shares similar items with FIM,

covering categories such as self-care, mobility, and cognitive

function. Studies comparing FIM and Section GG have found

strong positive correlations and consistency between the two

scoring systems at both admission and discharge evaluations and

across varying degrees of impairment (42, 43). For instance, Li

et al. identified seven self-care items and six mobility/transfer

items that are conceptually equivalent between FIM and Section

GG (42). They compared clinician-observed scores using both

systems on the same patient dataset and found that the total

scores in FIM were strongly correlated with the Section GG.

They also showed similar score change patterns from admission

to discharge score between the two systems. Therefore, the

predictive insights derived from FIM-based models are likely to

remain relevant under the newer Section GG system. Moreover,

our study aims to contribute to a broader understanding of how

machine learning models can be implemented to predict

functional outcome in SCI. The analytical framework we

developed can be readily adapted to other datasets, and future

work may involve retraining these models with Section GG-based

data. In this way, the clinical implications of our findings extend

beyond the use of FIM and remain applicable to current and

evolving rehabilitation practice.

In conclusion, our study leveraged advanced machine learning

techniques to predict rehabilitation outcomes for patients with

spinal cord injuries and identified initial functional status, level

of SCI, and prehospital living settings as significant outcome

predictors. The integration of sophisticated machine learning

models into both the acute setting and rehabilitation settings in

SCI can facilitate more accurate predictions of patient outcomes,

guiding clinical decision-making and resource allocation. This

approach not only enhances patient care but also optimizes the

use of healthcare resources, ensuring that interventions are

directed where they are most needed. Future research should

focus on refining these models and exploring additional features

that may further enhance predictive accuracy. Additionally,

prospective validation of the model is needed before its

introduction into clinical practice. The incorporation of novel

algorithms and more granular data could provide deeper insights

into the rehabilitation process, paving the way for even more

precise and personalized treatment plans. By continuously

advancing the application of machine learning in rehabilitation,

we can improve the quality of care for SCI patients and support

their journey toward recovery.
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