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A novel multimodal
pharmacologic approach using
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and donepezil in severe TBI: a
case series
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Traumatic brain injury (TBI) remains a leading cause of long-term morbidity and
disability worldwide. Individuals with moderate to severe TBI often experience
persistent neurocognitive deficits, including short-term memory loss, executive
dysfunction, and slowed cognitive processing for which there are currently no
FDA-approved treatments. This case series investigates the synergistic use of
guanfacine, N-acetylcysteine (NAC), and donepezil (GND) administered
alongside ongoing cognitive rehabilitation, with treatment effects evaluated
through pre- and post-intervention Montreal Cognitive Assessment (MoCA)
scores. The guanfacine/NAC combination has previously been reported to
improve working memory and executive function in individuals with mild TBI,
suggesting its potential applicability to more severe TBI cases. Guanfacine, an
alpha-2A agonist approved for ADHD, enhances prefrontal cortical function;
Donepezil, a cholinesterase inhibitor, is widely used to treat cognitive symptoms
in mild cognitive impairment and early dementia; and NAC, a potent antioxidant
and glutamate modulator, has demonstrated neuroprotective effects across a
range of clinical contexts, including TBI. Each of these agents has a well-
established safety profile. The encouraging outcomes observed in this case
series underscore the potential of the GND regimen as a multimodal
pharmacologic approach to target the complex neurochemical disruptions
following TBI. These preliminary findings warrant further investigation in larger,
placebo-controlled trials in order to more rigorously assess the safety, efficacy,
and translational potential of this intervention for mitigating chronic cognitive
sequelae in individuals with moderate to severe TBI.
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Introduction

Traumatic brain injury (TBI) is an increasingly recognized global cause of morbidity
and mortality (1). According to the Centers of Disease Control and Prevention,
approximately 2.5 million TBI-related emergency department visits occur annually in
the United States (2). In 2016, the estimated annual national cost of TBI-related care
and management was $40.6 billion (3).
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There is an increasing body of evidence linking TBI to higher
risk of neurodegenerative disorders, including Alzheimer’s disease
(4), Parkinson disease (5),
encephalopathy (6). Furthermore, TBI patients are at higher risk

as well as chronic traumatic
of developing psychiatric comorbidities, including depression
(7), anxiety (8), impulsive behavior (9), suicidality (10) and
psychotic symptoms (11).

Severe TBI (sTBI) can involve intracerebral hemorrhage or
contusions, as well as axonal damage referred to as traumatic
axonal injury (typically less than three lesions) vs. diffuse axonal
injury (more than three lesions) depending on the severity of
the impact (12). There are currently no Food and Drug
Administration-approved medications for TBI (13). Hence,
there is a great need for development of an effective
pharmacotherapeutic regimen to address this treatment gap.

Cognitive impairments—particularly persistent memory
deficits—are among the most frequently reported long-term
consequences of TBI (14). The cortical cholinergic neurons and
their ascending projections are especially vulnerable to TBI-
induced biomechanical insult. Acetylcholine plays a key role in
regulating arousal, attention and memory (15). A recent
multicenter, double-blind, placebo-controlled, 10-week clinical
trial demonstrated significant memory improvement in the
donepezil treated group (16). The results of the study also
supported a relatively safe and tolerable profile of donepezil.

The disruptions to the dopamine and noradrenaline networks due
to TBI are fairly common (17). Damage to these networks has been
linked to deficits in attention (18, 19), as well as learning and
memory (20). Moreover, executive functions such as working
memory, planning and inhibitory control, are commonly affected by
TBI (21). Pharmacological agents such as methylphenidates have
been shown to increase dopamine levels via inhibition of
noradrenaline and dopamine transporters (22), and to increase
dopamine release via D2-receptor modulation of vesicular
trafficking (23). Other agents that modulate dopaminergic and
noradrenergic activity include amantadine (24), dextroamphetamine
(25), bromocriptine (26), atomoxetine (27), as well as levodopa (28),
have been utilized in the treatment of moderate to severe TBL

Our group has recently published findings on the use of
guanfacine, an alpha-2A noradrenergic agonist, for treating
patients with mild TBI who exhibit deficits in working memory
and executive functioning (29). Guanfacine, marketed as Tenex
(immediate release) and Intuniv (extended release), is an FDA-
approved medication for attention-deficit hyperactivity disorder
(ADHD). Preclinical studies have shown that guanfacine enhances
prefrontal cortical (PFC) function by modulating cAMP-PKA-K*
signaling at post-synaptic alpha-2A receptors, thereby supporting
and enhancing PFC neuronal firing and protecting dendritic
spines from stress-related damage, and overall improvement
(30).
improvement in both executive function and working memory

in PFC functioning Clinically, guanfacine leads to
(31). In a study by McAllister et al. (32), guanfacine treatment
was shown to enhance working memory in patients with mild
TBI, as demonstrated by increased right PFC activation on fMRL

NAC is a potent antioxidant which replenishes glutathione

levels and has demonstrated mitochondrial protective effects
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(33). NAC also modulates the kynurenine pathway, reducing
levels of kynurenic acid (KYNA), a neurotoxic metabolite that
inhibits NMDA receptors (34). In our prior study, involving
mild TBI patients, we have reported a significant neurocognitive
benefit by the combined use of guanfacine and NAC, with
proposed antioxidant and

benefits (29). The use of NAC has also been explored in larger

longitudinal anti-inflammatory
clinical trials involving military members (35), as well as
pediatric population (36). In the Hoffer et al. study, subjects
receiving NAC within 24 h of the blast injury had an 86%
chance of symptom resolution, including memory loss and
neurocognitive dysfunction, with no reported side effects
compared with 42% for those in the placebo group (35).

Donepezil, a cholinesterase inhibitor, is FDA-approved for the
treatment for of mild cognitive impairment due to Alzheimer’s
disease (37). Prior TBI autopsy studies have reported significant
but incomplete losses of basal forebrain cholinergic neurons and
their projections in approximately 50% of sTBI cases (38).
A recent multi-center trial by Arciniegas et al. (16) demonstrated
that donepezil significantly improved persistent verbal memory
impairment in individuals with predominantly sTBI during the
chronic post injury period. In this trial, donepezil responders
exhibited significant improvements in new learning, delayed
recall, processing speed, and other cognitive domains, despite the
study’s limited sample size. Donepezil also has likely clinical
benefits in attention, as a precursor function to verbal memory. It
has a relatively favorable safety and tolerable profile.

Given the widespread neuroanatomical and neurocircuitry
disruptions observed in severe traumatic brain injury (sTBI) and
the associated global neurocognitive impairments—including
deficits in working memory, executive functioning, and verbal
and episodic memory—there is a strong rationale for the
benefits
donepezil. Furthermore, considering the persistent oxidative stress

synergistic  clinical of combining guanfacine and
and neuroinflammatory processes that often follow sTBI, patients
are also likely to benefit from the continued use of NAC (39).
The proposed GND combination (guanfacine, NAC, donepezil)
leverages distinct and complementary mechanisms of action, with
minimal risk of drug-drug interactions, offering a comprehensive
and well-tolerated therapeutic strategy for addressing the complex
and chronic neurocognitive sequelae of sTBI (Figure 1).

The following two discussed cases were selected based on
diagnosis of severe TBI, defined as Glascow Coma Scale
(GCS) <9, loss of consciousness >24h and post-traumatic
amnesia > 7 days (40). Mild and moderate TBI patients have not
been included in the reported cases. Also, neither of the
discussed patients

were previously diagnosed with any

neurodegenerative disorders prior to their injury.

Case 1 (Mr. JP)
Initial presentation

Mr. JP is a 60-year-old right-handed gentleman with a
previous history of traumatic brain injury (age 52, left temporal
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FIGURE 1

Schematic overview: mechanistic rationale for the use of guanfacine, N-acetylcysteine, and donepezil (GND) in treating neurocognitive impairment
following severe TBI. Donepezil, increases the availability of acetylcholine (ACh), activates postsynaptic a7-nicotinic acetylcholine receptors
(a7-nAChRs) and subsequently enhances NMDA receptor activity. This mechanism is thought to provide subthreshold benefits for working
memory and executive functioning. Adding guanfacine likely offers a potentiating synergistic effect by activating a2A-adrenergic receptors (a2A-
AR) and boosting postsynaptic signaling in the dorsolateral prefrontal cortex (DLPFC), particularly within Layer Il pyramidal neurons. NAC
provides mitochondrial protection via its robust anti-oxidant benefits and inhibiting the harmful effects of reactive oxygen species (ROS). Images

created with BioRender.com.

intraparenchymal hemorrhage and left orbital roof fracture) who
sustained a sTBI at age 59 following an unhelmeted motorcycle
accident. His injuries were significant, including an extensive
left frontotemporal hemorrhagic contusion, multicompartmental
hemorrhages, subarachnoid hemorrhage, subdural hematoma,
and a right sigmoid sinus thrombus (Figure 2). He also had
abnormal EEGs with epileptiform abnormalities. His acute
management involved decompressive hemicraniectomy, followed
by cranioplasty in January 2020. He also sustained orthopedic
injuries, including a right scapular fracture and left tibial
and fibular fractures, requiring open reduction and internal
fixation (ORIF).

Follow up sessions

Following his hospitalization, Mr. JP completed extensive
outpatient physical, occupational, and speech therapy and now
receives ongoing home-based rehabilitation with nursing
support. He was referred to our Concussion/TBI Clinic for
neurocognitive evaluation due to persistent cognitive and
functional deficits. His main complaints include short-term
memory loss (forgetting conversations), word-finding difficulty,
and expressive aphasia. His wife also reports impaired recall of
familiar names and the need for assistance with medication
management. He denies visuospatial problems.

Mr. JP remains on Keppra for seizure prophylaxis, with fair

adherence (missed 1-2 doses weekly) and no reported seizures.
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He uses Alprazolam 1 mg PRN for episodic anxiety. While sleep
disruption is not reported, his wife notes excessive daytime
sleep. He endorses intermittent low mood without behavioral
outbursts. He requires supervision for many IADLs and some
ADLs, is not driving, but ambulates outdoors for light exercise.
Amantadine 50 mg BID provides partial benefit but contributes
to daytime sleepiness.

He was seen in the Concussion/TBI clinic after 8 months post
injury. After initially being started on NAC regimen. He was
subsequently started on donepezil (initiated at 5 mg nightly,
titrated to 10 mg) for amnestic symptom. In a follow up session,
Mr. JP was started on guanfacine ER (started at 1 mg nightly,
titrated to 2 mg) after 13 months post initial injury, in order to
address  the
dysfunction. He also engaged in intensive outpatient speech/

persistent working memory and executive

cognitive, physical, and occupational therapy after his initial visit.

Case 2 (Mr. JS)
Initial presentation

Mr. JS is a 30-year-old right-handed male with a longstanding
history of medically refractory epilepsy, initially diagnosed at age
14, and a more recent history of sTBI sustained after being
struck by a motor vehicle while riding a scooter His epilepsy
history includes generalized tonic-clonic seizures (GTCs), with
the first documented seizure occurring in 2008, involving
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FIGURE 2

for patient JS (blue arrow).

MRI" FLAIR sequence demonstrating significant multicompartmental intraparenchymal hemorrhage (red arrow) post decompressive left
hemicraniectomy for patient JP. MRI SWI sequence demonstrating multiple foci of intraparenchymal hemorrhages and diffuse axonal injury (DAI)

convulsive activity, drooling, unresponsiveness, and postictal
confusion. Despite initial treatment with Depakote and
subsequent trials of Keppra XR, Topamax, and Tegretol, Mr. JS
continued to experience seizures, which later evolved into
predominantly nocturnal events characterized by leftward eye
deviation, gasping sounds, facial twitching, limb stiffening, and
postictal aphasia. Prior to his initial neurocognitive assessment,
he was experiencing seizures two to three nights per week,
though there were periods of remission. Mr. JS sustained a
severe TBI. He reported being stationary at a red light with no
memory of the collision, regaining awareness in the hospital.
Acute injuries included a right-sided subarachnoid hemorrhage
(Figure 2), multiple orthopedic fractures (pubic rami, patella,
femur, sternum, ribs, and hand), and a prolonged ICU and
rehabilitation course. Surgical interventions involved multiple

orthopedic repairs and wound closures.

Follow up sessions

Following rehabilitation, he used a walker initially, then
transitioned to a cane, and is now ambulatory without assistive
devices. Shortly after the initial visit at 14 months post injury
the patient was started on NAC. Due to significant memory and
recall deficits at 15 months post injury visit, Mr. JS was started
on titrating dose of donepezil, with the target dose of 10 mg tab
PO at night. As Mr. JS continued to have persistent working
memory and executive functioning difficulties, he was started on
guanfacine ER 1 mg tab PO at nighttime, which was titrated up

Frontiers in Rehabilitation Sciences

to 2 mg after a one-month period at month 25 post injury. Mr.
JS also underwent intensive outpatient speech/cognitive therapy
in tandem with physical/occupational therapy. He was lost to
follow for 1.5 years but was seen for a follow up session in the
Concussion/TBI clinic. His subsequent assessment demonstrated
significant global functioning improvement. JS’s initial (T1:
Time 1) MoCA assessment was at the time of his initial visit at
14 months post-injury, and his follow-up MoCA assessment
(T2: Time 2) was at 4 years post-injury (Figure 3).

Discussion

Patients with moderate to severe TBI frequently experience
persistent neurocognitive deficits, including short-term memory
loss, executive dysfunction, and slowed cognitive processing—
symptoms for which there are currently no FDA-approved
treatments. As such, clinicians often face significant challenges
of treating these symptoms in the outpatient setting. The two
cases described here represent a growing cohort of patients with
debilitating
neurocognitive deficits. The observed improvements following

moderate to severe TBI and enduring,
the use of GND combination therapy offer a potentially
promising clinical approach for patients suffering from chronic
post-traumatic encephalopathy.

In both Case 1 and Case 2, Montreal Cognitive Assessment
(MoCA)

improvements in nearly all cognitive domains (Table 1 and

scores showed robust and clinically meaningful

Figure 3). MoCA index scoring (41) was used to parse changes
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Mr. JP (Case 1)
Clinical Timeline

sTBI due to MCC
leading to
extensive
intraparencymal
hemorrhage
Intensive
outpatient
SLP/PT/OT from
month 1-8 post
injury

Mr. JS (Case 2)
Clinical Timeline

sTBI due to MCV
resulting in
intraparenchymal
hemorrhage and
DAI

Patient continue
to have persistent
neurocognitive
and memory
deficits despite

Persistent
memory deficits
and aphasia at
initial clinical
evaluation at
month 8 post
initial injury and
was started on
NAC and therapy

The patient was
started on
Donepezil at
month 13 due to
persistent
memory deficits

Patient was seen
for an initial
neurocognitive
evaluation at
month 14 post
injury, and was
started on NAC
and continuing
therapy

Patient was seen

Guanfacine
regimen was
added to address
dysexecutive
symptoms at
month 21 post
injury

Patient was
started on
guanfacine at
month 25 due to
persistent
dysexecutive
symptoms

Significant
neurocognitive
improvement at
29 months post
initial treatment.

The patient was

intensive
outpatient
SLP/PT/OT

FIGURE 3

for a follow up subsequently
session an month tested at month
15 and started on 49 and
Donepezil demonstrated
significant
neurocognitive
improvement

Detailed clinical timeline for case 1 and case 2. sTBI was the result of motorcycle collision (MCC) in case 1 and motor vehicle collision (MCV) in case
2. Intensive therapy included physical therapy (PT), occupational therapy (OT), and speech and language pathology (SLP) therapy. Both patients
clinically benefited from the GND combination (guanfacine/N-acetylcysteine/donepezil).

across the tested specific domains, including memory, language,
with  the
pronounced improvements noted on measures of memory and

visuospatial and executive functioning, most
executive functioning.

Our case series also demonstrates a novel multimodal
pharmacological treatment strategy, and the utility of serial
Montreal Cognitive Assessments to efficiently track cognitive
changes after severe TBL. A recent study by Ratcliffe et al. (42),
represents the most rigorous secondary analysis for test -retest
stability of MoCA scores to date and include baseline (Time 1)
and follow-up (Time 2) MoCA scores from the National
Alzheimer’s Coordinating Center Unform Data Set (NACC-
UDS), for two clinical groups (dementia, mild cognitive
impairment) and a normal control group. As found in many
previous studies, interpretation of changes in MoCA scores are
often influenced by ceiling effects, a highly negatively skewed
distribution of scores, demographic differences, and test-retest
stability coefficients, which are within the acceptable range for

clinical groups but lower among normal/healthy control groups.

Frontiers in Rehabilitation Sciences

In an attempt to overcome the psychometric limitations
associated with the traditional domain scores of the MoCA, we
utilized a recently published method for the calculation of new
Index scores (41). Both cases showed improvement in nearly all
of the cognitive domains measured by the Index scores. More
detailed t-test
demonstrated significant improvement in MoCA-AIS, MoCA-
MIS and MoCA-EIS subscales, while this did not apply to the
MoCA-OIS and MoCA-VIS subscales (Figure 4).

The GND combination therapy—comprising guanfacine,

statistical ~ analysis using paired-samples

NAC, and donepezil—was well-tolerated and leveraged the
independent FDA-approved safety profiles of each agent:
guanfacine for ADD/ADHD (43), NAC for acetaminophen
toxicity (44) and donepezil for mild cognitive impairment (45).
Given the multifaceted nature of cognitive impairment in sTBI,
including amnestic, working memory, and executive function
deficits, a multimodal treatment approach targeting distinct
neurochemical systems (i.e., cholinergic and noradrenergic)
is warranted.
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TABLE 1 Montreal cognitive assessment (moCA) subscale scores for JP (case 1) and JS (case 2).

MoCA subscales Case-1 Case-1 Case-2 Case 2
Evaluation 1 Evaluation 2 Evaluation 1 Evaluation 2
MoCA-TS 12 27 12 27
MoCA-MIS* 0 12 0 13
MoCA-EIS? 4 12 5 12
MoCA-VIS 4 7 4 5
MoCA-LIS 2 5 3 6
MoCA-AIS* 3 18 9 18
MoCA-OIS 5 6 4 6

Global improvement across multiple MoCA subscales post GND treatment. MoCA-TS, MoCA total score; MoCA-MIS, MoCA Memory Index Score; MoCA-EIS, MoCA Executive Index
Score, MoCA Visuospatial Index Score; MoCA-LIS, MoCA Language Index Score; MoCA-AIS, MoCA Attention Index Score; MoCA-OIS, MoCA Orientation Index Score, with more detail
description included here;

MoCA-TS: MoCA total score.

MoCA-MIS: MoCA Memory Index score defined as out of 15 score depending on recollection based on cueing.

MoCA-EIS: MoCA Executive Index Score calculated by adding raw scores for modified TMT-B. clock drawing, digits span forward and backward, letter A tapping, serial 7 subtraction, letter
fluency and abstraction with scores ranging from 0 to 13.

MoCA-VIS: MoCA visuospatial index, defined as adding raw scores of the cube copy, clock drawing, and naming with score ranging from 0 to 7.

MoCA-LIS: MoCA language index score, defined as adding raw scores of naming, sentence repetition and letter fluency with score ranging from 0 to 6.

MoCA-AIS: MoCA attention index score, defined as adding raw scores for digit span forward and backward, letter A tapping, serial 7 subtraction, sentence repetition, words recall in both
immediate recall trials with scores ranging from 0 to 18.

MoCA-OIS: MoCA orientation index score is the sum of points for the orientation section of the MoCA.

MoCA index scoring system is based on prior published work in MCI/AD population (41).

?Additional statistical analysis included in Figure 3.

The role of cognitive and speech therapy is also critical and
MoCA Performances T1 wTs should be highlighted. Both patients underwent a rigorous
outpatient cognitive rehabilitation and reported significant
30 subjective benefits. The essential role of cognitive rehabilitation
® TS e TS for TBI and stroke patients is well-established (46-48). We posit
that the integration of pharmacological treatment with
rehabilitation may yield synergistic effects, accelerating cognitive
20 recovery and functional gains (49-51). Of note, donepezil has
® AIS ® AIS also been shown to reduce apathy in dementia and stroke
§ patients, (52, 53). It is entirely conceivable that the use of
3 _— ’ MIS donepezil in GND combination regimen led to further
@ [ ] - @ ® mis engagement, motivation and participation in rehabilitation.
0 P A recent multicenter randomized controlled trial by
Ie} VIS - . _—
‘ e LIS OIS Arciniegas et al. (16), found that donepezil led to significant
:_ # s ! e ’ o improvement in verbal learning measured by Hopkins Verbal
pe Learning Test (HVLT), as well as delayed recall and processing
° P & speed vs. placebo. However, the study did not find significant
L) Ll L)
JPT1 JPT2 JST1 JST2 effects on working memory or executive functioning. In
contrast, our case reports suggest measurable improvements
MoCA Subcales across these domains as well. Mechanistically, it is plausible that
CURE 4 donepezil may enhance memory retrieval and processing speed
Graphic representation of the MoCA subscales, with each data point by increasing acetylcholine availability and stimulating o7
representing a MoCA Index Score, at Pre-treatment (T1:) and Post- nicotinic acetylcholine receptors (a7-nAChRs) and NMDA
treatment (T2) GND treatment; TS, total score; AIS, attention index t (54, 55) (Fi 1 hich bl d h
score; MIS, memory index score; EIS, executive index score; VIS, receptors > lgure » which arguably wou ave
visuospatial index score; OIS, orientation index score; LIS, “subthreshold”  benefits for working memory/executive
language index score. *Paired-samples t-tests were condugted to functioning. Adding guanfacine likely provides a potentiating
examine changes in MoCA subscale scores from baseline to L. L .
follow-up. Total MoCA scores were not analyzed, as both synergistic benefit of activating the a2A-adrenergic receptors and
participants had identical scores at each time point (12 at baseline increasing the postsynaptic signal in DLFPC Layer 111 pyramidal
and 27 at follow-up), resulting in no within-pair variability. . .
1) MOCA-AIS: (1) = 19.00, p = 033, Cohen’s d = 13.48, MoCA-MIS. neurons. Given the extent of DLPFC damage often seen in sTBI,
t(1) = 25.00, p =.025, Cohen’'s d=17.73, MoCA-EIS: t(1) =15.00, neither agent alone may be sufficient, but their combination
p=.042, Cohen's d=10.64, showed statistical significance. 2) likely yields a synergistic therapeutic effect.
MoCA-OIS: t(1) =3.00, p=.205 Cohen's d=2.13, MoCA-VIS: X . .
t1)=2.00, p=295 Cohen's d=142, did not reach Memory formation could be conceptualized in three stages:
statistical significance. encoding, consolidation, and retrieval (56). Donepezil has
demonstrated benefits in retrieval and processing speed (16),
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while the addition of guanfacine may enhance encoding and
executive functioning (29, 43) in the two reported cases. For
sTBI patients who often suffer from global cognitive deficits,
like the patients in our cases, GND combination treatment
offers the advantage of addressing multiple stages of memory
processes. NAC monotherapy has been explored in TBI and has
shown clinical efficacy in several published studies (35, 57, 58).
The addition of NAC, which has demonstrated efficacy in prior
TBI studies, may offer neuroprotection through its antioxidant
chronic

and anti-inflammatory properties, addressing the

neuroinflammatory state often seen post-TBI (59, 60).

Limitations

The limitation of the study includes a limited sample size, the
absence of a control group with no pharmacological treatment,
placebo, or an alternative pharmacological regimen, and the
absence of female patients in this case series. Considering the
promising cognitive outcomes anecdotally observed in a small
series of our clinic patients, we anticipate future studies with a
larger and more diverse TBI sample, for which we will also have
a broader set of neuropsychological test data to compare with
MoCA scores. However, given the success of the treatment of
these two cases, the GND treatment combination has been used
in additional patients in our clinical setting. It is important to
note that the reported cases series does not report on a potential
control group without the GND combination treatment. It also
does not provide the direct group comparison with other
treatment groups, including patients that received guanfacine/
NAC or donepezil/NAC only combinations.

Another potential limitation is not including female patients
in this case series, which needs to be addressed in future studies
for greater translational value. An additional limitation of the
study includes lack of detailed neuropsychological assessment
prior and post combination treatment therapy. Although both
patients were able to complete the baseline neuropsychological
assessments, neither were able to complete the post treatment
neuropsychological assessment, mainly due to insurance and
cost related issues. Although the MoCA score improvements in
both patients were robust, it will be more clinically translatable
to replicate these results based on comprehensive pre- and post-
GND treatment neuropsychological assessment in future studies.

Conclusion

Chronic neurocognitive impairments following moderate to
severe TBI remain among the most disabling and treatment-
resistant sequelae of brain injury. Given the lack of currently
FDA-pharmacological treatments for sTBI patients, there is a
critical unmet need for effective therapeutic strategies. This case
series highlights the potential utility of a multimodal therapeutic
approach combining guanfacine, N-acetylcysteine, and donepezil
(GND), alongside structured cognitive rehabilitation. Larger,
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controlled studies are needed to validate these findings and
assess their broader clinical applicability.
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