
EDITED BY  

Simona Portaro,  

University Hospital A.O.U. "G. Martino", Italy

REVIEWED BY  

Jader Vinicius Da Silva Rocha,  

Federal University of Espirito Santo, Brazil  

Lei Zhang,  

China Academy of Chinese Medical Sciences, 

China

*CORRESPONDENCE  

L. Baraja-Vegas  

luis.baraja@ucv.es

†These authors have contributed equally to 

this work and share senior authorship

RECEIVED 03 June 2025 

ACCEPTED 25 August 2025 

PUBLISHED 16 October 2025

CITATION 

Vicente-Mampel J, López-Soler J, Sevilla- 

López P, Ferrer-Torregrosa J, Martín-Ruíz J, 

Jaenada-Carrilero E, Castillo-Dutor N, 

Pascual-Leone A, Pascual-Leone N, Baraja- 

Vegas L, Pascual-Leone A and 

Tormos Muñoz JM (2025) Enhancing 

functional recovery after ACL injury. A 

protocol for a randomized control trial of 

transcranial direct current stimulation over the 

motor cortex.  

Front. Rehabil. Sci. 6:1627228. 

doi: 10.3389/fresc.2025.1627228

COPYRIGHT 

© 2025 Vicente-Mampel, López-Soler, 

Sevilla-López, Ferrer-Torregrosa, Martín-Ruíz, 

Jaenada-Carrilero, Castillo-Dutor, Pascual- 

Leone, Pascual-Leone, Baraja-Vegas, 

Pascual-Leone and Tormos Muñoz. This is an 

open-access article distributed under the 

terms of the Creative Commons Attribution 

License (CC BY). The use, distribution or 

reproduction in other forums is permitted, 

provided the original author(s) and the 

copyright owner(s) are credited and that the 

original publication in this journal is cited, in 

accordance with accepted academic practice. 

No use, distribution or reproduction is 

permitted which does not comply with 

these terms.

Enhancing functional recovery 
after ACL injury. A protocol for 
a randomized control trial of 
transcranial direct current 
stimulation over the motor cortex

J. Vicente-Mampel
1
, J. López-Soler

1
, P. Sevilla-López

1
,  

J. Ferrer-Torregrosa
2
, J. Martín-Ruíz

3
, E. Jaenada-Carrilero

1
,  

N. Castillo-Dutor
4
, A. Pascual-Leone

5
, N. Pascual-Leone

6
,  

L. Baraja-Vegas
1*, A. Pascual-Leone

7,8† 
and J. M. Tormos Muñoz

4†

1Department of Physiotherapy, School of Medicine and Health Science, Catholic University of Valencia, 

Torrent, Valencia, Spain, 2Department of Podiatry, School of Medicine and Health Science, Catholic 

University of Valencia, Torrent, Valencia, Spain, 3Department of Health and Functional Assessment, 

Faculty of Sciences of Physical Activity and Sport, Catholic University of Valencia, Torrent, Valencia, 

Spain, 4Department of Medicine, School of Medicine and Health Science, Catholic University of 

Valencia, Torrent, Valencia, Spain, 5Vagelos College of Physicians and Surgeons, Columbia University, 

New York, NY, United States, 6Hospital for Special Surgery, New York, NY, United States, 7Marcus 

Institute for Aging Research and Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, 

United States, 8Department of Neurology, Harvard Medical School, Boston, MA, United States

Introduction: Anterior cruciate ligament (ACL) tears are common in athletic and 

nonathletic populations, often resulting from activities involving rapid 

directional changes that place stress on the knee. Although advances in 

surgery and rehabilitation have improved recovery, many patients still struggle 

to regain pre-injury performance and face increased risk of re-injury. We 

hypothesize that combining standard rehabilitation with transcranial direct 

current stimulation (tDCS) may accelerate recovery, improve neuromuscular 

control, and strengthen key muscles like the hamstrings and hip abductors, 

reducing reinjury risk.

Methods/materials: This randomized controlled trial protocol, approved by the 

Ethics Committee of the Catholic University of Valencia, follows a double- 

blind, comparative, longitudinal design per SPIRIT guidelines. Elite athletes will 

be randomized 1:1 into two age- and sex-matched groups: non-invasive brain 

stimulation (NIBS) + rehabilitation (ProtocolRHB) or sham NIBS + ProtocolRHB. 

The NIBS intervention uses tDCS to deliver low-intensity direct current to 

modulate cortical excitability. Data collection spans April 2025 to December 

2027 with outcomes assessed at four postsurgical time points. The primary 

outcome is electromyographic (EMG) activity to evaluate muscle activation, 

crucial for restoring knee stability and function. Secondary outcomes include 

knee function (Lysholm Scale) and ACL-specific quality of life. EEG and TMS 

will assess cortical excitability and plasticity during voluntary muscle contraction.

Impact statement: This study integrates neurophysiology with rehabilitation, 

offering a novel approach to enhance functional recovery and lower reinjury 

risk post-ACL reconstruction, potentially informing future evidence-based 

sports medicine and neurorehabilitation strategies.
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1 Introduction

Anterior cruciate ligament (ACL) tears are common, 

especially among young and active individuals (1). For people 

aged 10–64 years, ACL injury incidence is estimated at 0.4–0.8 

per 1, 000 person-years (2–4). An estimated 65%–75% of ACL 

tears occur during athletic activities, including soccer, handball, 

skiing, and basketball, which likely accounts for injuries 

occurring typically in young adults aged 28–35 years old (1, 2, 

4–6). Nevertheless, a significant proportion of tears, 

approximately 25%–35%, occur in non-athletic settings (2). 

Most frequently, ACL tears occur in males, who account for 

58%–73% of ACL tears (2, 4, 5, 7). However, despite males 

engaging in more high-risk activities, when data are adjusted 

for exposure frequency, females are 4–8 times more prone to 

ACL injuries (8–13). For both males and females, proper 

rehabilitation is crucial for recovery which enables 

approximately 80% of ACL reconstruction patients to resume 

some form of sports activity. However, only 65% of athletes who 

sustain an ACL tear and undergo successful traditional ACL 

reconstruction return to their pre-injury performance level, and 

even fewer (55%) return to competitive-level physical activity. In 

this context, surgical approaches that go beyond simple ACL 

repair for more functional ACL reconstruction are important. 

Injury- and surgery-related complications, such as graft failure 

(14), muscle injuries (15), osteoarthritis, and chondral and 

meniscal injuries (16, 17), may indirectly impact patient 

rehabilitation. A critical focus of physical therapy rehabilitation 

intervention is to strengthen and condition critical muscles to 

optimize knee stabilization (18).

Leg muscles play a critical role in stabilizing the knee, 

particularly after an ACL tear, and thus are vital in promoting 

recovery and preventing re-injury. Research has shown that the 

hamstrings and hip abductors are essential for minimizing the 

risk of relapse and addressing functional shortcomings following 

ACL procedures (19, 20). These muscles protect the knee by 

counteracting ACL strain as the reconstruction heals. The 

contribution of muscles to ACL stress and protection varies. 

Muscles such as the quadriceps and gastrocnemius have shown 

a higher contribution to ACL stress (21). In contrast, muscles 

such as the hamstrings, soleus, and gluteus medius have 

demonstrated a significant ability to counteract ACL strain, 

aiding in knee stability and injury prevention. Studies using 

kinematics, EMG, and motor cortex outputs have expanded our 

understanding of the muscular involvement in ACL injuries. 

The voluntary activation of the quadriceps in ACL-injured 

individuals has been studied using measures of cortical 

excitability. Previous studies have used various metrics, 

including the active motor threshold and cortical silent period 

(22), and tested muscles under low-intensity electrical 

stimulation conditions (23). Following ACL injury, substantial 

neural adaptations occur within the motor system, significantly 

affecting voluntary muscle activation and neuromuscular 

control. Evidence suggests that the cortical representation of leg 

muscles in the primary motor cortex undergoes reorganisation 

after ACL, leading to altered patterns of cortical excitability and 

impaired motor output (24, 25). These neuroplastic changes are 

particularly evident in the corticomotor pathways associated with 

the quadriceps, where reduced force-generating capacity is linked 

to modifications in both intracortical and corticospinal 

excitabilities (26). Such adaptations are believed to be fundamental 

for the restoration of motor function, with bidirectional plasticity 

playing a critical role in the reestablishment of musculoskeletal 

performance after surgery (27, 28).

While most previous research has focused on the spinal-level 

mechanisms of arthrogenic muscle inhibition (AMI), recent 

findings have highlighted broader central changes. These include 

increased reliance on the contralateral sensorimotor cortex 

during movement, heightened attentional demands during 

proprioceptive tasks, reduced somatosensory feedback, and 

altered corticospinal drive (24, 29–31). Conventional 

physiotherapy techniques, such as standard electrostimulation 

and “cushion crush” strategies, have shown limited efficacy in 

addressing neurophysiological deficits (32). However, novel 

approaches, such as targeted hamstring fatigue to inhibit the 

?exion re?ex (33), peripheral interventions such as dry needling, 

and the immediate integration of active rehabilitation following 

cryotherapy, have demonstrated promising effects in reducing 

AMI and improving quadriceps function (34, 35). Standard 

rehabilitation programs often neglect to address sensorimotor 

alterations and deficiencies that arise following ACL injury and 

reconstruction. In recent years, noninvasive brain stimulation 

methods have been suggested as complementary approaches to 

exercise, aiming to elicit central responses that enhance 

neuromuscular control. The application of transcranial magnetic 

stimulation and transcranial direct current stimulation (tDCS) to 

the motor cortex has shown promising results in improving 

motor recovery (36). tDCS works by delivering a constant, low- 

intensity direct current through scalp electrodes to modulate 

cortical excitability, while TMS uses magnetic pulses to induce 

electrical currents that directly stimulate neuronal firing. These 

techniques differ in focality and mechanism, with tDCS 

modulating membrane potentials and TMS producing action 

potentials. This study will investigate the effects of combining 

tDCS with exercise-based rehabilitation targeting neuromuscular 

control and compare this intervention with sham tDCS 

alongside standard rehabilitation protocols. Our primary 

hypothesis is that decreasing cortical hyperexcitability in the 

motor area, when combined with exercise, will improve 

neuromuscular control, leading to better outcomes across the 

measured parameters and a lower risk of reinjury. Additionally, 

it is expected that the combination of tDCS and exercise-based 

rehabilitation will produce superior results compared to the 

rehabilitation and sham tDCS intervention.

2 Material and methods

2.1 Study design

This study will be a randomized controlled trial featuring a 

double-blind, comparative, and longitudinal approach. To 
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ensure clarity and thoroughness, the study will adhere to the 

SPIRIT statement guidelines (Table 1) (37). The TIDieR 

checklist will be used to report outcomes (38). The planned 

investigation will include a protocol with two comparator arms: 

NIBS + ProtocolRHB and ShamNIBS + ProtocolRHB, with 

participants randomly assigned to either arm (Figure 1). Patients 

will provide written informed consent prior to any study 

procedure, including randomization. Data collection will be 

conducted between April 2025 and December 2027. This study 

was approved by the Ethics Committee of the Catholic 

University of Valencia (UCV/2023-2024/053). Additionally, the 

study was pre-registered at https://www.Clinicaltrial.gov on 

01/01/2025 (NCT06818201).

2.2 Study population

Elite-level athletes will constitute the target population, with 

the University Clinic of the Catholic University of Valencia as 

the reference center. The athletes will be recruited from the 

national federations of handball, basketball, and rugby. 

Additionally, informational pamphlets will be circulated on 

social media platforms, allowing for additional participant 

recruitment. All potential participants expressing interest will 

receive comprehensive details about the study procedures, 

including the selection process.

2.3 Eligibility criteria

The inclusion criteria are as follows: i) individuals with a 

complete ACL tear diagnosed via clinical assessment and MRI 

scans interpreted by a board-certified radiologist; ii) patients 

who have undergone autologous graft ligamentoplasty; iii) 

individuals between 16 and 35 years of age; and iv) physically 

active individuals with more than 5 years of recreational sports 

participation. The exclusion criteria include: i) tendon, cartilage, 

bone, or ligament injuries requiring repair in addition to the 

ACL tear; ii) history of lower limb pathologies, including 

open surgeries, knee arthroscopies, or femur/tibia fractures; 

iii) presence of neuromuscular or metabolic diseases affecting 

the musculoskeletal system; iii) concussion within the past six 

months; iv) prior cranial surgery or presence of intracranial 

metal clips; v) use of medications affecting neuronal activity; 

and vi) neurological diseases or disorders.

2.4 Procedure

After group assignment, all participants will be assessed at 

four scheduled time points after surgery: one month (post- 

surgical30), two months (post-surgical60), three months (post- 

surgical90), and six months (post-surgical180). Scoring scales 

and psychosocial assessments will be evaluated at each visit 

(Figure 1). All assessments will be conducted bilaterally to allow 

within-subject comparisons.

2.5 Randomization and blinding

A block randomization design with block sizes of 4 or 6 will be 

implemented to ensure an even distribution of participants across 

groups. A double-blind design will be employed, ensuring that 

both the patients and the evaluators collecting data on the study 

variables are blinded to the adjunctive effect of complementary 

tDCS during the rehabilitation. To assess blinding, one might 

apply the recommendations of Bang et al. (39, 40). We will 

implement a close-ended questionnaire to enquire participants 

and technicians about treatment assignment with the 

following questions:

TABLE 1 Execution schedule – recruitment, intervention, and reassessment.

Study period

Enrolment Allocation Post-allocation Close-out

Time Point -t1 0 t1 t2 t3 t4 T5 tx

Enrolment

Eligibility screen X

Informed consent X

Allocation X

Interventions

[NIBS + RHB]

[SHAMNIBS + RHB]

Assessments

[Anthropometric data] X X

[Psychosocial Assessment] X X X X X. X

[Scoring Scale] X X X X X X

[Functionality] X X X X

[EGGTMS] X X X X

EMGs X X X X

t1, 2024; 0, start study; t1, postsurgical; t2, postsurgical30; t3, postsurgical60; t4, postsurgical90; t5, postsurgical180; tx, study completion.
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Question 1: “What tDCS treatment do you believe you have 

received/applied?” The participants/technicians will be asked to 

choose from three possible answers: (1) real current, (2) 

simulated current, or (3) do not know. If participants or 

therapists answered Do not know’, then Question 2 was asked: 

“Please provide your best guess about the tDCS treatment you 

received/applied and asked to choose from two possible replies”: 

(1) real current; (2) simulated current. Finally, we will ask for a 

FIGURE 1 

The design and progression of participants throughout the trial will be managed, including a randomization flowchart and the protocol for 

intervention measurements.
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confidence assessment with Question 3: “For the tDCS treatment 

you chose in question 1 or 2, please provide on a scale of 0–10 the 

level of confidence you have in being correct, where 0 means you 

are totally guessing and 10 means you are completely sure”.

2.6 Sample size

The required sample size was determined using GPower® 

software (Franz Faul, Universität Kiel, Kiel, Germany), version 

3.1.9.2. A preliminary sample of 46 subjects, divided into two 

groups of 23 participants each, was established for the 

intervention design. The primary variable (EMG output) was 

used for statistical analysis through repeated measures ANOVA. 

Cohen’s effect size was set at 0.357 based on a previous study 

examining using surface EMG recordings as their primary 

outcome (41). The calculation incorporated a statistical power of 

0.95, an alpha level of 0.05, and two intervention groups. To 

account for potential dropouts during treatment follow-up 

(estimated at 15%), an additional 3 participants were added to 

each group. This resulted in a total of 54 participants, with 27 

per group. The chosen effect size, exceeding 0.357, is classified 

as “moderate” (42). If a greater percent of participants does not 

follow their planned treatment protocol (dropouts, non- 

adherence to treatment, or missing results), an “intention-to- 

treat” analysis will be conducted.

2.7 Interventions

2.7.1 NIBSRHB

A specialized rehabilitation protocol for postsurgical ACL 

recovery will be implemented. This protocol, grounded in the 

latest clinical guidelines (43–45), will be structured into four 

distinct phases: i) post-surgical recovery (weeks 0–5); ii) strength 

and neuromuscular control (weeks 6–12); iii) running, agility, 

and landings (weeks 13–24); and iv) return to sport activity 

(after week 24). The program will encompass 72 sessions 

scheduled three times a week over a 24-week period. Strength 

training will be the primary focus of all phases. To ensure 

optimal patient progress, regular assessments will be conducted 

with advancement to subsequent recovery phases based on the 

specific criteria. A schematic representation of the exercise 

protocol will be employed during rehabilitation (Table 2).

Furthermore, the tDCS device from Ionclinics will be used in 

the study. The device will be applied during the early stage of 

rehabilitation, specifically during activation, as the exercises 

required will be less demanding, less intricate, and more 

appropriate for this intervention. The treatment plan includes 16 

sessions over an 8-week period, with two sessions each week. 

Each session will administer a continuous current of 2 mA for 

20 min. The setup comprises two electrodes (a red anode and a 

black cathode) and two sponge pads with conductive gel, all 

incorporated into a helmet tailored to the patient. Electrode 

placement will adhere to the international 10–20 system for 

tDCS (46). The primary motor cortex (M1) will be the focus of 

stimulation, with the anode placed at either C3 or C4, 

corresponding to the hemisphere contralateral to the injured leg, 

to target the affected motor area. The cathode will be positioned 

at the opposite supraorbital area, either Fp1 or Fp2. This 

placement ensures that stimulation is applied to the motor 

cortex controlling the injured limb, which is critical for 

modulating cortical excitability and enhancing the 

neuromuscular control. The tDCS stimulation will be applied 

prior to this early rehabilitation phase to ensure proper 

monitoring and to maximize the safety and efficacy of the 

intervention. The tDCS stimulation will be applied prior to this 

early rehabilitation phase. Specifically, during the Post-Surgery 

Recovery Phases 1.1 and 1.2, as well as the Strength and Motor 

Control Phase 2.1.

2.7.2 SHAMNIBS + RHB

The device will be configured to produce an upward gradient 

for 30 s, identical to that used in the experimental group, followed 

by a downward gradient for another 30 s. Consequently, the 

control group will feel a tingling sensation on their scalp similar 

to that of the experimental group. This stimulation will occur 

for a total of 60 s, which is insufficient to induce changes in 

cortical excitability (47). Studies have demonstrated that this 

approach effectively ensures patient blinding (48).

2.8 Outcomes

2.8.1 Baseline characteristics
To ensure accurate data collection for the study and monitor 

the patient’s progress during rehabilitation, various 

measurements will be recorded. These will include the patient’s 

sex, age, body mass index, athletic discipline, injury date, 

surgical procedure date, type of graft employed in the 

reconstructive surgery, time since surgery and hand/foot 

dominance. The study will also include measurements of knee 

circumference to assess volume at 5 and 10 cm above the 

patella’s upper edge for the thigh and 5 and 10 cm below the 

patella’s lower edge for the calf muscle. Finally, the extent of 

muscular arthrogenic inhibition and the patient’s subjective pain 

perception will be evaluated.

2.8.2 Primary outcome
2.8.2.1 Electromyographic muscle activation

The primary outcome of this study will be the recorded 

electromyographic activity of eight (four on each leg) target 

muscles. Wireless surface electromyography (EMG) and force 

sensors (MuscleLab, Stathelle, Norway) connected to a 

12-channel EMG amplifier (model ML6EMG01, MuscleLab, 

Stathelle, Norway) will be used to record muscle activity. The 

electrodes utilized will be the Lessa Pediatric Electrode model 

(30 mm diameter). The placement of electrodes will follow the 

SENIAM guidelines, which are part of the European Concerted 

Action under the BIOMED II program for noninvasive muscle 

assessment using surface electromyography (49). Both lower 

extremities will be recorded, and the placement order by 
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channel number will be as follows: channel 1, vastus medialis 

(VM) (right); channel 2, rectus femoris (RF) (right); channel 3, 

vastus lateralis (VL) (right); channel 4, biceps femoris (BF) 

(right); channel 5, VM (left); channel 6, RF (left); channel 7, VL 

(left); and channel 8, BF (left). The muscle activity sampling rate 

will be 1 kHz, with each session lasting between 5 and 60 s, 

depending on the specific exercise.

The patients will be instructed to perform each movement 

with the maximum possible contraction and as quickly as 

possible to achieve the highest peak force (50). The patient will 

TABLE 2 Phased rehabilitation protocol following ACL reconstruction: objectives, progression criteria, and recommended exercises.

Phase Weeks Objectives Progression criteria Recommended exercises

Post-surgery 

recovery

PHASE 

1.1

0–2 • Achieve fully extend the knee 

• Reduce in?ammation 

• Activate the quadriceps 

• Full extension (0°) 

• Active quadriceps 

contraction

• Full extension (0°) 

• Active quadriceps contraction 

• Quadriceps Lag Test

• Straight leg raise (SLR): ?exion, extension, abduction 

and adduction 

• Peripheral joint mobilization 

• Isometric quadriceps at 90°–60° 

• Gait training • In?ammation management: 

cryotherapy + compression

PHASE 

1.2

3–5 • Extension 0° 

• Contralateral ?exion −10° 

• Absence of in?ammation (stroke test)

Strength: 

• Squat (0°–60°) 

• Hamstring Curl 

• Step Up → Step Up + running technique 

• Lumbo-pelvic strengthening: Clamshell, Side-Lying Leg 

Raise Bilateral/Unilateral, Hip Hike 

Balance: 

• Progression from bilateral to single leg stance 

• Stationary cycling >100°

Strength and 

motor control

PHASE 

2.1

6–8 • Restore knee strength 

• Restore muscle strength 

• Execute Single Leg Stance 

with proper technique

• Absence of edema 

• Absence of pain/edema post-exercise 

• Full Range of Motion (ROM) 

• Normal gait pattern

• Leg press, Hamstring curl, Hip abduction and 

adduction, Knee extension (90°–45°), Air squat with 

band, Deadlift 

• Single leg squat (SLS) progression 

• Progression of unilateral balance exercises to include 

perturbations

PHASE 

2.2

9–12 • Absence of instability episodes 

• 10 SLS at 60° 

• Functional evaluation 

• Quadriceps index >80% 

• Hamstring index >80% 

• Gluteus medius >80%

Previous phase + 

• Bilateral plyometrics in partial load 

• Bilateral plyometrics in full load 

• Submaximal training in sport-specific sagittal plane 

movements

Running, 

agility, and 

landings

PHASE 

3.1

12–16 • Attain optimal performance 

in jump exercises 

• Complete the prescribed 

plyometric, agility, and 

running program 

• Regain full strength and 

balance capabilities

• Achieve pain-free and in?ammation- 

free running 

• Functional evaluation 

• Quadriceps/hamstring/Gluteus 

medius strength >90% 

• Q/H RATIO >66% 

• Hop test >90%

Exercises (continue progressive strength 

training + plyometric, agility, and running block). 

• Bilateral sagittal plane plyometrics: broad jump, box 

jump, tuck jump, hop over line. 

• Unilateral sagittal plane plyometrics: pogo hops, lunge 

jump, bounding run. 

• Sagittal plane agility: ladder drills, forward and 

backward, figure-eight, deceleration, etc. 

• Running: adaptation protocol + running protocol 

(week 1)

PHASE 

3.2

16–24 • Absence of pain or in?ammation 

• Pain-free activity performance 

• Appropriate movement pattern 

execution

Exercises (continue progressive strength 

training + plyometric, agility, and running block). 

• Frontal plane bilateral plyometrics: lateral hop over the 

line/hurdles, tuck jumps over the line/hurdles, etc. 

• Frontal plane unilateral plyometrics: lateral hop over 

the line/hurdles, tuck jumps over the line/hurdles, etc. 

• Frontal plane agility: zig-zag run, side shuf?e/shuf?e 

run, cone drills, crossover step, lateral ladder drills. 

• Running: running protocol (weeks 2–7).

Return to play PHASE 

4

+24 • Melbourne Return to Sport 

Score of 95+ 

• Patient demonstrates 

comfort, confidence, and 

readiness to return to sports 

• ACL injury prevention 

program implemented

• Functional evaluation 

• Quadriceps/hamstrings/gluteus  

medius strength index >90% 

• Q/H RATIO >70% 

• Hop test >90% RTP 

• Month 7: unrestricted training 

• Month 9/10 return to  

competition • Functional  

evaluation: 

• Quadriceps/hamstrings/gluteus  

medius strength index >95% 

• Q/H RATIO >75% 

• Hop test >95%

• Exercises (continue progressing strength 

block + plyometrics and multiple agility) 

• Multiple plyometrics: drop jump + rapid change of 

direction, 90° and 180° jumps, etc. 

• Multiple agility: box and start drill, lateral shuf?e over 

the hurdles, etc.
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perform three familiarization repetitions at submaximal intensity 

at the beginning of each repetition (51). Assessments will first 

be conducted on the healthy extremity, followed by testing on 

the surgically repaired knee. Patients will attempt three 

maximum voluntary isometric contractions (MVIC), each lasting 

5 s, with a 30-s rest interval between each repetition (52). A 

10-min rest period will be allowed between each position to 

prevent the in?uence of fatigue on the results and to ensure 

optimal recovery. Additionally, the patient will receive both 

visual and verbal feedback (e.g., “come on”, “go ahead”) to 

encourage maximal effort (51).

2.8.2.2 EMG analysis

Once the data are recorded, they will be stored on a hard drive 

in Comma-Separated Values (. csv) files. Signal analysis will be 

performed using MATLAB software (R2025a) (Mathworks Inc., 

Natick, USA). Data will be collected using a smooth-data 

function. Initially, a fourth-order Butterworth bandpass filter 

ranging from 20 to 400 Hz will be applied to process the signal. 

The signal will then undergo rectification or Root Mean Square 

(RMS) analysis by dividing the measurement section into 100 

segments. Based on the exercise, we will extract segments lasting 

between 3 and 30 s (for analysis). The central 30 s in the resting 

position will be used as the baseline EMG. For dorsal ?exion, 

plantar ?exion, and the gamified approach, the central 5 s of 

work will be considered, and the mean RMS will be quantified 

for each exercise. For tests of maximum isometric contraction of 

knee ?exion and knee extension, the central 3 s and maximum 

RMS will be used. In addition, the peaks of each signal will be 

calculated using the MATLAB “findpeaks” function, and the 

relationship between the signal peaks and individual muscles 

will be determined, which will allow the order of contraction to 

be established. Finally, the activation frequency of each 

recording will be calculated. The highest value recorded during 

the three trials will be selected and normalized based on each 

patient’s body mass index to remove the in?uence of body mass, 

thereby enabling a comparison between them.

2.8.3 Secondary outcome
2.8.3.1 Scoring scale

2.8.3.1.1 Lysholm scale. The Lysholm scale assesses knee function 

in different ligament injuries, with the goal of tracking progress 

after an intervention and/or evaluating knee deterioration under 

certain conditions (53). The scale consists of eight components: 

limping, use of support for walking, instability, pain, locking, 

swelling, ability to climb stairs, and ability to squat. It is rated 

on a scale from 0 to 100, where 100-95 is considered excellent, 

94-84 is good, 83-65 is fair, and below 65 is poor. Additionally, 

each component and the total score are analysed separately. This 

scale has a Cronbach’s alpha of 0.737 and an intraclass 

correlation coefficient of 0.844 (54).

2.8.3.1.2 Anterior cruciate ligament-quality of life 

questionnaire. This scale is a continuous quantitative tool used 

as a Patient-Reported Outcome Measure to evaluate the effect of 

ACL injuries on patients’ lives. The questionnaire comprised 32 

items divided into five domains: symptoms and physical issues 

(five items), work-related challenges (four items), sports 

participation/competition (12 items), lifestyle (six items), and 

social and emotional factors (five items). Each domain receives a 

score proportional to the number of items and is assessed using 

a 100-millimeter visual analog scale. Higher scores re?ect 

improved quality of life. This scale was validated in Spanish, 

showing a Cronbach’s alpha of 0.81 and 0.94, and an intraclass 

correlation coefficient indicating good consistency, ranging from 

0.88 to 0.96 (55).

2.8.3.2 Functional assessment

Functional Jump Tests are commonly used to evaluate patients 

after ACL repair, especially to assess the Limb Symmetry Index 

(LSI) (56, 57). The current literature suggests that the normal 

LSI is >90% when comparing the ACL-reconstructed limb with 

the non-operated limb (58). Functional Jump Tests are also 

cost-effective and simple to assess, as they do not require 

extensive space or equipment, enabling the evaluation of knee 

functional capacity and offering a measurable metric that can be 

tracked over time. Ebert et al. identified eight jump tests—single 

hop for distance, 6 m timed hop, triple hop for distance, triple 

crossover hop for distance, single medial hop for distance, single 

lateral hop for distance, single limb countermovement jump for 

height, and timed speedy hop test—that were the most effective 

in highlighting functional limb asymmetries in patients post- 

ACL injury (59).

2.8.3.3 Psychosocial assessment

2.8.3.3.1 Fear of movement. Tampa scale of kinesiophobia. The 

Tampa Scale of Kinesiophobia (TSK) will be used to assess fear 

of movement or perceived risk of re-injury. This self-reported 

questionnaire consists of a series of statements, each scored on a 

4-point Likert scale ranging from “strongly disagree” to 

“strongly agree.” Higher scores indicate greater fear of 

movement or re-injury, whereas lower scores suggest reduced 

fear levels. It is essential to address kinesiophobia early in the 

rehabilitation process, as it can negatively impact a patient’s 

adherence to the prescribed rehabilitation program (60). In 

particular, sports health professionals should be mindful of the 

in?uence of kinesiophobia on functional assessments, as it may 

hinder progress and recovery (61). Research has shown that an 

increase in kinesiophobia is significantly associated with worse 

postoperative SF-36 PCS scores, highlighting its negative effect 

on overall physical functioning in patients after surgery (62). 

The TSK demonstrates excellent internal consistency, with a 

Cronbach’s alpha of 0.90, and has a proven high test-retest 

reliability, with an intraclass correlation coefficient (2, 1) of 

0.934 (63). Additionally, the severity of kinesiophobia following 

ACL reconstruction is in?uenced by factors such as symptom 

subscales and the Pain Catastrophizing Scale (PCS), further 

emphasizing the need to consider these factors in the 

rehabilitation process (64).

2.8.3.3.2 Pain catastrophizing scale. The Pain Catastrophizing 

Scale (PCS) is a self-reported questionnaire designed to evaluate 

the extent of catastrophizing in response to pain in patients. It 
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consists of 13 items, each rated on a Likert-type scale from 0 to 4, 

with higher scores re?ecting a greater tendency to catastrophize 

while experiencing pain (65). The PCS is widely used to 

understand how individuals perceive and react to pain, as 

catastrophic thinking can significantly in?uence pain perception 

and coping strategies. Studies have shown that catastrophizing is 

a particularly in?uential factor in the variation of postoperative 

pain, with adolescents often showing more pronounced effects 

than adults (66). This suggests that age and developmental 

factors may play a role in the way catastrophizing in?uences 

pain experiences following surgery. The PCS provides a total 

score ranging from 0 to 52, with higher scores indicating higher 

levels of catastrophizing. This scale has demonstrated strong 

psychometric properties, including robust content and construct 

validity, ensuring that it effectively measures the concept it is 

intended to assess (67). Additionally, the PCS has been shown 

to exhibits excellent internal consistency and test-retest 

reliability, making it a reliable tool for evaluating various 

musculoskeletal disorders, including those related to injury and 

surgical intervention (68, 69). Furthermore, the PCS has been 

found to have significant clinical relevance, as it correlates with 

both pain intensity and functional outcomes, particularly in 

long-term recovery. For example, six months after an ACL 

injury, higher PCS scores were associated with increased pain 

levels and diminished functional ability (64). These findings 

highlight the importance of addressing catastrophizing in 

rehabilitation, as it may contribute to worse recovery. The 

Spanish version of the PCS has been validated and has good 

psychometric properties. It has an internal consistency of 0.79, 

which is considered acceptable, and a test-retest reliability of 

0.84, indicating that the scale performs consistently over time in 

Spanish-speaking populations. These characteristics make the 

PCS a useful and reliable tool for assessing pain catastrophizing 

in diverse populations, ensuring that its utility extends across 

languages and cultures.

2.8.3.4 Cortical excitability

Transcranial magnetic stimulation (TMS) is a non-invasive 

method developed to examine the functionality of human 

corticospinal pathways (70). Researchers have integrated TMS 

with EEG and functional imaging techniques to enhance the 

measurement of cortical excitability. Image guided TMS, with 

either population-averaged magnetic resonance images (MRIs) 

or patient-specific MRIs, allows for precise localization of areas 

of interest. In this study, Brainsight® markers will be positioned 

on the patient’s head using the nasion and zygion as reference 

points for image-guidance. We will target the hand knob and 

assess for the motor hotspot—the area of highest motor activity 

in the injured and non-injured leg’s quadriceps and hamstrings 

muscles using TMS stimulation. Using this hotspot, we will find 

the motor threshold, or the minimum stimulation required to 

elicit a response of >50uV in 5 out of 10 TMS pulses. Once the 

hotspot is identified and the minimum motor threshold 

established, a 64-channel EEG cap will be placed. EEG 

recordings will be conducted using a high-density TMS- 

compatible EEG system (BrainProducts Brain ActiChamp, 

Gilching, Germany) over the identified hotspot where the 

minimum motor threshold was obtained with the Brainsight 

system. The cap allows for the recording of corticospinal and 

EEG activity (71). For the EEG procedure, the patient will be 

instructed to contract quadriceps and hamstrings muscles to 

30% of their maximum voluntary isometric contraction for 10 s. 

The patient will receive visual biofeedback through EMG during 

the contraction, incorporating visual gamification to enhance 

engagement and performance. The patient will receive visual 

biofeedback through EMG during the contraction, incorporating 

visual gamification to enhance engagement and performance. 

Each contraction will last a maximum of 5 s to avoid fatigue. 

This process will be repeated three times with intervals between 

each contraction (72). Latency in milliseconds, amplitude in 

microvolts, and pulse frequency in hertz will be used to assess 

cortical excitability and plasticity by recording cortical activity 

during voluntary contraction (73).

2.9 Program feasibility and safety: 
attendance and compliance with protocol

Several factors in?uence the adherence of patients with ACL 

injuries to their exercise regimens. Improving a patient’s ability 

to complete a rehabilitation program, especially home exercises, 

can be facilitated by considering social and environmental 

factors that enhance adherence and compliance (74). 

Furthermore, following the recommended guidelines for return- 

to-sport clearance after ACL reconstruction is essential for 

effective rehabilitation (75). Key factors that impact attendance 

at physiotherapy appointments and participation in sessions 

include therapist support, rehabilitation setting, and exercise 

progression (76). For this study, protocol adherence will be 

measured by calculating the percentage of patients who 

complete the assessments following established methods from 

previous research (77). In the initial stages, individualized 

training will be provided to ensure treatment plan compliance 

and minimize the risk of adverse effects.

2.10 Oversight and monitoring

Specific protocols will be implemented to safeguard data and 

participant well-being. The principal investigators will 

collaborate with a physician who leads the non-invasive and 

precision neuromodulation institute to monitor and evaluate the 

study’s progress and safety measures. Despite the minimal 

reported side effects, patients will undergo a 14-day monitoring 

period following the procedure. The operation will be halted if 

the patient reports any localized signs or symptoms of infection. 

The analysis of the study will utilize information gathered prior 

to the conclusion of the intervention. To ensure participant 

safety, all individuals who completed the intervention phase will 

receive follow-up phone calls for a week after completion. An 

Independent Safety Monitor, who is the ethics committee 

secretary that approved the study, will receive and review 
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biannual progress reports. These reports cover participant 

recruitment, retention/attrition, and adverse events. At the 

conclusion of the study, a comprehensive report will be 

prepared detailing and summarizing the adverse events. The 

concluding report will include explanations provided by the 

study participants who chose to withdraw. The reasons behind 

their withdrawal will be examined and contrasted with the 

initial expectations of the researchers to uncover the patterns 

and possible factors in?uencing these decisions. Furthermore, an 

evaluation will be conducted to predict which participants might 

leave the study early, with the goal of developing strategies to 

mitigate this and ensure the reliability of results. The Data 

Safety Monitoring Plan requires that any serious adverse events 

be reported to the ethics committee within a 48-hour timeframe. 

Should an unexpected serious adverse event pose an increased 

risk to participants, the study will be suspended if the 

independent safety monitor determines it is necessary due to the 

frequency or severity of the events.

2.10.1 Data collection

Patient medical information will be entered directly into a 

secure computer system located at the evaluation sites. Each 

patient will receive their own unique identifier to anonymize 

data. To enable data sharing among researchers for further 

analysis, an Excel file containing only unique patient identifiers 

will be distributed. This method safeguards the confidentiality 

and security of information.

2.10.2 Statistical analysis
2.10.2.1 Baseline characteristics

To evaluate demographic baseline measures across 

intervention groups, comparisons will be conducted using 

analysis of variance (ANOVA) or chi-square tests (i.e., 

NIBS + ProtocolRHB and ShamNIBS + ProtocolRHB) to identify 

statistically significant differences between groups (p > 0.05).

2.10.2.2 Analysis of the outcome measures

A per-protocol analysis will be performed in accordance with 

the CONSORT guidelines for reporting randomized controlled 

trials. The Kolmogorov–Smirnov test will be utilized to verify 

the normality assumption, and the Levene test will be used to 

evaluate the homogeneity of variances. To examine the effects of 

tDCS combined with exercise-based rehabilitation on patients 

undergoing ACL reconstruction, repeated measures ANOVA will 

be applied, with experimental groups as factors and Bonferroni 

corrections for post hoc analysis. Comparisons within and 

between groups for both primary and secondary outcomes will 

assess time, group, and interaction effects. Results will be 

expressed as mean differences (MD) with 95% confidence 

intervals (CI95%). The effect size (ES) will be calculated using 

Cohen’s d coefficient. All statistical analyses will be conducted 

using SPSS 24 software (IBM Inc., Chicago, Illinois, USA). If 

there are participant dropouts or if the statistical power is below 

80%, an intention-to-treat analysis will be implemented (78).

2.10.2.3 Correlation coefficient

The strength of the relationship between the variables will be 

evaluated using the Pearson correlation coefficient and/or the 

Spearman correlation coefficient (if the normality assumption is 

not met).

2.11 Dissemination plan

A dissemination plan has been established to ensure that the 

study findings will be shared openly with the scientific 

community and other relevant stakeholders. The results will be 

published in peer-reviewed journals, presented at national and 

international conferences, and made available upon request to 

interested researchers. The primary objective of a dissemination 

plan is to ensure that research findings are effectively 

communicated, understood, and utilized, maximizing their 

potential impact. This study intends to publish its results in 

medical, physiotherapy, and exercise journals to make them 

accessible to professionals and researchers in the field. In line 

with open science principles, anonymized datasets and study 

materials will be made available in publicly accessible repositories. 

The key goals of the dissemination strategy will include 

widespread distribution of the research findings, ensuring they are 

clear and comprehensible to an informed audience with expertise 

in the field. The therapy protocols will be presented in detail to 

maintain transparency and facilitate replication. Findings may be 

shared with third parties only when justified and with the 

authors’ consent. Through these efforts, the plan seeks to ensure 

that the research contributes meaningfully to both the academic 

community and practical applications.
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