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Introduction: Neuromuscular recovery after total joint arthroplasty remains
insufficiently understood, and current tools for assessing muscle function lack
the resolution to monitor detailed recovery dynamics. High-Density surface
Electromyography (HD-sEMG) enables spatiotemporal analysis of muscle
activation and may support individualized rehabilitation. However, its clinical
application in orthopedic settings remains limited.

Methods: This exploratory study presents a methodological framework for applying
wearable 64-channel HD-sEMG system to monitor neuromuscular recovery in
patients undergoing total knee or hip arthroplasty. HD-sEMG data were recorded
during standardized mobilization exercises at multiple pre- and postoperative time
points. A custom signal processing pipeline was developed, encompassing artifact
suppression, dimensionality reduction, feature extraction, and the derivation of five
functional indices summarizing key aspects of muscle performance.

Results: Initial clinical application demonstrated the feasibility of the approach.
The functional indices revealed distinct recovery dynamics across patients and
showed promising alignment with patient-reported outcome measures.
Individual case analyses suggested the potential of HD-sEMG to differentiate
between restitution and dysfunctional compensation patterns.

Discussion: This study provides a structured, exploratory foundation for
longitudinal HD-sEMG research in orthopedic rehabilitation. While not yet suited
for clinical decision-making, the proposed framework offers methodological
tools for future investigations of neuromuscular recovery trajectories and may
contribute to the development of personalized, data-driven rehabilitation strategies.

KEYWORDS

HD-sEMG, electromyography (EMG), rehabilitation, TJA, wearable EMG system,
neuromuscular recovery, rehabilitation monitoring, functional indices

1 Introduction
1.1 Clinical background and motivation

Recovery after total joint arthroplasty (TJA) varies greatly between individuals, and
the underlying factors influencing this variability remain insufficiently understood.
General muscle weakness is associated with increased surgical risk and poor functional
outcomes (1, 2). However, the specific mechanisms through which muscular condition
impacts recovery trajectories have yet to be clarified (3).
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There is evidence of postoperative neuromuscular alterations
following total knee (TKA) and hip arthroplasty (THA), including
reduced quadriceps activation, asymmetrical recruitment patterns,
and persistent gluteal muscle dysfunction, implying deficits in
neural drive and the need for targeted rehabilitation (3, 4).
Suboptimal rehabilitation can further diminish treatment outcomes
and patient satisfaction, despite technically successful surgery (5-8).

1.2 High-density surface electromyography
(HD-sEMG@G), a promising tool for objective
monitoring

In recent years, HD-sEMG has emerged as a powerful tool
for analyzing spatial and temporal patterns of myoelectric
activity. Its two-dimensional electrode-array arrangement
allows for a detailed spatiotemporal analysis of muscle
activation and motor unit behavior, offering advantages over
EMG

techniques (9-12). Furthermore, technical innovations have

conventional  bipolar and invasive intramuscular
made HD-sEMG systems more accessible and easier to
implement in clinical practice. Recent technological advances
like wearable systems, improved electrode materials, and robust
decomposition algorithms have increased its usability and

accuracy in dynamic, real-world settings (13, 14).

1.3 Clinical relevance and limitations

HD-sEMG has been systematically applied across a range of
neuromuscular disorders, demonstrating diagnostic value in
conditions such as motor neuron diseases, neuropathies,
myopathies, and muscle fatigue assessment (15). Its non-
invasive nature makes it particularly suitable for populations
where needle electromyography is impractical, such as pediatric
or longitudinal applications, while enabling detection of
pathological motor unit changes (9). HD-sEMG also provides
complementary  biomarkers to conventional diagnostics,
enhancing clinical evaluation of neuromuscular function (16).
Despite its diagnostic potential and remarkable advances, HD-
SEMG still faces several challenges for broader clinical adoption,
including variability in electrode placement, standardization of
normative

signal processing pipelines, and the need for

reference data across populations (17).

1.4 State of the art: a research gap in total
joint arthroplasty

Despite the widespread use of surface EMG in TJA research (3,
18, 19) to name a few, HD-sSEMG remains underrepresented in
this context. No published longitudinal HD-sEMG studies exist
for TKA or THA patients to date. Existing research primarily
consists of single-time-point or methodological studies, often in
healthy cohorts (20, 21). This highlights
longitudinal, clinically embedded HD-sEMG investigations.

the need for
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1.5 Study aim

This study bridges modern neurotechnology and orthopedic

rehabilitation to  enhance the objectivity, treatment
individualization, and efficiency of recovery. It presents a
methodological framework for applying wearable HD-sEMG to
TKA and THA.

A wearable 64-channel HD-sEMG system was employed to

monitor neuromuscular recovery after
capture myoelectric activity in patients undergoing the TJA
under real-world conditions. Studies of both TKA and THA
demonstrate significant intraoperative and perioperative practice
variability among high-volume surgeons, including differences
in surgical approach, implant type, use of tourniquet, patellar
resurfacing, closure technique, and perioperative medications
(22, 23). However, TJA procedures at the study’s clinical site are
performed according to a highly standardized protocol, ensuring
comparability across patients. Measurements were conducted at
multiple time points pre- and post-surgery, while patients
performed a standardized set of mobilization exercises
supervised by a physiotherapist. This paper proposes a signal
processing pipeline in order to extract key spatial, spectral, and
temporal features relevant to clinical recovery monitoring. It
outlines the feasibility, challenges, and diagnostic potential of
HD-sEMG-based rehabilitation monitoring in a real-world

clinical setting.

2 Method

Figure 1 provides a schematic overview of the measurement
design and the subsequent analysis workflow.

2.1 Study design and setting

This prospective observational study was designed to identify

muscle-level  factors,  potentially  predictive,  influencing
postoperative outcomes and patient satisfaction following TKA or
THA. Measurements were conducted at Clinics for Orthopedics
and Orthopedic Surgery, Saarland University Medical Center,
Homburg (Saar), Germany. The study was approved by the Ethics
Committee of the Medical Association of Saarland (approval

number: HA273/20).

2.2 Study population

A total of 63 patients (34 M, 29 W; mean age ~64 + 10 years;
33 TKA and 30 THA) participated in the study. In all cases, the
diagnosis was knee or hip osteoarthrosis. For this report, three
exemplary patients were selected from the study population to
illustrate initial trends and highlight the interpretive potential of
the proposed methods. The selected cases include patient 016
male; diagnosis: surgery: medial

(65 years, gonarthrosis;

parapatellar approach; implant system: Persona®™, Zimmer
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FIGURE 1

Conceptual overview of the HD-sEMG assessment and analysis workflow. HD-sEMG signals were recorded during functional leg movements using a
wearable textile grid and the TMSi SAGA system (A). The EMG signals were processed to extract spatial, temporal, and spectral features and combined
into five functional indices. Simultaneously, PROMs were collected across multiple postoperative sessions (B). Indices and PROM scores were then
analyzed and compared to assess neuromuscular recovery and functional progression over time (C).
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Biomet), 018 (75 years male; diagnosis: gonarthrosis; surgery:
medial approach; implant system: Persona®™, Zimmer Biomet)
and 031 (68 years, male; diagnosis: coxarthrosis; surgery: lateral
approach; implant system: AESCULAP® CoreHip®, B. Braun SE).

Patients were recruited at the day of preoperative assessment.
After receiving detailed study information and providing written
consent, they were enrolled in the study. Patients undergoing
primary total knee or hip arthroplasty were included without
restrictions on BMI or age. Eligibility required the ability to
independently perform the measurement exercises and complete
questionnaires, allowing for both pre- and postoperative HD-
sEMG and PROMs data collection. Exclusion criteria included
lack of informed consent, minor status, neurological or
metabolic muscle disorders potentially affecting muscle activity,
and incomplete datasets or missing follow-up assessments.

2.3 Measurement setup
2.3.1 Measurement workflow

PROM:s were acquired at the beginning of each measurement
session. Under supervision, the patients then performed the
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mobilization exercises while HD-sEMG was recorded. If feasible
for the patient, both the operated and contralateral sides
were assessed.

Measurements were conducted ~5 days pre-surgery and up to
five times post-surgery (~2 days, 4-5 days, 6 weeks, 3 months, and
6 months).

2.3.2 Materials

HD-sEMG was recorded using the TMSi SAGA system (High
Density Amplifier and 64-channel Ag/AgCl HD-EMG Grids;
Medical ~Systems, Netherlands). Patient-Reported
(PROMs), either knee injury and
osteoarthritis outcome score (KOOS) or hip disability and
(HOOS)

Artinis
Outcome Measures

osteoarthritis outcome score served as clinically

accepted measures (24, 25).

2.3.3 Electrode placement

Electrodes were positioned at m. rectus femoris (TKA) and m.
gluteus medius (THA). The electrode sites were prepared by
cleaning the skin with disinfectant, applying a mild abrasive gel,
and using conductive electrode gel to minimize contact
impedance and ensure optimal signal quality. In order to ensure
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consistent electrode placement and to minimize crosstalk this was
done according to the SENIAM guidelines (surface EMG for a
non-invasive assessment of muscles) and anatomical landmarks
proposed by Hermens et al. for standardized and reproducible
SEMG recording (26).

2.3.4 Exercise protocol

Two different mobilization exercise routines were used for
TKA and THA patients, respectively. These exercises are well-
established components of the clinic’s standard rehabilitation
protocol. Patients were encouraged by the supervising therapist
to perform ideally ten or more repetitions per exercise and side;
however, depending on individual physical condition or
subjective pain levels, this could not always be achieved. The
routines consisted of eight different exercises divided into two
parts: Part one was performed while lying or sitting on the
examination table, and part two in a standing position with
optional handrail support.

The exercises for TKA included: a) foot dorsiflexion and
plantarflexion in a lying position, b) knee flexion and extension
with the foot sliding on the examination table, ¢) maximal
isometric knee extension by pressing the straight leg into the
examination table while lying down, d) knee flexion and
extension with the foot elevated, e) knee flexion and extension
while sitting upright on the examination table, f) rolling motion:
upright standing in a narrow lunge position with the operated
leg positioned slightly behind, performing a step-like rolling
movement with the operated foot, g) loading: forward lunge
with the operated leg in front, actively shifting bodyweight onto
it, h) posterior stretching: backward lunge with the operated leg
extended behind, shifting bodyweight onto the front leg to
stretch the posterior chain.

The exercises for THA included. a) foot dorsiflexion and
plantarflexion in a lying position, b) hip flexion and extension
with the foot sliding on the examination table, c) hip flexion and
extension with the foot elevated, d) hip abduction in a lying
position, e) maximal isometric hip extension by pressing
table while lying
down, f) hip flexion while standing upright by lifting the bent

the straight leg into the examination
leg, g) hip abduction with the extended leg while standing
upright, h) hip extension while standing upright by moving the
straight leg posteriorly.

2.4 Signal processing

2.4.1 Data acquisition and initial inspection
HD-sEMG was recorded at a sampling rate of 1,000 Hz using
the TMSi SAGA system. A manual trigger signal was acquired
synchronously to the EMG data via the same system to indicate
the currently performed exercise and its respective repetition (i.e.,
motion onset and peak). Following data acquisition, an initial
manual inspection of the raw data was conducted to assess signal
quality. Here, manual correction of trigger events enabled precise
identification of EMG onset and offset down to the millisecond,
which was crucial in this exploratory setting given the variability

Frontiers in Rehabilitation Sciences

10.3389/fresc.2025.1657543

in patient performance during the exercises. In cases where
electrode disconnection or severe motion artifacts were identified
during a repetition, the affected trial was marked to be excluded
from further analysis. All subsequent processing was performed
using a custom MATLAB-based routine.

2.4.2 Data conditioning
2.4.2.1 Pre-processing

The raw EMG signals were bandpass-filtered within a
physiological range of 20-450 Hz using sixth-order Butterworth
filters. To reduce low-frequency noise such as motion artifacts
and DC drift, a high-pass filter at 20 Hz was applied, while
high-frequency noise was attenuated by a low-pass filter at
450 Hz (27). Additionally, a second-order IIR notch filter at
50 Hz with a quality factor of 50 was used to suppress power
line interference

originating from ground loops and

electromagnetic noise (28).

2.4.2.2 Channel quality assessment

Channel quality was evaluated based on several criteria: a)
Channel disconnects, defined as channels showing no data. b)
Insufficient electrode adhesion, indicated by abnormally low
signal amplitude. ¢) Signal-to-noise ratio, estimated as the ratio
between power within the physiological frequency band (20-
450 Hz) and the signal’s total spectral power (27, 29).

Channels meeting one or more of these criteria were flagged as
poor quality. If the number of bad channels exceeded two, they
were excluded from further processing. Otherwise, affected
channels were reconstructed using two-dimensional bilinear
interpolation based on neighboring electrodes within the grid.

2.4.2.3 Segmenting

The recorded EMG data were segmented into individual
repetitions based on manually validated trigger indices. Each
trigger marked the onset of a specific exercise repetition, and
segments were extracted from the onset of one repetition to the
onset of the subsequent one. This approach ensured that each
segment captured a full contraction cycle, independent of
temporal variation across repetitions or participants. As
movement speed may vary between repetitions, the resulting
window lengths were inherently variable and adapted to the

actual shape of the recorded activation pattern.

3.4.2.4 Signal quality enhancement

To further improve signal quality and suppress potential residual
artifacts (e.g., crosstalk), blind source separation was performed via
independent component analysis (ICA), using the MATLAB
FastICA algorithm on each segmented repetition (10, 30-32).

Each
physiologically motivated criteria: spatial focus was assessed by

component was evaluated based on multiple
the variance of the associated mixing vector, spectral plausibility
required at least 90% of power within the 20-450 Hz band,
temporal shape fidelity was evaluated by correlating rectified and
smoothed (500 ms windows) components with the repetition-
with
exceptionally low zero crossing rate, low Hoyer’s sparseness in

averaged activation profile, while also components
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either in the component or its mixing vector, or elevated kurtosis
were also considered non-physiological (31-34).

Rejected components were excluded from the inverse projection
step, resulting in a denoised reconstruction of the EMG signal. The
rejection logic could be flexibly adjusted to suit analysis needs—for
instance, by excluding all components failing a critical criterion, or
by applying thresholds requiring multiple failed metrics. This
approach enabled effective noise suppression while maintaining
physiologically relevant information.

2.4.3 Feature extraction

A set of temporal, spectral and spatial features was extracted
for each segmented repetition in order to characterize the
neuromuscular activation pattern from multiple perspectives.

Time-domain features included the integrated EMG (iEMG),
root mean square (RMS), and the highest exercise-specific RMS-
amplitude as maximum voluntary contraction (MVC) (35). In
addition, the activation ratio (AR) was computed as the
percentage of time the RMS exceeded defined thresholds (5%-
30% MVC), indicating active contraction periods (36). Lastly,
sample entropy for each channel was calculated (37).

Frequency-domain features comprised the median frequency
(BP)
distribution within 20-450 Hz, allowing assessment of spectral

(MF), zero crossing rate (ZCR), and band power

content, noise, and fatigue indicators (38-40).

Spatial activation was characterized using spatial RMS maps,
from which Hoyer’s sparseness, center of gravity (CoG), spatial
dispersion (Spread), spatial entropy, and max-to-mean ratio
(MMR) were derived (41-45).

2.4.4 Functional indices

To facilitate exploratory interpretation of multidimensional
EMG features, five functional indices were defined to represent
higher-level neuromuscular performance domains. All indices
were calculated by combining physiologically related, normalized
feature sets.

o Activation Intensity Index (AII): Captures the overall
myoelectric activation level, based on iEMG, RMS, BP, and
mean AR from 10% to 30%

« Efficiency and Focus Index (EFI): Quantifies spatial activation
economy and localization, using, Hoyer’s sparseness, MMR,
spatial spread (inversely weighted), and spatial entropy.

o Fatigue and Performance Index (FPI): Reflects performance
changes across repetitions by evaluating the trend (slope) of
activation features GEMG, RMS, MVC, BP, AR) and control-
related features (MF, ZCR, Hoyer’s sparseness).

o Coordination and Stability Index (CSI): Represents consistency
of neuromuscular control, combining inter-repetition variance
of RMS, MF, BP, and CoG.

o Spatial Correlation Index (SCI): Assesses similarity between
spatial activation patterns (RMS, BP, MF two-dimensional
maps) and a reference template (either mean preoperative or
contralateral state), based on correlation across repetitions.

These indices were designed to summarize complex EMG
activation behavior into interpretable domains and to support
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exploratory group comparisons, temporal progression analysis,
and correlation with functional recovery markers. For all indices,
higher values reflect “better” results compared to reference.

2.4.4.1 Signal variability compensation

To account for interindividual variability and diffuseness of
muscle activation, all spatially aggregated features (e.g., iEMG,
RMS, BP) were computed over a variable focus area, rather than
using a fixed set of channels. Specifically, channels were
included if they fell within one weighted standard deviation (i.e.,
spatial spread) around the CoG of the activation map. This
adaptive method aimed for characterization of the most
physiologically relevant activation zone, while compensating for
inter-session variability in spatial spread or underlying activation
patterns. To our knowledge, this aspect has not yet been
standardized in current HD-sEMG literature.

2.4.4.2 Index normalization

Towards inter-session and inter-subject comparability, two
reference-based versions were generated, for functional indices:
one normalized to the preoperative state, and one to the
contralateral (non-operated) side, enabling both longitudinal and
lateral asymmetry assessment. To account for physiologically
plausible positive or negative deviations from reference values and
to reduce the impact of outliers, a Gaussian-based normalization
approach, which to our knowledge is novel in the context of HD-
SEMG analysis, was explored. For each feature of CSI, the
deviation from the reference value (either preoperative or
contralateral) was transformed using a Gaussian similarity
function centered around the reference value. A heuristically
defined tolerance zone of +20% relative to the reference value was
used to define the width (i.e., o) of the Gaussian kernel, such that
values within this range were considered functionally equivalent.
For FPI though the reference value was set to zero, as this should
be the ideal state (i.e., constant performance, no fatigue).

2.4.4.3 Global functional index

To obtain a compact summary measure of overall neuromuscular
function, a Global Functional Index (GFI) was computed by
combining the five functional indices (i.e., AIl, EFI, FPI, CSI, SCI).
For each session, individual indices were first calculated across all
exercises, then z-score normalized within the session to ensure
comparability across features and movement types. The GFI was
then defined as the equally weighted mean of these normalized
values, reflecting an exploratory composite measure of functional
muscle quality across dimensions of intensity, spatial focus, fatigue
resistance, motor consistency, and pattern similarity.

2.5 PROM alignment

To evaluate the clinical relevance and interpretability of the
extracted EMG features and derived functional indices, the
functional indices were compared with the respective sessions
PROM-results. This step aimed to explore whether objective
EMG-based metrics reflect patient-experienced function and
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recovery, thereby supporting the potential applicability of HD-
sEMG analysis in personalized rehabilitation assessment.

3 Results

Figure 2 illustrates the development of functional EMG indices
over six postoperative sessions for a representative TKA patient
(016), normalized to either the preoperative status (left) or the
contralateral side (right). Both the KOOS score and the GFI (red)
declined after surgery (S2), followed by a gradual recovery across
sessions (S3-S6). Dimension-specific indices (gray) showed varying
dynamics: activation- and performance-related indices (AII, EFI,
FPI) improved over time, whereas coordination and pattern-based
indices (CSI, SCI) remained reduced. Normalization to the
contralateral side allowed detection of potential overcompensation
(EFI> 1), the added value
visualization for nuanced interpretation of neuromuscular recovery.

Figure 3 shows another TKA patient (018). While the KOOS
score remained relatively stable at a low level, the GFI showed

emphasizing of dual-reference

progressive improvement postoperatively. Activation indices
the
contralateral side, suggesting compensatory activation. However,

increased strongly, particularly in comparison to
low CSI and SCI values throughout all sessions indicated
persistent deficits in motor coordination and spatial consistency.
FPI, though offset, shows an almost similar shape as KOOS.
Figure 4 depicts the results for 031, a hip arthroplasty patient.
The GFI dropped sharply post-surgery and remained consistently

low, whereas the HOOS score showed delayed but continuous

10.3389/fresc.2025.1657543

improvement. Activation indices (AII, EFI) showed only mild
recovery, while CSI and SCI remained minimal. FPI mildly
increase until the last session (S6) where it drops below
preoperative state. Normalization to the contralateral side
revealed exaggerated index values in early sessions (e.g,
AII > 30), likely due to low baseline activity on the healthy limb,

underscoring the need for robust normalization methods.

4 Discussion

The visualization of functional EMG indices over multiple
postoperative sessions demonstrated promising alignment with
subjective functional recovery, as reflected by the PROMs.
Notably, the GFI showed consistent improvements over time in
several cases, suggesting that multidimensional EMG-derived
metrics can capture relevant aspects of neuromuscular
adaptation after joint replacement. The use of both preoperative
and contralateral-side normalization enabled complementary
perspectives, distinguishing between restitution of baseline
function and compensatory activation strategies.

Individual case analyses highlighted the nuanced insights gained
through multidimensional evaluation. In patient 016, improvements
in activation-related indices (AII, EFI) contrasted with persistently
(CSIL,  SCI),

indicating incomplete motor recovery despite overall functional

low coordination and pattern-based measures
gains. Similarly, patient 018 demonstrated elevated activation levels
but poor spatiotemporal control, emphasizing that compensatory
activation alone does not equate to functional recovery. In patient
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FIGURE 2

Development of functional EMG indices and KOOS score across postoperative sessions in patient 016. Left panel shows values normalized to the
preoperative state; right panel shows normalization relative to the contralateral (non-operated) side. The GFI (red) and the KOOS score (blue)
illustrate parallel recovery trends, with an initial decline after surgery (S2) followed by steady improvement across sessions. Gray lines represent
individual component indices, including All, EFI, FPI, CSI, SCI, revealing dimension-specific recovery profiles. Note that despite improving global

activation and performance (All, EFI, FPI), coordination-related indices (CSI, SCI) remain reduced, indicating potential deficits in
neuromuscular control.
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Patient 018: Functional Indices Development over Sessions

FIGURE 3
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the preoperative state; right panel shows normalization relative to the contralateral side. The KOOS score (blue) remains relatively stable, while the
GFl (red) shows a slight improvement across sessions. Activation-based indices (All, EFI) increase notably, particularly when compared to the
contralateral side, suggesting compensatory activation. In contrast, coordination and pattern-based indices (CSI, SCI) remain consistently low,
indicating persistent deficits in neuromuscular control despite the observed increase in global activation levels. FPI behaves notably similar to KOOS.
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Development of functional EMG indices and HOOS score across postoperative sessions in patient 031. Left panel shows values normalized to the
preoperative state; right panel displays normalization relative to the contralateral side. The HOOS score (blue) shows delayed but substantial
improvement from session 4 onward, whereas the GFl (red) remains consistently low. Activation-related indices (All, EFI) show minimal recovery
or even exaggerated values due to low contralateral reference activity, while coordination (CSI) and pattern fidelity (SCI) indices stay markedly
reduced across all sessions. Also, FPI mildly increases until the last session (S6) where it drops below preoperative state. These findings may
reflect compensatory, yet inefficient, activation strategies.
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031, representing a hip arthroplasty case, PROM improvements were
not mirrored by the GFI or coordination-based indices and extreme
values in contralateral-side normalization suggested normalization
artifacts due to very low reference activity. These findings
underscore the value of integrating multiple feature domains into
composite indices such as the GFI to differentiate between true
recovery and dysfunctional compensation.

It has to be acknowledged that HD-sEMG decomposition and
interpretation are subject to interindividual variability. Factors
such as subcutaneous tissue thickness, muscle mass, training
status, or patient motivation may influence signal quality and
motor unit detectability (46).

Hence, certain limitations of the current index implementation
became evident. Manual segmentation was adequate in this setting
but remains a barrier to clinical scalability, underscoring the
importance of automation in future studies. In some cases,
disproportionately high activation values—particularly in AIl—led
to distorted GFI outcomes. This was evident especially when the
contralateral reference values were low. To mitigate this, future
index versions may incorporate saturation-like effects through
logarithmic transformation or apply threshold-based weighting
schemes to reduce outlier influence. These adaptations will require
validation on a larger patient cohort before they can be
meaningfully implemented.

While the study’s longitudinal design included repeated
measurements across up to six sessions per patient, these reflect
dynamic recovery trajectories rather than stable Dbaselines.
Hence, only intra session-consistency-tests and no formal test-
retest reliability analysis was conducted. Future studies should
incorporate repeated baseline sessions in stable conditions to
evaluate inter-session reliability of the proposed indices.

Moreover, some extreme index values (both high and low)
suggest the need for further refinement of index construction.
As additional datasets become available, statistical approaches
such as multivariate regression, principal component analysis, or
feature importance analysis (e.g., via random forest models) will
be explored to optimize feature selection and weighting. This
may allow for more robust, interpretable, and condition-specific
indices. Adaptive weighting, outlier-resistant normalization, and
clinically grounded interpretation thresholds are potential
enhancements to improve sensitivity and generalizability.

4.1 Conclusion & future implications

This study demonstrated the feasibility of applying wearable
HD-sEMG to assess neuromuscular recovery after total joint
replacement in a clinical setting. Electrode array placement and
data-acquisition could be performed reliably by a trained
assistant physician after a short learning period, suggesting
improved accessibility compared to earlier generations of
technology. The GFI and its component metrics provided
structured, interpretable insights into multidimensional aspects
of recovery, capturing changes in activation, coordination, and
signal quality. Preliminary trends indicated a potential alignment
between EMG-based indices and PROM outcomes, though with
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subject-specific variability, highlighting the value of objective
muscle monitoring alongside subjective measures.

With an aging population and rising rates of orthopedic
surgeries, there is a growing need for precise, personalized, and
data-driven rehabilitation strategies to improve patient outcomes
and reduce long-term healthcare burdens (47-49). HD-sEMG
offers a promising modality for non-invasive muscular
assessment, and ongoing advances in electrode technology,
signal processing, and real-time analytics are likely to further
enhance its clinical applicability (17).

Despite promising capabilities, the broader clinical adoption
of HD-sEMG is currently limited by several practical hurdles,
including data processing complexity, lack of standardized
interpretation frameworks, and integration with conventional
instrumentation and existing rehabilitation protocols. However,
the increasing availability of more accessible and more user-
friendly hardware, clinician-oriented software tools (e.g., iSpin,
MUedit), and open-source toolboxes (e.g., openhdemg) is
expected to lower the entry threshold for clinical researchers
and practitioners. Furthermore, as HD-sEMG captures activation
patterns that are not accessible through conventional methods, it
may contribute to more nuanced understanding of functional
compensation, fatigue, or neural drive - especially in
longitudinal, therapy-guided applications. Future studies should
continue to evaluate the added value of HD-sEMG in
complementing established clinical assessments and its potential
role in personalized, data-driven rehabilitation strategies.

Current findings are exploratory and limited by sample size
Due to the
heterogeneous nature of the population and signal sources, no
group conducted yet. Rather,

individual cases were used to illustrate the interpretive potential

and variability in electrode placement.

inferential statistics  were
of the proposed framework. Future work will focus on
validating the indices across broader cohorts, refining feature
selection and weighting schemes using statistical methods such
as multivariate regression and clustering, and exploring HD-
sEMG’s potential for
Additionally,
Gaussian-based normalization with tolerance zones and the
CoG-centered
investigated in future work to evaluate their robustness,

pre-surgical outcome prediction.

novel methodological approaches like the

adaptive channel selection will be further
optimize parameter settings and assess their impact on index
stability and interpretability across broader datasets. Statistical
group comparisons are also subject of future validation studies.
Ultimately, this research may support individualized monitoring
of recovery trajectories and enable adaptive rehabilitation
strategies tailored to patient-specific neuromuscular profiles.
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