

OPEN ACCESS

EDITED BY

Simona Portaro,

University Hospital A.O.U. "G. Martino", Italy

REVIEWED BY

Jader Vinicius Da Silva Rocha,

Federal University of Espirito Santo, Brazil Lei Zhang,

China Academy of Chinese Medical Sciences, China

*CORRESPONDENCE

L. Baraja-Vegas

☑ luis.baraja@ucv.es

[†]These authors have contributed equally to this work and share senior authorship

RECEIVED 03 June 2025 ACCEPTED 25 August 2025 PUBLISHED 16 October 2025

CITATION

Vicente-Mampel J, López-Soler J, Sevilla-López P, Ferrer-Torregrosa J, Martín-Ruíz J, Jaenada-Carrilero E, Castillo-Dutor N, Pascual-Leone A, Pascual-Leone N, Baraja-Vegas L, Pascual-Leone A and Tormos Muñoz JM (2025) Enhancing functional recovery after ACL injury. A protocol for a randomized control trial of transcranial direct current stimulation over the motor cortex.

Front. Rehabil. Sci. 6:1627228. doi: 10.3389/fresc.2025.1627228

COPYRIGHT

© 2025 Vicente-Mampel, López-Soler, Sevilla-López, Ferrer-Torregrosa, Martín-Ruíz, Jaenada-Carrilero, Castillo-Dutor, Pascual-Leone, Pascual-Leone, Baraja-Vegas, Pascual-Leone and Tormos Muñoz. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Enhancing functional recovery after ACL injury. A protocol for a randomized control trial of transcranial direct current stimulation over the motor cortex

- J. Vicente-Mampel¹, J. López-Soler¹, P. Sevilla-López¹,
- J. Ferrer-Torregrosa², J. Martín-Ruíz³, E. Jaenada-Carrilero¹,
- N. Castillo-Dutor⁴, A. Pascual-Leone⁵, N. Pascual-Leone⁶,
- L. Baraja-Vegas^{1*}, A. Pascual-Leone^{7,8†} and J. M. Tormos Muñoz^{4†}

¹Department of Physiotherapy, School of Medicine and Health Science, Catholic University of Valencia, Torrent, Valencia, Spain, ²Department of Podiatry, School of Medicine and Health Science, Catholic University of Valencia, Torrent, Valencia, Spain, ³Department of Health and Functional Assessment, Faculty of Sciences of Physical Activity and Sport, Catholic University of Valencia, Torrent, Valencia, Spain, ⁴Department of Medicine, School of Medicine and Health Science, Catholic University of Valencia, Torrent, Valencia, Spain, ⁵Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States, ⁶Hospital for Special Surgery, New York, NY, United States, ⁷Marcus Institute for Aging Research and Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States, ⁸Department of Neurology, Harvard Medical School, Boston, MA, United States

Introduction: Anterior cruciate ligament (ACL) tears are common in athletic and nonathletic populations, often resulting from activities involving rapid directional changes that place stress on the knee. Although advances in surgery and rehabilitation have improved recovery, many patients still struggle to regain pre-injury performance and face increased risk of re-injury. We hypothesize that combining standard rehabilitation with transcranial direct current stimulation (tDCS) may accelerate recovery, improve neuromuscular control, and strengthen key muscles like the hamstrings and hip abductors, reducing reinjury risk.

Methods/materials: This randomized controlled trial protocol, approved by the Ethics Committee of the Catholic University of Valencia, follows a doubleblind, comparative, longitudinal design per SPIRIT guidelines. Elite athletes will be randomized 1:1 into two age- and sex-matched groups: non-invasive brain stimulation (NIBS) + rehabilitation (ProtocolRHB) or sham NIBS + ProtocolRHB. The NIBS intervention uses tDCS to deliver low-intensity direct current to modulate cortical excitability. Data collection spans April 2025 to December 2027 with outcomes assessed at four postsurgical time points. The primary outcome is electromyographic (EMG) activity to evaluate muscle activation, crucial for restoring knee stability and function. Secondary outcomes include knee function (Lysholm Scale) and ACL-specific quality of life. EEG and TMS will assess cortical excitability and plasticity during voluntary muscle contraction. Impact statement: This study integrates neurophysiology with rehabilitation, offering a novel approach to enhance functional recovery and lower reinjury risk post-ACL reconstruction, potentially informing future evidence-based sports medicine and neurorehabilitation strategies.

KEYWORDS

anterior cruciate ligament, motor control, exercise, neuromodulation, transcranial direct current stimulation

1 Introduction

Anterior cruciate ligament (ACL) tears are common, especially among young and active individuals (1). For people aged 10-64 years, ACL injury incidence is estimated at 0.4-0.8 per 1, 000 person-years (2-4). An estimated 65%-75% of ACL tears occur during athletic activities, including soccer, handball, skiing, and basketball, which likely accounts for injuries occurring typically in young adults aged 28-35 years old (1, 2, 4-6). Nevertheless, a significant proportion of tears, approximately 25%-35%, occur in non-athletic settings (2). Most frequently, ACL tears occur in males, who account for 58%-73% of ACL tears (2, 4, 5, 7). However, despite males engaging in more high-risk activities, when data are adjusted for exposure frequency, females are 4-8 times more prone to ACL injuries (8-13). For both males and females, proper rehabilitation is crucial for recovery which enables approximately 80% of ACL reconstruction patients to resume some form of sports activity. However, only 65% of athletes who sustain an ACL tear and undergo successful traditional ACL reconstruction return to their pre-injury performance level, and even fewer (55%) return to competitive-level physical activity. In this context, surgical approaches that go beyond simple ACL repair for more functional ACL reconstruction are important. Injury- and surgery-related complications, such as graft failure (14), muscle injuries (15), osteoarthritis, and chondral and meniscal injuries (16, 17), may indirectly impact patient rehabilitation. A critical focus of physical therapy rehabilitation intervention is to strengthen and condition critical muscles to optimize knee stabilization (18).

Leg muscles play a critical role in stabilizing the knee, particularly after an ACL tear, and thus are vital in promoting recovery and preventing re-injury. Research has shown that the hamstrings and hip abductors are essential for minimizing the risk of relapse and addressing functional shortcomings following ACL procedures (19, 20). These muscles protect the knee by counteracting ACL strain as the reconstruction heals. The contribution of muscles to ACL stress and protection varies. Muscles such as the quadriceps and gastrocnemius have shown a higher contribution to ACL stress (21). In contrast, muscles such as the hamstrings, soleus, and gluteus medius have demonstrated a significant ability to counteract ACL strain, aiding in knee stability and injury prevention. Studies using kinematics, EMG, and motor cortex outputs have expanded our understanding of the muscular involvement in ACL injuries. The voluntary activation of the quadriceps in ACL-injured individuals has been studied using measures of cortical excitability. Previous studies have used various metrics, including the active motor threshold and cortical silent period (22), and tested muscles under low-intensity electrical stimulation conditions (23). Following ACL injury, substantial neural adaptations occur within the motor system, significantly affecting voluntary muscle activation and neuromuscular control. Evidence suggests that the cortical representation of leg muscles in the primary motor cortex undergoes reorganisation after ACL, leading to altered patterns of cortical excitability and impaired motor output (24, 25). These neuroplastic changes are particularly evident in the corticomotor pathways associated with the quadriceps, where reduced force-generating capacity is linked to modifications in both intracortical and corticospinal excitabilities (26). Such adaptations are believed to be fundamental for the restoration of motor function, with bidirectional plasticity playing a critical role in the reestablishment of musculoskeletal performance after surgery (27, 28).

While most previous research has focused on the spinal-level mechanisms of arthrogenic muscle inhibition (AMI), recent findings have highlighted broader central changes. These include increased reliance on the contralateral sensorimotor cortex during movement, heightened attentional demands during proprioceptive tasks, reduced somatosensory feedback, and corticospinal drive (24, 29-31). Conventional physiotherapy techniques, such as standard electrostimulation and "cushion crush" strategies, have shown limited efficacy in addressing neurophysiological deficits (32). However, novel approaches, such as targeted hamstring fatigue to inhibit the flexion reflex (33), peripheral interventions such as dry needling, and the immediate integration of active rehabilitation following cryotherapy, have demonstrated promising effects in reducing AMI and improving quadriceps function (34, 35). Standard rehabilitation programs often neglect to address sensorimotor alterations and deficiencies that arise following ACL injury and reconstruction. In recent years, noninvasive brain stimulation methods have been suggested as complementary approaches to exercise, aiming to elicit central responses that enhance neuromuscular control. The application of transcranial magnetic stimulation and transcranial direct current stimulation (tDCS) to the motor cortex has shown promising results in improving motor recovery (36). tDCS works by delivering a constant, lowintensity direct current through scalp electrodes to modulate cortical excitability, while TMS uses magnetic pulses to induce electrical currents that directly stimulate neuronal firing. These techniques differ in focality and mechanism, with tDCS modulating membrane potentials and TMS producing action potentials. This study will investigate the effects of combining tDCS with exercise-based rehabilitation targeting neuromuscular control and compare this intervention with sham tDCS alongside standard rehabilitation protocols. Our primary hypothesis is that decreasing cortical hyperexcitability in the motor area, when combined with exercise, will improve neuromuscular control, leading to better outcomes across the measured parameters and a lower risk of reinjury. Additionally, it is expected that the combination of tDCS and exercise-based rehabilitation will produce superior results compared to the rehabilitation and sham tDCS intervention.

2 Material and methods

2.1 Study design

This study will be a randomized controlled trial featuring a double-blind, comparative, and longitudinal approach. To

TABLE 1 Execution schedule - recruitment, intervention, and reassessment.

	Study period							
	Enrolment	Allocation	Post	Post-allocation			Close-out	
Time Point	-t ₁	0	t_1	t_2	t_3	t_4	T_5	t_x
Enrolment								
Eligibility screen	X							
Informed consent	X							
Allocation		X						
Interventions								
[NIBS + _{RHB}]			—				→	
$[SHAM_{NIBS} + _{RHB}]$			→					
Assessments								
[Anthropometric data]	X	X						
[Psychosocial Assessment]			X	X	X	X	X.	X
[Scoring Scale]			X	X	X	X	X	X
[Functionality]					X	X	X	X
[EGGTMS]			X		X		X	X
EMGs			X		X		X	X

 $t1,\,2024;\,0,\,start\,study;\,t1,\,postsurgical;\,t2,\,postsurgical30;\,t3,\,postsurgical60;\,t4,\,postsurgical90;\,t5,\,postsurgical180;\,tx,\,study\,completion.$

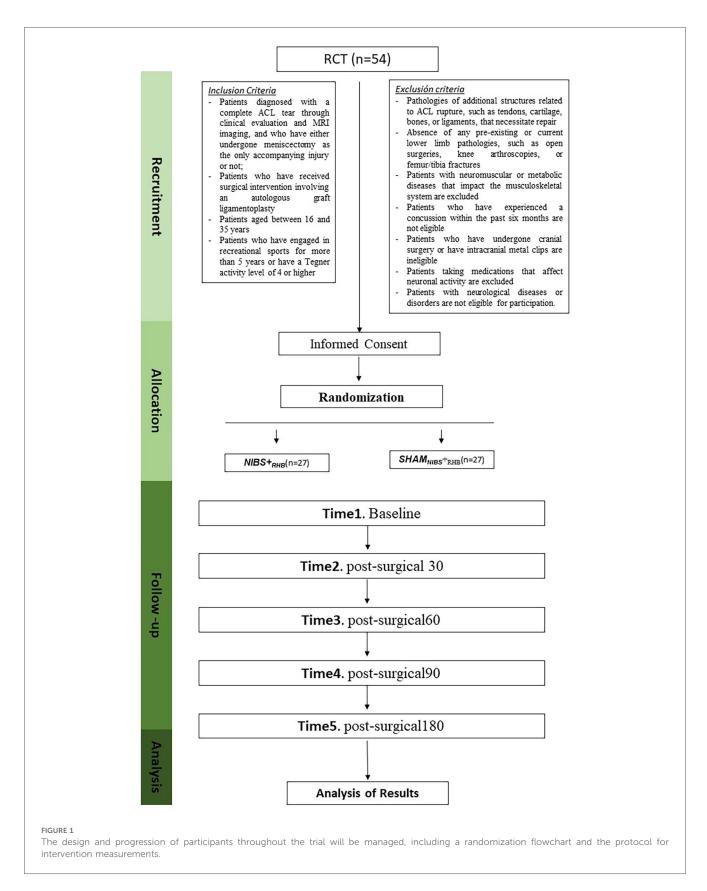
ensure clarity and thoroughness, the study will adhere to the SPIRIT statement guidelines (Table 1) (37). The TIDieR checklist will be used to report outcomes (38). The planned investigation will include a protocol with two comparator arms: NIBS + ProtocolRHB and ShamNIBS + ProtocolRHB, with participants randomly assigned to either arm (Figure 1). Patients will provide written informed consent prior to any study procedure, including randomization. Data collection will be conducted between April 2025 and December 2027. This study was approved by the Ethics Committee of the Catholic University of Valencia (UCV/2023-2024/053). Additionally, the study was pre-registered at https://www.Clinicaltrial.gov on 01/01/2025 (NCT06818201).

2.2 Study population

Elite-level athletes will constitute the target population, with the University Clinic of the Catholic University of Valencia as the reference center. The athletes will be recruited from the national federations of handball, basketball, and rugby. Additionally, informational pamphlets will be circulated on social media platforms, allowing for additional participant recruitment. All potential participants expressing interest will receive comprehensive details about the study procedures, including the selection process.

2.3 Eligibility criteria

The inclusion criteria are as follows: i) individuals with a complete ACL tear diagnosed via clinical assessment and MRI scans interpreted by a board-certified radiologist; ii) patients who have undergone autologous graft ligamentoplasty; iii) individuals between 16 and 35 years of age; and iv) physically


active individuals with more than 5 years of recreational sports participation. The exclusion criteria include: i) tendon, cartilage, bone, or ligament injuries requiring repair in addition to the ACL tear; ii) history of lower limb pathologies, including open surgeries, knee arthroscopies, or femur/tibia fractures; iii) presence of neuromuscular or metabolic diseases affecting the musculoskeletal system; iii) concussion within the past six months; iv) prior cranial surgery or presence of intracranial metal clips; v) use of medications affecting neuronal activity; and vi) neurological diseases or disorders.

2.4 Procedure

After group assignment, all participants will be assessed at four scheduled time points after surgery: one month (post-surgical30), two months (post-surgical60), three months (post-surgical90), and six months (post-surgical180). Scoring scales and psychosocial assessments will be evaluated at each visit (Figure 1). All assessments will be conducted bilaterally to allow within-subject comparisons.

2.5 Randomization and blinding

A block randomization design with block sizes of 4 or 6 will be implemented to ensure an even distribution of participants across groups. A double-blind design will be employed, ensuring that both the patients and the evaluators collecting data on the study variables are blinded to the adjunctive effect of complementary tDCS during the rehabilitation. To assess blinding, one might apply the recommendations of Bang et al. (39, 40). We will implement a close-ended questionnaire to enquire participants and technicians about treatment assignment with the following questions:

Question 1: "What tDCS treatment do you believe you have received/applied?" The participants/technicians will be asked to choose from three possible answers: (1) real current, (2) simulated current, or (3) do not know. If participants or

therapists answered Do not know', then Question 2 was asked: "Please provide your best guess about the tDCS treatment you received/applied and asked to choose from two possible replies": (1) real current; (2) simulated current. Finally, we will ask for a

confidence assessment with Question 3: "For the tDCS treatment you chose in question 1 or 2, please provide on a scale of 0–10 the level of confidence you have in being correct, where 0 means you are totally guessing and 10 means you are completely sure".

2.6 Sample size

The required sample size was determined using GPower® software (Franz Faul, Universität Kiel, Kiel, Germany), version 3.1.9.2. A preliminary sample of 46 subjects, divided into two groups of 23 participants each, was established for the intervention design. The primary variable (EMG output) was used for statistical analysis through repeated measures ANOVA. Cohen's effect size was set at 0.357 based on a previous study examining using surface EMG recordings as their primary outcome (41). The calculation incorporated a statistical power of 0.95, an alpha level of 0.05, and two intervention groups. To account for potential dropouts during treatment follow-up (estimated at 15%), an additional 3 participants were added to each group. This resulted in a total of 54 participants, with 27 per group. The chosen effect size, exceeding 0.357, is classified as "moderate" (42). If a greater percent of participants does not follow their planned treatment protocol (dropouts, nonadherence to treatment, or missing results), an "intention-totreat" analysis will be conducted.

2.7 Interventions

2.7.1 NIBS_{RHB}

A specialized rehabilitation protocol for postsurgical ACL recovery will be implemented. This protocol, grounded in the latest clinical guidelines (43–45), will be structured into four distinct phases: i) post-surgical recovery (weeks 0–5); ii) strength and neuromuscular control (weeks 6–12); iii) running, agility, and landings (weeks 13–24); and iv) return to sport activity (after week 24). The program will encompass 72 sessions scheduled three times a week over a 24-week period. Strength training will be the primary focus of all phases. To ensure optimal patient progress, regular assessments will be conducted with advancement to subsequent recovery phases based on the specific criteria. A schematic representation of the exercise protocol will be employed during rehabilitation (Table 2).

Furthermore, the tDCS device from Ionclinics will be used in the study. The device will be applied during the early stage of rehabilitation, specifically during activation, as the exercises required will be less demanding, less intricate, and more appropriate for this intervention. The treatment plan includes 16 sessions over an 8-week period, with two sessions each week. Each session will administer a continuous current of 2 mA for 20 min. The setup comprises two electrodes (a red anode and a black cathode) and two sponge pads with conductive gel, all incorporated into a helmet tailored to the patient. Electrode placement will adhere to the international 10–20 system for tDCS (46). The primary motor cortex (M1) will be the focus of

stimulation, with the anode placed at either C3 or C4, corresponding to the hemisphere contralateral to the injured leg, to target the affected motor area. The cathode will be positioned at the opposite supraorbital area, either Fp1 or Fp2. This placement ensures that stimulation is applied to the motor cortex controlling the injured limb, which is critical for modulating cortical excitability and enhancing neuromuscular control. The tDCS stimulation will be applied prior to this early rehabilitation phase to ensure proper monitoring and to maximize the safety and efficacy of the intervention. The tDCS stimulation will be applied prior to this early rehabilitation phase. Specifically, during the Post-Surgery Recovery Phases 1.1 and 1.2, as well as the Strength and Motor Control Phase 2.1.

2.7.2 SHAM_{NIBS + RHB}

The device will be configured to produce an upward gradient for 30 s, identical to that used in the experimental group, followed by a downward gradient for another 30 s. Consequently, the control group will feel a tingling sensation on their scalp similar to that of the experimental group. This stimulation will occur for a total of 60 s, which is insufficient to induce changes in cortical excitability (47). Studies have demonstrated that this approach effectively ensures patient blinding (48).

2.8 Outcomes

2.8.1 Baseline characteristics

To ensure accurate data collection for the study and monitor the patient's progress during rehabilitation, various measurements will be recorded. These will include the patient's sex, age, body mass index, athletic discipline, injury date, surgical procedure date, type of graft employed in the reconstructive surgery, time since surgery and hand/foot dominance. The study will also include measurements of knee circumference to assess volume at 5 and 10 cm above the patella's upper edge for the thigh and 5 and 10 cm below the patella's lower edge for the calf muscle. Finally, the extent of muscular arthrogenic inhibition and the patient's subjective pain perception will be evaluated.

2.8.2 Primary outcome

2.8.2.1 Electromyographic muscle activation

The primary outcome of this study will be the recorded electromyographic activity of eight (four on each leg) target muscles. Wireless surface electromyography (EMG) and force sensors (MuscleLab, Stathelle, Norway) connected to a 12-channel EMG amplifier (model ML6EMG01, MuscleLab, Stathelle, Norway) will be used to record muscle activity. The electrodes utilized will be the Lessa Pediatric Electrode model (30 mm diameter). The placement of electrodes will follow the SENIAM guidelines, which are part of the European Concerted Action under the BIOMED II program for noninvasive muscle assessment using surface electromyography (49). Both lower extremities will be recorded, and the placement order by

TABLE 2 Phased rehabilitation protocol following ACL reconstruction: objectives, progression criteria, and recommended exercises.

Phase		Weeks	Objectives	Progression criteria	Recommended exercises		
Post-surgery recovery	PHASE 1.1	0-2	Achieve fully extend the knee Reduce inflammation Activate the quadriceps Full extension (0°) Active quadriceps contraction	Full extension (0°) Active quadriceps contraction Quadriceps Lag Test	Straight leg raise (SLR): flexion, extension, abduction and adduction Peripheral joint mobilization Isometric quadriceps at 90°-60° Gait training • Inflammation management: cryotherapy + compression		
	PHASE 1.2	3–5		Extension 0° Contralateral flexion -10° Absence of inflammation (stroke test)	Strength: • Squat (0°-60°) • Hamstring Curl • Step Up → Step Up + running technique • Lumbo-pelvic strengthening: Clamshell, Side-Lying Leg Raise Bilateral/Unilateral, Hip Hike Balance: • Progression from bilateral to single leg stance • Stationary cycling >100°		
Strength and motor control 2.1		6-8	Restore knee strength Restore muscle strength Execute Single Leg Stance with proper technique	Absence of edema Absence of pain/edema post-exercise Full Range of Motion (ROM) Normal gait pattern	Leg press, Hamstring curl, Hip abduction and adduction, Knee extension (90°–45°), Air squat with band, Deadlift Single leg squat (SLS) progression Progression of unilateral balance exercises to include perturbations		
	PHASE 2.2	9–12		 Absence of instability episodes 10 SLS at 60° Functional evaluation Quadriceps index >80% Hamstring index >80% Gluteus medius >80% 	Previous phase + • Bilateral plyometrics in partial load • Bilateral plyometrics in full load • Submaximal training in sport-specific sagittal plane movements		
Running, agility, and landings PHASE 3.1		12-16	Attain optimal performance in jump exercises Complete the prescribed plyometric, agility, and running program Regain full strength and balance capabilities	Achieve pain-free and inflammation-free running Functional evaluation Quadriceps/hamstring/Gluteus medius strength >90% Q/H RATIO >66% Hop test >90%	Exercises (continue progressive strength training + plyometric, agility, and running block). • Bilateral sagittal plane plyometrics: broad jump, box jump, tuck jump, hop over line. • Unilateral sagittal plane plyometrics: pogo hops, lunge jump, bounding run. • Sagittal plane agility: ladder drills, forward and backward, figure-eight, deceleration, etc. • Running: adaptation protocol + running protocol (week 1)		
	PHASE 3.2	16-24		Absence of pain or inflammation Pain-free activity performance Appropriate movement pattern execution	Exercises (continue progressive strength training + plyometric, agility, and running block). • Frontal plane bilateral plyometrics: lateral hop over the line/hurdles, tuck jumps over the line/hurdles, etc. • Frontal plane unilateral plyometrics: lateral hop over the line/hurdles, tuck jumps over the line/hurdles, etc. • Frontal plane agility: zig-zag run, side shuffle/shuffle run, cone drills, crossover step, lateral ladder drills. • Running: running protocol (weeks 2–7).		
Return to play	turn to play PHASE 4 • Melbourne Return to Sport Score of 95+ • Patient demonstrates comfort, confidence, and readiness to return to sports • ACL injury prevention program implemented		Functional evaluation Quadriceps/hamstrings/gluteus medius strength index >90% Q/H RATIO >70% Hop test >90% RTP Month 7: unrestricted training Month 9/10 return to competition • Functional evaluation: Quadriceps/hamstrings/gluteus medius strength index >95% Q/H RATIO >75% Hop test >95%	 Exercises (continue progressing strength block + plyometrics and multiple agility) Multiple plyometrics: drop jump + rapid change of direction, 90° and 180° jumps, etc. Multiple agility: box and start drill, lateral shuffle over the hurdles, etc. 			

channel number will be as follows: channel 1, vastus medialis (VM) (right); channel 2, rectus femoris (RF) (right); channel 3, vastus lateralis (VL) (right); channel 4, biceps femoris (BF) (right); channel 5, VM (left); channel 6, RF (left); channel 7, VL (left); and channel 8, BF (left). The muscle activity sampling rate

will be 1 kHz, with each session lasting between 5 and 60 s, depending on the specific exercise.

The patients will be instructed to perform each movement with the maximum possible contraction and as quickly as possible to achieve the highest peak force (50). The patient will

perform three familiarization repetitions at submaximal intensity at the beginning of each repetition (51). Assessments will first be conducted on the healthy extremity, followed by testing on the surgically repaired knee. Patients will attempt three maximum voluntary isometric contractions (MVIC), each lasting 5 s, with a 30-s rest interval between each repetition (52). A 10-min rest period will be allowed between each position to prevent the influence of fatigue on the results and to ensure optimal recovery. Additionally, the patient will receive both visual and verbal feedback (e.g., "come on", "go ahead") to encourage maximal effort (51).

2.8.2.2 EMG analysis

Once the data are recorded, they will be stored on a hard drive in Comma-Separated Values (. csv) files. Signal analysis will be performed using MATLAB software (R2025a) (Mathworks Inc., Natick, USA). Data will be collected using a smooth-data function. Initially, a fourth-order Butterworth bandpass filter ranging from 20 to 400 Hz will be applied to process the signal. The signal will then undergo rectification or Root Mean Square (RMS) analysis by dividing the measurement section into 100 segments. Based on the exercise, we will extract segments lasting between 3 and 30 s (for analysis). The central 30 s in the resting position will be used as the baseline EMG. For dorsal flexion, plantar flexion, and the gamified approach, the central 5 s of work will be considered, and the mean RMS will be quantified for each exercise. For tests of maximum isometric contraction of knee flexion and knee extension, the central 3 s and maximum RMS will be used. In addition, the peaks of each signal will be calculated using the MATLAB "findpeaks" function, and the relationship between the signal peaks and individual muscles will be determined, which will allow the order of contraction to be established. Finally, the activation frequency of each recording will be calculated. The highest value recorded during the three trials will be selected and normalized based on each patient's body mass index to remove the influence of body mass, thereby enabling a comparison between them.

2.8.3 Secondary outcome 2.8.3.1 Scoring scale

2.8.3.1.1 Lysholm scale. The Lysholm scale assesses knee function in different ligament injuries, with the goal of tracking progress after an intervention and/or evaluating knee deterioration under certain conditions (53). The scale consists of eight components: limping, use of support for walking, instability, pain, locking, swelling, ability to climb stairs, and ability to squat. It is rated on a scale from 0 to 100, where 100-95 is considered excellent, 94-84 is good, 83-65 is fair, and below 65 is poor. Additionally, each component and the total score are analysed separately. This scale has a Cronbach's alpha of 0.737 and an intraclass correlation coefficient of 0.844 (54).

2.8.3.1.2 Anterior cruciate ligament-quality of life questionnaire. This scale is a continuous quantitative tool used as a Patient-Reported Outcome Measure to evaluate the effect of ACL injuries on patients' lives. The questionnaire comprised 32

items divided into five domains: symptoms and physical issues (five items), work-related challenges (four items), sports participation/competition (12 items), lifestyle (six items), and social and emotional factors (five items). Each domain receives a score proportional to the number of items and is assessed using a 100-millimeter visual analog scale. Higher scores reflect improved quality of life. This scale was validated in Spanish, showing a Cronbach's alpha of 0.81 and 0.94, and an intraclass correlation coefficient indicating good consistency, ranging from 0.88 to 0.96 (55).

2.8.3.2 Functional assessment

Functional Jump Tests are commonly used to evaluate patients after ACL repair, especially to assess the Limb Symmetry Index (LSI) (56, 57). The current literature suggests that the normal LSI is >90% when comparing the ACL-reconstructed limb with the non-operated limb (58). Functional Jump Tests are also cost-effective and simple to assess, as they do not require extensive space or equipment, enabling the evaluation of knee functional capacity and offering a measurable metric that can be tracked over time. Ebert et al. identified eight jump tests—single hop for distance, 6 m timed hop, triple hop for distance, triple crossover hop for distance, single medial hop for distance, single lateral hop for distance, single limb countermovement jump for height, and timed speedy hop test—that were the most effective in highlighting functional limb asymmetries in patients post-ACL injury (59).

2.8.3.3 Psychosocial assessment

2.8.3.3.1 Fear of movement. Tampa scale of kinesiophobia. The Tampa Scale of Kinesiophobia (TSK) will be used to assess fear of movement or perceived risk of re-injury. This self-reported questionnaire consists of a series of statements, each scored on a 4-point Likert scale ranging from "strongly disagree" to "strongly agree." Higher scores indicate greater fear of movement or re-injury, whereas lower scores suggest reduced fear levels. It is essential to address kinesiophobia early in the rehabilitation process, as it can negatively impact a patient's adherence to the prescribed rehabilitation program (60). In particular, sports health professionals should be mindful of the influence of kinesiophobia on functional assessments, as it may hinder progress and recovery (61). Research has shown that an increase in kinesiophobia is significantly associated with worse postoperative SF-36 PCS scores, highlighting its negative effect on overall physical functioning in patients after surgery (62). The TSK demonstrates excellent internal consistency, with a Cronbach's alpha of 0.90, and has a proven high test-retest reliability, with an intraclass correlation coefficient (2, 1) of 0.934 (63). Additionally, the severity of kinesiophobia following ACL reconstruction is influenced by factors such as symptom subscales and the Pain Catastrophizing Scale (PCS), further emphasizing the need to consider these factors in the rehabilitation process (64).

2.8.3.3.2 Pain catastrophizing scale. The Pain Catastrophizing Scale (PCS) is a self-reported questionnaire designed to evaluate the extent of catastrophizing in response to pain in patients. It

consists of 13 items, each rated on a Likert-type scale from 0 to 4, with higher scores reflecting a greater tendency to catastrophize while experiencing pain (65). The PCS is widely used to understand how individuals perceive and react to pain, as catastrophic thinking can significantly influence pain perception and coping strategies. Studies have shown that catastrophizing is a particularly influential factor in the variation of postoperative pain, with adolescents often showing more pronounced effects than adults (66). This suggests that age and developmental factors may play a role in the way catastrophizing influences pain experiences following surgery. The PCS provides a total score ranging from 0 to 52, with higher scores indicating higher levels of catastrophizing. This scale has demonstrated strong psychometric properties, including robust content and construct validity, ensuring that it effectively measures the concept it is intended to assess (67). Additionally, the PCS has been shown to exhibits excellent internal consistency and test-retest reliability, making it a reliable tool for evaluating various musculoskeletal disorders, including those related to injury and surgical intervention (68, 69). Furthermore, the PCS has been found to have significant clinical relevance, as it correlates with both pain intensity and functional outcomes, particularly in long-term recovery. For example, six months after an ACL injury, higher PCS scores were associated with increased pain levels and diminished functional ability (64). These findings highlight the importance of addressing catastrophizing in rehabilitation, as it may contribute to worse recovery. The Spanish version of the PCS has been validated and has good psychometric properties. It has an internal consistency of 0.79, which is considered acceptable, and a test-retest reliability of 0.84, indicating that the scale performs consistently over time in Spanish-speaking populations. These characteristics make the PCS a useful and reliable tool for assessing pain catastrophizing in diverse populations, ensuring that its utility extends across languages and cultures.

2.8.3.4 Cortical excitability

Transcranial magnetic stimulation (TMS) is a non-invasive method developed to examine the functionality of human corticospinal pathways (70). Researchers have integrated TMS with EEG and functional imaging techniques to enhance the measurement of cortical excitability. Image guided TMS, with either population-averaged magnetic resonance images (MRIs) or patient-specific MRIs, allows for precise localization of areas of interest. In this study, Brainsight® markers will be positioned on the patient's head using the nasion and zygion as reference points for image-guidance. We will target the hand knob and assess for the motor hotspot-the area of highest motor activity in the injured and non-injured leg's quadriceps and hamstrings muscles using TMS stimulation. Using this hotspot, we will find the motor threshold, or the minimum stimulation required to elicit a response of >50uV in 5 out of 10 TMS pulses. Once the hotspot is identified and the minimum motor threshold established, a 64-channel EEG cap will be placed. EEG recordings will be conducted using a high-density TMScompatible EEG system (BrainProducts Brain ActiChamp, Gilching, Germany) over the identified hotspot where the minimum motor threshold was obtained with the Brainsight system. The cap allows for the recording of corticospinal and EEG activity (71). For the EEG procedure, the patient will be instructed to contract quadriceps and hamstrings muscles to 30% of their maximum voluntary isometric contraction for 10 s. The patient will receive visual biofeedback through EMG during the contraction, incorporating visual gamification to enhance engagement and performance. The patient will receive visual biofeedback through EMG during the contraction, incorporating visual gamification to enhance engagement and performance. Each contraction will last a maximum of 5 s to avoid fatigue. This process will be repeated three times with intervals between each contraction (72). Latency in milliseconds, amplitude in microvolts, and pulse frequency in hertz will be used to assess cortical excitability and plasticity by recording cortical activity during voluntary contraction (73).

2.9 Program feasibility and safety: attendance and compliance with protocol

Several factors influence the adherence of patients with ACL injuries to their exercise regimens. Improving a patient's ability to complete a rehabilitation program, especially home exercises, can be facilitated by considering social and environmental factors that enhance adherence and compliance (74). Furthermore, following the recommended guidelines for returnto-sport clearance after ACL reconstruction is essential for effective rehabilitation (75). Key factors that impact attendance at physiotherapy appointments and participation in sessions include therapist support, rehabilitation setting, and exercise progression (76). For this study, protocol adherence will be measured by calculating the percentage of patients who complete the assessments following established methods from previous research (77). In the initial stages, individualized training will be provided to ensure treatment plan compliance and minimize the risk of adverse effects.

2.10 Oversight and monitoring

Specific protocols will be implemented to safeguard data and participant well-being. The principal investigators will collaborate with a physician who leads the non-invasive and precision neuromodulation institute to monitor and evaluate the study's progress and safety measures. Despite the minimal reported side effects, patients will undergo a 14-day monitoring period following the procedure. The operation will be halted if the patient reports any localized signs or symptoms of infection. The analysis of the study will utilize information gathered prior to the conclusion of the intervention. To ensure participant safety, all individuals who completed the intervention phase will receive follow-up phone calls for a week after completion. An Independent Safety Monitor, who is the ethics committee secretary that approved the study, will receive and review

biannual progress reports. These reports cover participant recruitment, retention/attrition, and adverse events. At the conclusion of the study, a comprehensive report will be prepared detailing and summarizing the adverse events. The concluding report will include explanations provided by the study participants who chose to withdraw. The reasons behind their withdrawal will be examined and contrasted with the initial expectations of the researchers to uncover the patterns and possible factors influencing these decisions. Furthermore, an evaluation will be conducted to predict which participants might leave the study early, with the goal of developing strategies to mitigate this and ensure the reliability of results. The Data Safety Monitoring Plan requires that any serious adverse events be reported to the ethics committee within a 48-hour timeframe. Should an unexpected serious adverse event pose an increased risk to participants, the study will be suspended if the independent safety monitor determines it is necessary due to the frequency or severity of the events.

2.10.1 Data collection

Patient medical information will be entered directly into a secure computer system located at the evaluation sites. Each patient will receive their own unique identifier to anonymize data. To enable data sharing among researchers for further analysis, an Excel file containing only unique patient identifiers will be distributed. This method safeguards the confidentiality and security of information.

2.10.2 Statistical analysis

2.10.2.1 Baseline characteristics

To evaluate demographic baseline measures across intervention groups, comparisons will be conducted using analysis of variance (ANOVA) or chi-square tests (i.e., NIBS+Protocol_{RHB} and ShamNIBS+Protocol_{RHB}) to identify statistically significant differences between groups (p > 0.05).

2.10.2.2 Analysis of the outcome measures

A per-protocol analysis will be performed in accordance with the CONSORT guidelines for reporting randomized controlled trials. The Kolmogorov-Smirnov test will be utilized to verify the normality assumption, and the Levene test will be used to evaluate the homogeneity of variances. To examine the effects of tDCS combined with exercise-based rehabilitation on patients undergoing ACL reconstruction, repeated measures ANOVA will be applied, with experimental groups as factors and Bonferroni corrections for post hoc analysis. Comparisons within and between groups for both primary and secondary outcomes will assess time, group, and interaction effects. Results will be expressed as mean differences (MD) with 95% confidence intervals (CI95%). The effect size (ES) will be calculated using Cohen's d coefficient. All statistical analyses will be conducted using SPSS 24 software (IBM Inc., Chicago, Illinois, USA). If there are participant dropouts or if the statistical power is below 80%, an intention-to-treat analysis will be implemented (78).

2.10.2.3 Correlation coefficient

The strength of the relationship between the variables will be evaluated using the Pearson correlation coefficient and/or the Spearman correlation coefficient (if the normality assumption is not met).

2.11 Dissemination plan

A dissemination plan has been established to ensure that the study findings will be shared openly with the scientific community and other relevant stakeholders. The results will be published in peer-reviewed journals, presented at national and international conferences, and made available upon request to interested researchers. The primary objective of a dissemination plan is to ensure that research findings are effectively communicated, understood, and utilized, maximizing their potential impact. This study intends to publish its results in medical, physiotherapy, and exercise journals to make them accessible to professionals and researchers in the field. In line with open science principles, anonymized datasets and study materials will be made available in publicly accessible repositories. The key goals of the dissemination strategy will include widespread distribution of the research findings, ensuring they are clear and comprehensible to an informed audience with expertise in the field. The therapy protocols will be presented in detail to maintain transparency and facilitate replication. Findings may be shared with third parties only when justified and with the authors' consent. Through these efforts, the plan seeks to ensure that the research contributes meaningfully to both the academic community and practical applications.

Ethics statement

The studies involving humans were approved by The Catholic University of Valencia's Ethics Committee has approved this study (UCV/2023-2024/053). The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study. Written informed consent was obtained from the individual(s) for the publication of any potentially identifiable images or data included in this article.

Author contributions

JV-M: Conceptualization, Methodology, Investigation, Writing – original draft. JL-S: Writing – review & editing. PS-L: Writing – review & editing. JF-T: Writing – original draft, Writing – review & editing, Investigation. JM-R: Writing – review & editing, Software, validation. EJ-C: Software, Writing – review & editing. NC-D: Writing – review & editing, Validation. AP-L: Writing – review & editing, Conceptualization. NP-L: Methodology, Writing – review & editing. LB-V: Writing – review & editing, Software. AP-L:

Conceptualization, Methodology, Writing – review & editing, Conceptualization, Methodology. JT: Conceptualization, Investigation, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This work was supported by Conselleria d'Innovació, Universitats, Ciència i Societat Digital Grants: The Catholic University of Valencia University and Coordinació del Sistema Valencià d'Investigació, Ciència i Desenvolupament Tecnològic Pilot Grant CIGE/2023/9 (GE).

Conflict of interest

AP-L (8th author) is partly supported by grants from the National Institutes of Health (R01AG076708, R01AG059089), Eleanor and Herbert Bearak Memory Wellness for Life Program, Jack Satter Foundation, and BrightFocus Foundation. AP-L serves as a paid member of the scientific advisory boards for Neuroelectrics, Magstim Inc., TetraNeuron, BitBrain, and AscenZion. He is co-founder of TI Solutions and co-founder and chief medical officer of Linus Health. None of these companies have any interest in or have contributed to the present work. AP-L (11th author) is listed as an inventor on several issued and pending patents on the real-time integration of transcranial magnetic stimulation electroencephalography and magnetic resonance imaging, and applications of noninvasive brain stimulation in various neurological disorders, as well as digital biomarkers of cognition and digital assessments for the early diagnosis of dementia.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

Generative Al statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fresc.2025. 1627228/full#supplementary-material

References

- 1. Monk AP, Davies LJ, Hopewell S, Harris K, Beard DJ, Price AJ. Surgical versus conservative interventions for treating anterior cruciate ligament injuries. *Cochrane Database Syst Rev.* (2016) 4(4):CD011166. doi: 10.1002/14651858.CD011166.pub2
- 2. Gianotti SM, Marshall SW, Hume PA, Bunt L. Incidence of anterior cruciate ligament injury and other knee ligament injuries: a national population-based study. *J Sci Med Sport.* (2009) 12(6):622–7. doi: 10.1016/j.jsams.2008.07.005
- 3. Ageberg E, Forssblad M, Herbertsson P, Roos EM. Sex differences in patient-reported outcomes after anterior cruciate ligament reconstruction: data from the Swedish knee ligament register. *Am J Sports Med.* (2010) 38(7):1334–42. doi: 10. 1177/0363546510361218
- 4. Frobell RB, Lohmander LS, Roos HP. Acute rotational trauma to the knee: poor agreement between clinical assessment and magnetic resonance imaging findings. *Scand J Med Sci Sports.* (2007) 17(2):109–14. doi: 10.1111/j.1600-0838. 2006.00559.x
- 5. Kvist J, Kartus J, Karlsson J, Forssblad M. Results from the Swedish national anterior cruciate ligament register. *Arthroscopy.* (2014) 30(7):803–10. doi: 10.1016/j. arthro.2014.02.036
- 6. Bahr R, Holme I. Risk factors for sports injuries—a methodological approach. *Br J Sports Med.* (2003) 37(5):384–92. doi: 10.1136/bjsm.37.5.384
- 7. Costa LA, Foni NO, Antonioli E, Teixeira de Carvalho R, Paião ID, Lenza M, et al. Analysis of 500 anterior cruciate ligament reconstructions from a private institutional register. *PLoS One.* (2018) 13(1):e0191414. doi: 10.1371/journal.pone.0191414
- 8. Dai B, Herman D, Liu H, Garrett WE, Yu B. Prevention of ACL injury, part I: injury characteristics, risk factors, and loading mechanism. *Res Sports Med.* (2012) 20(3–4):180–97. doi: 10.1080/15438627.2012.680990

- 9. Hughes G, Dally N. Gender difference in lower limb muscle activity during landing and rapid change of direction. *Sci Sports.* (2015) 30(3):163–8. doi: 10.1016/j.scispo.2015.02.009
- 10. Yoo JH, Lim BO, Ha M, Lee SW, Oh SJ, Lee YS, et al. A meta-analysis of the effect of neuromuscular training on the prevention of the anterior cruciate ligament injury in female athletes. *Knee Surg Sports Traumatol Arthrosc.* (2010) 18(6):824–30. doi: 10.1007/s00167-009-0901-2
- 11. Sugimoto D, Myer GD, Bush HM, Klugman MF, Medina McKeon JM, Hewett TE. Compliance with neuromuscular training and anterior cruciate ligament injury risk reduction in female athletes: a meta-analysis. *J Athl Train.* (2012) 47(6):714–23. doi: 10.4085/1062-6050-47.6.10
- 12. Flaxman TE, Smith AJJ, Benoit DL. Sex-related differences in neuromuscular control: implications for injury mechanisms or healthy stabilisation strategies? *J Orthop Res.* (2014) 32(2):310–7. doi: 10.1002/jor.22510
- 13. Holcomb WR, Rubley MD, Lee HJ, Guadagnoli MA. Effect of hamstring-emphasized resistance training on hamstring: quadriceps strength ratios. *J Strength Cond Res.* (2007) 21(1):41–7. doi: 10.1519/R-18795.1
- 14. Pfeifer CE, Beattie PF, Sacko RS, Hand A. Risk factors associated with non-contact anterior cruciate ligament injury: a systematic review. *Int J Sports Phys Ther.* (2018) 13(4):575–87. doi: 10.26603/ijspt20180575
- 15. Toohey LA, Drew MK, Cook JL, Finch CF, Gaida JE. Is subsequent lower limb injury associated with previous injury? A systematic review and meta-analysis. *Br J Sports Med.* (2017) 51(23):1670–8. doi: 10.1136/bjsports-2017-097500
- 16. Ekås GR, Ardern CL, Grindem H, Engebretsen L. Evidence too weak to guide surgical treatment decisions for anterior cruciate ligament injury:

a systematic review of the risk of new meniscal tears after anterior cruciate ligament injury. *Br J Sports Med.* (2020) 54(9):520–7. doi: 10.1136/bjsports-2019-100956

- 17. Lie MM, Risberg MA, Storheim K, Engebretsen L, Øiestad BE. What's the rate of knee osteoarthritis 10 years after anterior cruciate ligament injury? An updated systematic review. *Br J Sports Med.* (2019) 53(18):1162–7. doi: 10.1136/bjsports-2018-099751
- 18. Jenkins SM, Guzman A, Gardner BB, Bryant SA, del Sol SR, McGahan P, et al. Rehabilitation after anterior cruciate ligament injury: review of current literature and recommendations. *Curr Rev Musculoskelet Med.* (2022) 15(3):170–9. doi: 10.1007/s12178-022-09752-9
- 19. Sherman DA, Glaviano NR, Norte GE. Hamstrings neuromuscular function after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. *Sports Med.* (2021) 51(8):1751–69. doi: 10.1007/s40279-021-01433-w
- 20. Higbie S, Kleihege J, Duncan B, Lowe WR, Bailey L. Utilizing hip abduction strength to body-weight ratios in return to sport decision-making after ACL reconstruction. *Int J Sports Phys Ther.* (2021) 16(5):1295–301. doi: 10.26603/001c. 27346
- 21. Muscle Force Contributions to Anterior Cruciate Ligament Loading PMC [Internet]. Available online at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325827/ (Accessed August 27, 2024)
- 22. Deficits in Quadriceps Force Control After Anterior Cruciate Ligament Injury: Potential Central Mechanisms | J Athl Train [Internet]. Available online at: https://meridian.allenpress.com/jat/article/54/5/505/421040/Deficits-in-Quadriceps-Force-Control-After (Accessed July 10, 2023)
- 23. Tang WT, Hsu MJ, Huang YM, Hsu YT, Chuang LL, Chang YJ. Low-intensity electrical stimulation to improve the neurological aspect of weakness in individuals with chronic anterior cruciate ligament lesion. *Biomed Res Int.* (2020) 2020;7436274. doi: 10.1155/2020/7436274
- 24. Neto T, Sayer T, Theisen D, Mierau A. Functional brain plasticity associated with ACL injury: a scoping review of current evidence. *Neural Plast.* (2019) 2019:3480512. doi: 10.1155/2019/3480512
- Sherman DA, Rush J, Glaviano NR, Norte GE. Knee joint pathology and efferent pathway dysfunction: mapping muscle inhibition from motor cortex to muscle force. *Musculoskelet Sci Pract*. (2024) 74:103204. doi: 10.1016/j.msksp.2024. 103204
- 26. Scheurer SA, Sherman DA, Glaviano NR, Ingersoll CD, Norte GE. Corticomotor function is associated with quadriceps rate of torque development in individuals with ACL surgery. *Exp Brain Res.* (2020) 238(2):283–94. doi: 10.1007/s00221-019-05713-w
- 27. Hortobágyi T, Richardson SP, Lomarev M, Shamim E, Meunier S, Russman H, et al. Chronic low-frequency rTMS of primary motor cortex diminishes exercise training-induced gains in maximal voluntary force in humans. *J Appl Physiol* (1985). (2009) 106(2):403–11. doi: 10.1152/japplphysiol.90701.2008
- 28. Muellbacher W, Ziemann U, Wissel J, Dang N, Kofler M, Facchini S, et al. Early consolidation in human primary motor cortex. *Nature.* (2002) 415(6872):640–4. doi: 10.1038/nature712
- 29. Grooms DR, Page SJ, Nichols-Larsen DS, Chaudhari AMW, White SE, Onate JA. Neuroplasticity associated with anterior cruciate ligament reconstruction. *J Orthop Sports Phys Ther.* (2017) 47(3):180–9. doi: 10.2519/jospt.2017.7003
- 30. Baumeister J, Reinecke K, Schubert M, Weiss M. Altered electrocortical brain activity after ACL reconstruction during force control. *J Orthop Res.* (2011) 29(9):1383–9. doi: 10.1002/jor.21380
- 31. Lavender A, Laurence AS, Bangash IH, Smith RB. Cortical evoked potentials in the ruptured anterior cruciate ligament. *Knee Surg Sports Traumatol Arthrosc.* (1999) 7(2):98–101. doi: 10.1007/s001670050129
- 32. Sonnery-Cottet B, Ripoll T, Cavaignac E. Prevention of knee stiffness following ligament reconstruction: understanding the role of arthrogenic muscle inhibition (AMI). Orthop Traumatol Surg Res. (2024) 110(1):103784. doi: 10.1016/j.otsr.2023. 103784
- 33. Lowe T, Dong XN. The use of hamstring fatigue to reduce quadriceps inhibition after anterior cruciate ligament reconstruction. *Percept Mot Skills.* (2018) 125(1):81–92. doi: 10.1177/0031512517735744
- 34. Hart JM, Kuenze CM, Diduch DR, Ingersoll CD. Quadriceps muscle function after rehabilitation with cryotherapy in patients with anterior cruciate ligament reconstruction. *J Athl Train*. (2014) 49(6):733–9. doi: 10.4085/1062-6050-49.3.39
- 35. Sonnery-Cottet B, Saithna A, Quelard B, Daggett M, Borade A, Ouanezar H, et al. Arthrogenic muscle inhibition after ACL reconstruction: a scoping review of the efficacy of interventions. *Br J Sports Med.* (2019) 53(5):289. doi: 10.1136/bjsports-2017-098401
- 36. Murphy MC, Sylvester C, Whife C, D'Alessandro P, Rio EK, Vallence AM. Anodal transcranial direct current stimulation (tDCS) modulates quadriceps motor cortex inhibition and facilitation during rehabilitation following anterior cruciate ligament (ACL) reconstruction: a triple-blind, randomised controlled proof of concept trial. *BMJ Open Sport Exerc Med.* (2024) 10(4):e002080. doi: 10.1136/bmjsem-2024-002080

- 37. Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, et al. SPIRIT 2013 Statement: defining standard protocol items for clinical trials. *Ann Intern Med.* (2013) 158(3):200–7. doi: 10.7326/0003-4819-158-3-201302050-00583
- 38. Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. *Br Med J.* (2014) 348:g1687. doi: 10.1136/bmj.g1687
- 39. Bang H, Flaherty SP, Kolahi J, Park J. Blinding assessment in clinical trials: a review of statistical methods and a proposal of blinding assessment protocol. *Clin Res Regul Aff.* (2010) 27(2):42–51. doi: 10.3109/10601331003777444
- 40. Kolahi J, Bang H, Park J. Towards a proposal for assessment of blinding success in clinical trials: up-to-date review. *Community Dent Oral Epidemiol.* (2009) 37(6):477–84. doi: 10.1111/j.1600-0528.2009.00494.x
- 41. Shiravand F, Motamedi P, Amani-Shalamzari S, Amiri E, da Silva Machado DG. Effect of repeated sessions of transcranial direct current stimulation on subjective and objective measures of recovery and performance in soccer players following a soccer match simulation. *Sci Rep.* (2024) 14(1):20809. doi: 10.1038/s41598-024-71701-y
- 42. Jodoin MG, Gierl MJ. Evaluating type I error and power rates using an effect size measure with the logistic regression procedure for DIF detection. *Appl Meas Educ.* (2001) 14(4):329–49. doi: 10.1207/S15324818AME1404_2
- 43. Kotsifaki R, Korakakis V, King E, Barbosa O, Maree D, Pantouveris M, et al. Aspetar clinical practice guideline on rehabilitation after anterior cruciate ligament reconstruction. *Br J Sports Med.* (2023) 57(9):500–14. doi: 10.1136/bjsports-2022-106158
- 44. van Melick N, van Cingel REH, Brooijmans F, Neeter C, van Tienen T, Hullegie W, et al. Evidence-based clinical practice update: practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus. *Br J Sports Med.* (2016) 50(24):1506–15. doi: 10.1136/bjsports-2015-095898
- 45. Cooper R, Hughes M. Melbourne ACL Rehabilitation Guide 2.0. Melbourne: Team ACL (2018). Available online at: https://team-acl.com/melbourne-acl-rehabilitation-guide/
- 46. Xiong G, Li X, Dong Z, Cai S, Huang J, Li Q. Modulating activity in the prefrontal cortex changes intertemporal choice for loss: a transcranial direct current stimulation study. *Front Hum Neurosci.* (2019) 13:167. doi: 10.3389/fnhum. 2019.00167
- 47. Thair H, Holloway AL, Newport R, Smith AD. Transcranial direct current stimulation (tDCS): a beginner's guide for design and implementation. *Front Neurosci.* (2017) 11:641. doi: 10.3389/fnins.2017.00641
- 48. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. *Neurology*. (2001) 57(10):1899–901. doi: 10. 1212/WNL.57.10.1899
- 49. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. *J Electromyogr Kinesiol.* (2000) 10(5):361–74. doi: 10.1016/S1050-6411(00)00027-4
- 50. Bemben MG, Clasey JL, Massey BH. The effect of the rate of muscle contraction on the force-time curve parameters of male and female subjects. *Res Q Exerc Sport*. (1990) 61(1):96–9. doi: 10.1080/02701367.1990.10607484
- 51. Cerda E, Jerez-Mayorga D, Payer R, Campos C, Guzmán-Guzmán I, Reyes A, et al. Validity and reliability of evaluating hip abductor strength using different normalization methods in a functional electromechanical device. *PLoS One.* (2018) 13:e0202248. doi: 10.1371/journal.pone.0202248
- 52. Schwery NA, Kiely MT, Larson CM, Wulf CA, Heikes CS, Hess RW, et al. Quadriceps strength following anterior cruciate ligament reconstruction: normative values based on sex, graft type and meniscal status at 3, 6 & 9 months. *Int J Sports Phys Ther.* (2022) 17(3):434–44. doi: 10.26603/001c.32378
- 53. Briggs KK, Lysholm J, Tegner Y, Rodkey WG, Kocher MS, Steadman JR. The reliability, validity, and responsiveness of the lysholm score and tegner activity scale for anterior cruciate ligament injuries of the knee: 25 years later. *Am J Sports Med.* (2009) 37(5):890–7. doi: 10.1177/0363546508330143
- 54. Peña DO, Gómez Gelvez A, Torres LP, García LF. Adaptación transcultural al español y validación de la escala de lysholm para evaluar la funcionalidad de la rodilla. *Rev Colomb Ortop Traumatol.* (2021) 35(3):223–8. doi: 10.1016/j.rccot.2021. 06.001
- 55. Mohtadi N. Development and validation of the quality of life outcome measure (questionnaire) for chronic anterior cruciate ligament deficiency. *Am J Sports Med.* (1998) 26(3):350–9. doi: 10.1177/03635465980260030201
- 56. Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. *Br J Sports Med.* (2016) 50(13):804–8. doi: 10. 1136/bjsports-2016-096031
- 57. Kyritsis P, Bahr R, Landreau P, Miladi R, Witvrouw E. Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. *Br J Sports Med.* (2016) 50(15):946–51. doi: 10.1136/bjsports-2015-095908

11

- 58. Thomeé R, Kaplan Y, Kvist J, Myklebust G, Risberg MA, Theisen D, et al. Muscle strength and hop performance criteria prior to return to sports after ACL reconstruction. *Knee Surg Sports Traumatol Arthrosc.* (2011) 19(11):1798–805. doi: 10.1007/s00167-011-1669-8
- 59. Ebert JR, Du Preez L, Furzer B, Edwards P, Joss B. Which hop tests can best identify functional limb asymmetry in patients 9–12 months after anterior cruciate ligament reconstruction employing a hamstrings tendon autograft? *Int J Sports Phys Ther.* (2021) 16(2):393–403. doi: 10.26603/001c.21140
- 60. Larsen C, Holmich P, Speedtsberg MB, Olsen CK. Kinesiophobia following anterior cruciate ligament reconstruction. *Ugeskr Laeger*. (2024) 186(8) doi: 10. 61409/V06230382
- 61. Bakhsh HR, Metikala S, Billy GG, Vairo GL. Association between self-reported kinesiophobia and single-leg hop for distance in patients with ACL reconstruction: a systematic review. *Sports Health*. (2022) 14(5):674–80. doi: 10.1177/19417381211049357
- 62. Longo UG, Marino M, Rizzello G, De Salvatore S, Piergentili I, Denaro V. Preoperative and postoperative kinesiophobia influences postoperative outcome measures following anterior cruciate ligament reconstruction: a prospective study. *J Clin Med.* (2023) 12(14):4858. doi: 10.3390/jcm12144858
- 63. Areeudomwong P, Buttagat V. Reliability and validity of the cross-culturally adapted Thai version of the Tampa scale for kinesiophobia in knee osteoarthritis patients. *Malays J Med Sci.* (2017) 24(2):61–7. doi: 10.21315/mjms2017.24.2.8
- 64. Mir B, Vivekanantha P, Dhillon S, Cotnareanu O, Cohen D, Nagai K, et al. Fear of reinjury following primary anterior cruciate ligament reconstruction: a systematic review. *Knee Surg Sports Traumatol Arthrosc.* (2023) 31(6):2299–314. doi: 10.1007/s00167-022-07296-6
- 65. Sturgeon JA, Zautra AJ. Psychological resilience, pain catastrophizing, and positive emotions: perspectives on comprehensive modeling of individual pain adaptation. *Curr Pain Headache Rep.* (2013) 17(3):317. doi: 10.1007/s11916-012-0317-4
- 66. Tripp DA, Stanish WD, Reardon G, Coady C, Sullivan MJL. Comparing postoperative pain experiences of the adolescent and adult athlete after anterior cruciate ligament surgery. *J Athl Train*. (2003) 38(2):154–7.
- 67. Relationship between pain catastrophizing and 6-month outcomes following anterior cruciate ligament reconstruction PubMed [Internet]. Available online at: https://pubmed.ncbi.nlm.nih.gov/31628272/ (Accessed April 27, 2025)

- 68. Wheeler CHB, Williams ACC, Morley SJ. Meta-analysis of the psychometric properties of the pain catastrophizing scale and associations with participant characteristics. *Pain*. (2019) 160(9):1946–53. doi: 10.1097/j.pain.00000000000001494
- 69. Ong WJ, Kwan YH, Lim ZY, Thumboo J, Yeo SJ, Yeo W, et al. Measurement properties of pain catastrophizing scale in patients with knee osteoarthritis. *Clin Rheumatol.* (2021) 40(1):295–301. doi: 10.1007/s10067-020-05163-8
- 70. Badawy RAB, Loetscher T, Macdonell RAL, Brodtmann A. Cortical excitability and neurology: insights into the pathophysiology. *Funct Neurol.* (2012) 27(3):131–45.
- 71. Hernandez-Pavon JC, Veniero D, Bergmann TO, Belardinelli P, Bortoletto M, Casarotto S, et al. TMS combined with EEG: recommendations and open issues for data collection and analysis. *Brain Stimul.* (2023) 16(2):567–93. doi: 10.1016/j.brs. 2023 02 009
- 72. Farzan F, Vernet M, Shafi MM, Rotenberg A, Daskalakis ZJ, Pascual-Leone A. Characterizing and modulating brain circuitry through transcranial magnetic stimulation combined with electroencephalography. *Front Neural Circuits*. (2016) 10:73. doi: 10.3389/fncir.2016.00073
- 73. Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R, et al. Clinical utility and prospective of TMS-EEG. *Clin Neurophysiol.* (2019) 130(5):802–44. doi: 10.1016/j.clinph.2019.01.001
- 74. Nakamura Y, Shah N, Stirpe A, Gupta P, Liolios N. The lived experience of rehabilitation following anterior cruciate ligament reconstructive surgery: a social ecological analysis. *Physiother Can.* (2023) 75(4):359–65. doi: 10.3138/ptc-2021-0090
- 75. Aquino CF, Ocarino JM, Cardoso VA, Resende RA, Souza TR, Rabelo LM, et al. Current clinical practice and return-to-sport criteria after anterior cruciate ligament reconstruction: a survey of Brazilian physical therapists. *Braz J Phys Ther.* (2021) 25(3):242–50. doi: 10.1016/j.bjpt.2020.05.014
- 76. Pizzari T, McBurney H, Taylor NF, Feller JA. Adherence to anterior cruciate ligament rehabilitation: a qualitative analysis. *J Sport Rehabil.* (2002) 11(2):90–102. doi: 10.1123/jsr.11.2.90
- 77. Smeets A, Ahwaz FG, Bogaerts S, Groef D, Berger A, Kaux P, et al. Pilot study to investigate the feasibility of conducting a randomised controlled trial that compares immediate versus optional delayed surgical repair for treatment of acute anterior cruciate ligament injury: iODA pilot trial. *BMJ Open.* (2022) 12(3):e055349. doi: 10.1136/bmjopen-2021-055349
- 78. Elkins MR, Moseley AM. Intention-to-treat analysis. *J Physiother.* (2015) 61(3):165–7. doi: 10.1016/j.jphys.2015.05.013