

OPEN ACCESS

EDITED BY
Maria Nordheim Alme,
Western Norway University of Applied
Sciences, Norway

REVIEWED BY
Bård Bogen,
Western Norway University of Applied
Sciences, Norway
Emer McGowan,
Trinity College Dublin, Ireland

*CORRESPONDENCE
Mansour M. Alotaibi

☑ mansour.alotaibi@nbu.edu.sa

RECEIVED 30 June 2025 ACCEPTED 25 August 2025 PUBLISHED 09 September 2025

CITATION

Alotaibi MM (2025) Do we need internal medicine specialists in physical therapy? Recognizing the need for updating the clinical practice paradigm.

Front. Rehabil. Sci. 6:1656054. doi: 10.3389/fresc.2025.1656054

COPYRIGHT

© 2025 Alotaibi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Do we need internal medicine specialists in physical therapy? Recognizing the need for updating the clinical practice paradigm

Mansour M. Alotaibi^{1,2}*

¹Department of Rehabilitation, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia, ²Center for Health Research, Northern Border University, Arar, Saudi Arabia

The growing demand for healthcare services and development of healthcare present an opportunity for expanding physical therapy roles into internal medicine. This perspective discusses the potential benefits and limitations of establishing a formal internal medicine specialization for physical therapists (PTs). While PTs already contribute significantly to chronic disease prevention and treatment, their current scope of practice lacks structured training in internal medicine domains such as metabolic, autoimmune, renal, and systemic inflammatory disorders. Integrating internal medicine into PT education and clinical practice could enhance early identification of red flags, embrace interdisciplinary collaboration, and improve non-pharmacological interventions for various internal medicine-related diseases. Nevertheless, this expansion must be approached with caution, ensuring clear scope definitions, adequate training, and collaborative implementation to mitigate risks such as role ambiguity or misdiagnosis. Drawing on global experiences from advanced practice models and emerging literature, this paper calls for a discussion on the feasibility, safety, and value of internal medicine specialization in physical therapy practice. The goal of this perspective is not to replace medical professionals but to augment chronic disease management through targeted evidence-based rehabilitation strategies and preventative approaches.

KEYWORDS

physical therapy, internal medicine, chronic disease management, exercise therapy, rehabilitation

Introduction

Clinical physical therapy practice in the United States allows practitioners to pursue various specialty certifications to address a wide range of diagnoses, including orthopedic, neurological, cardiopulmonary, and pediatric conditions (1). Physical therapists (PTs) play a pivotal role in providing exercise interventions across multiple domains, including musculoskeletal, neurological, cardiopulmonary, and oncology, primarily to enhance movement and overall well-being (2). In the United States, all states offer some degree of direct access to PTs without physician referrals (unrestricted access in 21 states and access with provisions in 29 states as of July 2024) (3), necessitating a high level of diagnostic proficiency among PTs. This model has demonstrated significant advantages, including increased convenience, reduced wait times, and decreased healthcare-related costs (4).

As the global population continues to age, the demand for geriatric physical therapy services has increased. Older adults frequently exhibit complex health conditions that extend beyond musculoskeletal impairments, requiring a more integrated and interdisciplinary approach to care. Current physical therapy scopes of practice address various patient needs, including geriatric, orthopedics, neurology, cardiopulmonary care, and wound management; however, none specifically focus on internal medicine. Given the high prevalence of multimorbidity in aging populations, this gap in specialization presents a missed opportunity to enhance patient care.

Although PTs are well-trained to screen for systemic diseases, certain internal medicine conditions present with symptoms that overlap with musculoskeletal disorders, increasing the risk of misdiagnosis. The "Big Three" conditions, vascular diseases, infections, and cancer, can mimic common orthopedic complaints, underscoring the importance of specialized training (5) For instance, acute myocardial infarctions (AMI) may manifest as shoulder pain, and a failure to recognize this subtle presentation could lead to life-threatening delays in care (6). A prospective multicenter study found that approximately 18% of AMI patients experienced diagnostic inconsistencies (6). Given that shoulder pain can mimic symptom of AMI, PTs must possess the clinical expertise needed to accurately distinguish musculoskeletal issues from potentially life-threatening conditions (7). While foundational physical therapy education provides initial training in red flag identification, these complexities warrant the need for a formal credential in internal medicine. Establishing such a pathway would improve diagnostic accuracy and contribute to patient safety, especially in a direct-access environment, where PTs serve as first contact providers.

Physical therapy is uniquely positioned to deliver nonpharmacological interventions, including exercise, manual therapy, and modalities, into holistic patient care. Providing PTs with structured training in internal medicine would enhance their understanding of human pathology and physiology, enhancing their diagnostic capabilities and treatment efficacy. In addition, several chronic diseases may benefit from physical therapy, and patients of such diseases often do not consider PTs part of their healthcare providers. For example, patients with diabetic gastroparesis would rarely seek PTs to improve their symptoms, as management is traditionally led by physicians using dietary and pharmacological interventions. Alongside pharmacological treatment, PTs could help provide exercise intervention and education for such patients to augment medical management and enhance patient outcomes (8). These contributions would occur in coordination with medical management and within clearly defined professional boundaries. The inclusion of specialized PTs in internal medicine in the multidisciplinary care teams would enhance the awareness of PTs' roles in these conditions and expand accessibility to non-pharmacological support, thereby enhancing patients' outcomes.

It is important to acknowledge that PTs already play an essential role in the management of many internal medicine-related conditions within the domains of cardiopulmonary, geriatric, and primary care. These contributions are exemplified in management

of conditions such as chronic obstructive pulmonary disease (9, 10), heart failure (11, 12), osteoporosis (13), and diabetes (14, 15). However, the proposed internal medicine specialization would expand the scope beyond the above-mentioned domains to encompass systemic metabolic, renal, autoimmune, hematologic, and inflammatory diseases, where PTs currently have limited formal training and recognition. Nevertheless, the overlap between the proposed internal medicine specialty and existing recognized specialties is inevitable. Developing clear scope of practice guidelines, competency standards, and certification pathways would be essential to minimize this overlap and enhance clinical roles and professional development pathways.

Expanding the scope of physical therapy into domains traditionally managed by physicians and nurse practitioners, such as chronic disease management and systemic risk screening may raise concerns about role encroachment or redundancy. Thus, the integration of an internal medicine training into physical therapy practice must be approached with sensitivity to the dynamics of the broader healthcare team. Regardless, the intent of developing this specialization for PTs is to reinforce rather than to replace existing medical roles. Internal medicine-specialized PTs, once integrated in the healthcare system, would operate within clearly defined clinical boundaries, focusing more on nonpharmacological interventions, early risk identification, functional optimization, and interdisciplinary healthcare planning. Evidence suggests that PTs with advanced training working in primary care settings and emergency departments demonstrated high-level of diagnostic accuracy in line with physicians' diagnosis with musculoskeletal cases (16). PTs with specific training in internal medicine would not assume responsibility for diagnosing complex internal medicine conditions but would serve as collaborators in early identification and secondary prevention. Thus, PTs could successfully function as physician extenders, as suggested by experience from primary care (17) and military setting (18). Traditionally, PTs have successfully served as physician extenders in military settings, handling over 3,500 visits within direct-access models (19). This model has demonstrated benefits such as decreased healthcare expenditure and fewer lost duty days due to musculoskeletal injuries. Expanding this model to include internal medicine training could further elevate the role of PTs in comprehensive patient management and preventative care (17).

This perspective paper advocates for the establishment of an Internal Medicine Clinical Specialist certification within geriatric physical therapy practice. The addition of internal medicine training could elevate PTs' role in chronic disease prevention and management. By providing PTs with specialized training in internal medicine, they can better contribute to the early detection, management, and prevention of systemic diseases in diverse populations, including older adults. For example, exercise therapy has been shown to significantly improve glycemic control in individuals with type II diabetes mellitus (T2DM) (20, 21). However, most DM patients seek physical therapy services only for musculoskeletal complaints, despite evidence indicating that approximately 80% of physical therapy referrals involve patients with prediabetes or diabetes (22). Internal medicine training would enable PTs to identify T2DM risk factors early, predict

complications (23), and contribute to comprehensive care plans that incorporate exercise and lifestyle modifications with pharmacological treatment. This opportunity would allow PTs to further contribute to the provision of healthcare and improve the quality of healthcare services.

Training in internal medicine for PTs would also benefit patients with autoimmune disorders, such as celiac disease, which is associated with reduced bone mineral density (BMD) due to impaired nutrient absorption (24). Individuals with celiac disease face a 50% increased risk of fractures, yet current PT education does not emphasize targeted rehabilitation strategies for this population (25). Limited evidence suggests that physical therapy interventions may improve BMD in this population (26). While adherence to a gluten-free diet with or without pharmacological intervention would recover the diminished BMD at 5 years (27), PTs can further help in speeding up the recovery by providing tailored exercise interventions individuals with celiac disease (28), thereby reducing the risks for skeletal fractures. Additionally, mitochondrial dysfunction plays a critical role in conditions such as exertional rhabdomyolysis (29, 30), a serious consequence of extreme physical exertion commonly seen in military personnel and athletes. PTs are well-trained in providing education and treatment for individuals with this condition (31), and, if they receive specialized training in internal medicine, can further help these individuals improve their well-being.

From an economic perspective, reimbursement challenges often hinder access to PT services for patients with internal medicinerelated conditions (32). While evidence on this topic is limited, insurance providers frequently deny coverage due to the lack of clear diagnostic justification for PT intervention. Establishing an internal medicine specialty within PT practice would create a distinct healthcare segment, reinforcing the necessity of PT services in managing internal medicine conditions. Well-trained PTs in internal medicine could contribute to healthcare cost reduction by preventing unnecessary hospitalizations and surgical interventions, thereby alleviating financial burdens on both patients and healthcare systems (33). Preliminary evidence suggests that physical therapy interventions via direct access compared to referred episodes can reduce healthcare costs by lowering hospital admissions, reducing medication use, and improving patient outcomes (4, 33). Nonetheless, robust designs, such as large-scale longitudinal studies and clinical trials specifically address the effects of physical therapy on internal medicine-related conditions. Therefore, future research should examine efficacy, costeffectiveness, and feasibility of the proposed internal medicine in physical therapy model across different health systems.

Although PTs are increasingly involved in the management of chronic medical conditions, there is no formally recognized credential in internal medicine for PTs. In the United States, the American Board of Physical Therapy Specialties offers 11 specialty certifications, yet none focus on internal medicine (Table 1). In the United Kingdom, specialized physical therapy practice roles require meeting the standards of receiving adequate training and whether the activities PTs practice fall within the general scope of practice of the profession to perform the activity effectively and

TABLE 1 Summary of the currently existing specialty programs for physical therapists and the proposed internal medicine specialty.

Specialty	Description
Cardiovascular and	Focuses on physical function of cardiopulmonary
pulmonary	system, specifically with those who have
	cardiopulmonary dysfunction
Acute care	Provide care for people with urgent medical conditions
	who need immediate medical attention
Clinical	Includes the use of electricity to monitor, measure, or
electrophysiology	produce physiological responses to evaluate, treat, and
	prevent human dysfunction
Geriatrics	Covers the needs of older adults and aging-related
	physical dysfunction
Neurology	Provides evaluation and treatment to individuals with
	movement problems caused by neurological disease or
	trauma
Oncology	Involves physical therapy practice to maximize
	movement and well-being to individuals affected by
	cancer
Orthopedics	Provides care to the musculoskeletal system that
	involves bones, muscles, joint, tendons, and other soft
	tissues following an injury
Pediatrics	Helps improve range of motion, strength, flexibility,
	and movement pattern in children affected by various
	diagnoses and injuries
Sports	Works with athletes to restore function, mobility, and
	strength following sport-related injury
Women's health	Provides expert treatment for pelvic floor dysfunction
	and obstetrical care
Wound management	Delivers wound care to patients in hospitals and
	outpatient setting utilizing wound care protocols and
	using unique therapeutic modalities
Internal medicine	Allows expert to identify early signs of systemic
	diseases, implement targeted interventions, and
	enhance patient outcomes through comprehensive,
	multidisciplinary care

safely (34). The Charted Society of Physiotherapy participates in the world physiotherapy recognized 13 specialty groups, none of which include internal medicine (35). Similarly, the Australian Physiotherapy Association recognizes nine fields of practice. However, internal medicine is none of the recognized specialty programs available for PTs (36). Establishing a structured specialty in internal medicine in PT would expand the scope of practice under a standardized competency framework and enhance quality of care across healthcare systems.

Introducing an internal medicine specialty for PT could support improved chronic disease treatment and interprofessional care coordination. By integrating internal medicine principles into PT education and clinical training, PTs can play a more significant role in chronic disease care, improved diagnostic accuracy, and enhanced interdisciplinary collaboration. This initiative has the potential to improve patient care, strengthen interdisciplinary care and improve healthcare system efficiency. Given the mounting evidence supporting the benefits of exercise in managing internal medicine conditions (2, 20, 37), the time has come to formalize this specialization and expand the scope of PT practice to meet the evolving needs of modern healthcare.

While the potential benefits of internal medicine specialization for PTs are compelling, it is critical to consider potential limitations, particularly in terms of resource allocation. If implemented without

adequate governance and stakeholder alignment, this model of role expansion could result in scope confusion, inefficiencies, or resistance from other professionals. Although PT in general has been shown to reduce hospitalization rates and prevent costly complications in patients with chronic diseases (38, 39), there is limited direct economic evidence supporting the cost-effectiveness of internal medicine-certified PTs (39). Thus, the specific economic impact of internal medicine specialization in PT warrants further investigation. Implementing such a program would require capital investment in curriculum development, training pathways, certification frameworks, and interdisciplinary integration, and this may be challenging in resource-constrained systems. However, strategic investment in this specialization can be justified through multiple anticipated benefits: improved patient safety through early recognition of red flags, enhanced integration in chronic disease treatment pathways, and decreased healthcare expenditures via reduced complications and unnecessary procedures. Perhaps small pilot programs and cost-effectiveness trials could be conducted to assess the value proposition of this specialization in PT.

As with any proposed expansion of professional roles, the implementation of an internal medicine specialization for PTs may be associated with potential risks. These include role ambiguity, interprofessional resistance, legal liability, and the possibility of fragmented care if integration is not implemented with full coordination. Addressing these risks requires clear scope-ofpractice definitions, certification, and interdisciplinary training frameworks for guiding the future steps. Experience from the UK's advanced practice physiotherapy model provides a valuable precedent. Several studies have documented that advanced practice physiotherapy deliver care with diagnostic accuracy comparable to that of physicians in musculoskeletal triage settings (40, 41), decrease wait times (42), enhance patient satisfaction (43, 44), and reduce downstream healthcare costs (45). These outcomes were achieved within structured models that encourage collaboration, training, and risk mitigation. Adapting similar principles could guide the safety and effectiveness for implementing internal medicine specialization in physical therapy.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

References

- 1. APTA. Specialist Certification. Alexandria, VA: American Physical Therapy Association (2021). Available online at: https://www.apta.org/your-career/career-advancement/specialist-certification (Accessed April 1, 2021)
- 2. Luan X, Tian X, Zhang H, Huang R, Li N, Chen P, et al. Exercise as a prescription for patients with various diseases. *J Sport Health Sci.* (2019) 8(5):422–41. doi: 10.1016/j.jshs.2019.04.002
- 3. APTA. Levels of Patient Access to Physical Therapist Services in the U.S. Alexandria, VA: American Physical Therapy Association (2024). Available online at: https://www.apta.org/contentassets/4daf765978464a948505c2f115c90f55/apta_direct_access_by_state 9.4.2024.pdf (Accessed February 20, 2025)

Author contributions

MA: Resources, Supervision, Investigation, Writing – review & editing, Conceptualization, Validation, Funding acquisition, Project administration, Writing – original draft, Methodology.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This work is funded by the Deanship of Scientific Research at Northern Border University, Arar, KSA, through the project number "NBU-FFR-2025-2508-04".

Conflict of interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

- Ojha HA, Snyder RS, Davenport TE. Direct access compared with referred physical therapy episodes of care: a systematic review. *Phys Ther.* (2014) 94(1):14–30. doi: 10.2522/ptj.20130096
- 5. Newman-Toker DE, Wang Z, Zhu Y, Nassery N, Saber Tehrani AS, Schaffer AC, et al. Rate of diagnostic errors and serious misdiagnosis-related harms for major vascular events, infections, and cancers: toward a national incidence estimate using the "Big Three". *Diagnosis (Berl)*. (2020) 8(1):67–84. doi: 10.1515/dx-2019-0104
- 6. Wildi K, Gimenez MR, Twerenbold R, Reichlin T, Jaeger C, Heinzelmann A, et al. Misdiagnosis of myocardial infarction related to limitations of the current regulatory

approach to define clinical decision values for cardiac troponin. *Circulation*. (2015) 131(23):2032–40. doi: 10.1161/CIRCULATIONAHA.114.014129

- 7. Culić V, Mirić D, Eterović D. Correlation between symptomatology and site of acute myocardial infarction. *Int J Cardiol.* (2001) 77(2-3):163–8. doi: 10.1016/S0167-5273(00)00414-9
- 8. Campaniello D, Corbo MR, Sinigaglia M, Speranza B, Racioppo A, Altieri C, et al. How diet and physical activity modulate gut Microbiota: evidence, and perspectives. *Nutrients*. (2022) 14(12):2456. doi: 10.3390/nu14122456
- 9. Rochester CL, Alison JA, Carlin B, Jenkins AR, Cox NS, Bauldoff G, et al. Pulmonary rehabilitation for adults with chronic respiratory disease: an official American thoracic society clinical practice guideline. *Am J Respir Crit Care Med.* (2023) 208(4):e7–e26. doi: 10.1164/rccm.202306-1066ST
- 10. Meneses-Echavez JF, Chavez Guapo N, Loaiza-Betancur AF, Machado A, Bidonde J. Pulmonary rehabilitation for acute exacerbations of COPD: a systematic review. *Respir Med.* (2023) 219:107425. doi: 10.1016/j.rmed.2023.107425
- 11. Murray EM, Whellan DJ, Chen H, Bertoni AG, Duncan P, Pastva AM, et al. Physical rehabilitation in older patients hospitalized with acute heart failure and diabetes: insights from REHAB-HF. *Am J Med.* (2022) 135(1):82–90. doi: 10.1016/j. amjmed.2021.08.001
- 12. Dean E, Lomi C. A health and lifestyle framework: an evidence-informed basis for contemporary physical therapist clinical practice guidelines with special reference to individuals with heart failure. *Physiother Res Int.* (2022) 27(3):e1950. doi: 10.1002/pri.1950
- 13. Hartley GW, Roach KE, Nithman RW, Betz SR, Lindsey C, Fuchs RK, et al. Physical therapist management of patients with suspected or confirmed osteoporosis: a clinical practice guideline from the academy of geriatric physical therapy. *J Geriatr Phys Ther.* (2022) 44(2):E106–e119. doi: 10.1519/JPT. 0000000000000346
- 14. Hansen D, Peeters S, Zwaenepoel B, Verleyen D, Wittebrood C, Timmerman N, et al. Exercise assessment and prescription in patients with type 2 diabetes in the private and home care setting: clinical recommendations from AXXON (Belgian Physical Therapy Association). *Phys Ther.* (2013) 93(5):597–610. doi: 10.2522/ptj. 20120400
- 15. Umpierre D, Ribeiro PA, Kramer CK, Leitão CB, Zucatti AT, Azevedo MJ, et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. *JAMA*. (2011) 305(17):1790–9. doi: 10.1001/jama.2011.576
- 16. Moore JH, Goss DL, Baxter RE, DeBerardino TM, Mansfield LT, Fellows DW, et al. Clinical diagnostic accuracy and magnetic resonance imaging of patients referred by physical therapists, orthopaedic surgeons, and nonorthopaedic providers. J Orthop Sports Phys Ther. (2005) 35(2):67–71. doi: 10.2519/jospt.2005.
- 17. Murphy BP, Greathouse D, Matsui I. Primary care physical therapy practice models. *J Orthop Sports Phys Ther*. (2005) 35(11):699–707. doi: 10.2519/jospt.2005. 35.11.699
- 18. Clark B, Clark L, Showalter C, Stoner T. A call to action: direct access to physical therapy is highly successful in the US military. When will professional bodies, legislatures, and payors provide the same advantages to all US civilian physical therapists? *J Man Manip Ther.* (2022) 30(4):199–206. doi: 10.1080/10669817.2022.2099893
- 19. Szymanek E, Jones M, Shutt-Hoblet C, Halle R. Implementation of direct access physical therapy within the military medical system. *Mil Med.* (2021) 187(5–6): e649–54. doi: 10.1093/milmed/usab245
- 20. Warburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. *Curr Opin Cardiol.* (2017) 32(5):541–56. doi: 10. 1097/HCO.0000000000000437
- 21. Sampath Kumar A, Maiya AG, Shastry BA, Vaishali K, Ravishankar N, Hazari A, et al. Exercise and insulin resistance in type 2 diabetes mellitus: a systematic review and meta-analysis. *Ann Phys Rehabil Med.* (2019) 62(2):98–103. doi: 10.1016/j.rehab. 2018.11.001
- 22. Kirkness CS, Marcus RL, Lastayo PC, Asche CV, Fritz JM. Diabetes and associated risk factors in patients referred for physical therapy in a national primary care electronic medical record database. *Phys Ther.* (2008) 88(11):1408–16. doi: 10.2522/ptj.20080129
- 23. Harris-Hayes M, Schootman M, Schootman JC, Hastings MK. The role of physical therapists in fighting the type 2 diabetes epidemic. *J Orthop Sports Phys Ther.* (2020) 50(1):5–16. doi: 10.2519/jospt.2020.9154
- 24. Fedewa MV, Bentley JL, Higgins S, Kindler JM, Esco MR, MacDonald HV. Celiac disease and bone health in children and adolescents: a systematic review and meta-analysis. *J Clin Densitom*. (2020) 23(2):200–11. doi: 10.1016/j.jocd.2019.02.003

- 25. Zacay G, Weintraub I, Regev R, Modan-Moses D, Levy-Shraga Y. Fracture risk among children and adolescents with celiac disease: a nationwide cohort study. *Pediatr Res.* (2024) 95(1):386–92. doi: 10.1038/s41390-023-02826-5
- 26. Duerksen D, Pinto-Sanchez MI, Anca A, Schnetzler J, Case S, Zelin J, et al. Management of bone health in patients with celiac disease: practical guide for clinicians. *Can Fam Physician*. (2018) 64(6):433–8.
- 27. Grace-Farfaglia P. Bones of contention: bone mineral density recovery in celiac disease–a systematic review. *Nutrients.* (2015) 7(5):3347–69. doi: 10.3390/nu7053347
- 28. Nestares T, Martín-Masot R, de Teresa C, Bonillo R, Maldonado J, Flor-Alemany M, et al. Influence of Mediterranean diet adherence and physical activity on bone health in celiac children on a gluten-free diet. *Nutrients.* (2021) 13(5):1636. doi: 10.3390/nu13051636
- 29. Furman J. When exercise causes exertional rhabdomyolysis. JAAPA. (2015) 28(4):38-43. doi: 10.1097/01.JAA.0000458861.78559.3b
- 30. UpToDate. Causes of Rhabdomyolysis. Waltham, MA: UpToDate (2020).
- 31. Bäcker HC, Richards JT, Kienzle A, Cunningham J, Braun KF. Exertional rhabdomyolysis in athletes: systematic review and current perspectives. *Clin J Sport Med.* (2023) 33(2):187–94. doi: 10.1097/JSM.000000000001082
- 32. Carvalho E, Bettger JP, Goode AP. Insurance coverage, costs, and barriers to care for outpatient musculoskeletal therapy and rehabilitation services. *N C Med J.* (2017) 78(5):312–4. doi: 10.18043/ncm.78.5.312
- 33. Bürge E, Monnin D, Berchtold A, Allet L. Cost-effectiveness of physical therapy only and of usual care for various health conditions: systematic review. *Phys Ther.* (2016) 96(6):774–86. doi: 10.2522/ptj.20140333
- 34. HCPC. *Identifying Your Current Scope of Practice*. London: Health and Care Professions Council (2024). Available online at: https://www.hcpc-uk.org/standards/meeting-our-standards/scope-of-practice/what-is-your-scope-of-practice/identifying-your-current-scope-of-practice/ (Accessed July 30, 2025)
- 35. World Physiotherapy. *Chartered Society of Physiotherapy*. Southwark: World Physiotherapy (2024). Available online at: https://world.physio/membership/united-kingdom (Accessed July 30, 2025)
- 36. Australian Physiotherapy Association. *Specialist Training Program*. Camberwell, VIC: Australian Physiotherapy Association (2025). Available online at: https://australian.physio/specialisation-stp (Accessed July 30, 2025)
- 37. Correa HL, Rosa TS, Santos RL, Mestrinho VM, Aquino TS, Santos WO, et al. The impact of different exercise modalities on chronic kidney disease: an umbrella review of meta-analyses. *Front Physiol.* (2025) 15:1444976. doi: 10.3389/fphys.2024. 1444976
- 38. Falvey JR, Burke RE, Malone D, Ridgeway KJ, McManus BM, Stevens-Lapsley JE. Role of physical therapists in reducing hospital readmissions: optimizing outcomes for older adults during care transitions from hospital to community. *Phys Ther.* (2016) 96(8):1125–34. doi: 10.2522/ptj.20150526
- 39. Kühr EM, Ribeiro RA, Rohde LEP, Polanczyk CA. Cost-Effectiveness of supervised exercise therapy in heart failure patients. *Value Health.* (2011) 14(5, Supplement):S100-7. doi: 10.1016/j.jval.2011.05.006
- 40. Desmeules F, Roy J-S, MacDermid JC, Champagne F, Hinse O, Woodhouse LJ. Advanced practice physiotherapy in patients with musculoskeletal disorders: a systematic review. *BMC Musculoskelet Disord*. (2012) 13(1):107. doi: 10.1186/1471-2474-13-107
- 41. Kersten P, McPherson K, Lattimer V, George S, Breton A, Ellis B. Physiotherapy extended scope of practice who is doing what and why? *Physiotherapy.* (2007) 93(4):235–42. doi: 10.1016/j.physio.2007.02.007
- 42. Thompson J, Yoward S, Dawson P. The role of physiotherapy extended scope practitioners in musculoskeletal care with focus on decision making and clinical outcomes: a systematic review of quantitative and qualitative research. *Musculoskeletal Care.* (2017) 15(2):91–103. doi: 10.1002/msc.1152
- 43. Lamb K, Comer C, Walsh N, Smith J, Tang K, McHugh G. The experiences of patients with musculoskeletal conditions accessing first contact physiotherapy practitioner appointments in general practice in the UK: a qualitative study. *Musculoskeletal Care.* (2024) 22(2):e1908. doi: 10.1002/msc.1908
- 44. Fennelly O, Blake C, FitzGerald O, Caffrey A, Fletcher L, Smart K, et al. Advanced musculoskeletal physiotherapy practice: the patient journey and experience. *Musculoskelet Sci Pract*. (2020) 45:102077. doi: 10.1016/j.msksp.2019.
- 45. Richardson B, Shepstone L, Poland F, Mugford M, Finlayson B, Clemence N. Randomised controlled trial and cost consequences study comparing initial physiotherapy assessment and management with routine practice for selected patients in an accident and emergency department of an acute hospital. *Emerg Med J.* (2005) 22(2):87–92. doi: 10.1136/emj.2003.012294