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Introduction: Neuromuscular recovery after total joint arthroplasty remains 

insufficiently understood, and current tools for assessing muscle function lack 

the resolution to monitor detailed recovery dynamics. High-Density surface 

Electromyography (HD-sEMG) enables spatiotemporal analysis of muscle 

activation and may support individualized rehabilitation. However, its clinical 

application in orthopedic settings remains limited.

Methods: This exploratory study presents a methodological framework for applying 

wearable 64-channel HD-sEMG system to monitor neuromuscular recovery in 

patients undergoing total knee or hip arthroplasty. HD-sEMG data were recorded 

during standardized mobilization exercises at multiple pre- and postoperative time 

points. A custom signal processing pipeline was developed, encompassing artifact 

suppression, dimensionality reduction, feature extraction, and the derivation of five 

functional indices summarizing key aspects of muscle performance.

Results: Initial clinical application demonstrated the feasibility of the approach. 

The functional indices revealed distinct recovery dynamics across patients and 

showed promising alignment with patient-reported outcome measures. 

Individual case analyses suggested the potential of HD-sEMG to differentiate 

between restitution and dysfunctional compensation patterns.

Discussion: This study provides a structured, exploratory foundation for 

longitudinal HD-sEMG research in orthopedic rehabilitation. While not yet suited 

for clinical decision-making, the proposed framework offers methodological 

tools for future investigations of neuromuscular recovery trajectories and may 

contribute to the development of personalized, data-driven rehabilitation strategies.
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HD-sEMG, electromyography (EMG), rehabilitation, TJA, wearable EMG system, 

neuromuscular recovery, rehabilitation monitoring, functional indices

1 Introduction

1.1 Clinical background and motivation

Recovery after total joint arthroplasty (TJA) varies greatly between individuals, and 

the underlying factors in�uencing this variability remain insufficiently understood. 

General muscle weakness is associated with increased surgical risk and poor functional 

outcomes (1, 2). However, the specific mechanisms through which muscular condition 

impacts recovery trajectories have yet to be clarified (3).
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There is evidence of postoperative neuromuscular alterations 

following total knee (TKA) and hip arthroplasty (THA), including 

reduced quadriceps activation, asymmetrical recruitment patterns, 

and persistent gluteal muscle dysfunction, implying deficits in 

neural drive and the need for targeted rehabilitation (3, 4). 

Suboptimal rehabilitation can further diminish treatment outcomes 

and patient satisfaction, despite technically successful surgery (5–8).

1.2 High-density surface electromyography 
(HD-sEMG), a promising tool for objective 
monitoring

In recent years, HD-sEMG has emerged as a powerful tool 

for analyzing spatial and temporal patterns of myoelectric 

activity. Its two-dimensional electrode-array arrangement 

allows for a detailed spatiotemporal analysis of muscle 

activation and motor unit behavior, offering advantages over 

conventional bipolar EMG and invasive intramuscular 

techniques (9–12). Furthermore, technical innovations have 

made HD-sEMG systems more accessible and easier to 

implement in clinical practice. Recent technological advances 

like wearable systems, improved electrode materials, and robust 

decomposition algorithms have increased its usability and 

accuracy in dynamic, real-world settings (13, 14).

1.3 Clinical relevance and limitations

HD-sEMG has been systematically applied across a range of 

neuromuscular disorders, demonstrating diagnostic value in 

conditions such as motor neuron diseases, neuropathies, 

myopathies, and muscle fatigue assessment (15). Its non- 

invasive nature makes it particularly suitable for populations 

where needle electromyography is impractical, such as pediatric 

or longitudinal applications, while enabling detection of 

pathological motor unit changes (9). HD-sEMG also provides 

complementary biomarkers to conventional diagnostics, 

enhancing clinical evaluation of neuromuscular function (16). 

Despite its diagnostic potential and remarkable advances, HD- 

sEMG still faces several challenges for broader clinical adoption, 

including variability in electrode placement, standardization of 

signal processing pipelines, and the need for normative 

reference data across populations (17).

1.4 State of the art: a research gap in total 
joint arthroplasty

Despite the widespread use of surface EMG in TJA research (3, 

18, 19) to name a few, HD-sEMG remains underrepresented in 

this context. No published longitudinal HD-sEMG studies exist 

for TKA or THA patients to date. Existing research primarily 

consists of single-time-point or methodological studies, often in 

healthy cohorts (20, 21). This highlights the need for 

longitudinal, clinically embedded HD-sEMG investigations.

1.5 Study aim

This study bridges modern neurotechnology and orthopedic 

rehabilitation to enhance the objectivity, treatment 

individualization, and efficiency of recovery. It presents a 

methodological framework for applying wearable HD-sEMG to 

monitor neuromuscular recovery after TKA and THA. 

A wearable 64-channel HD-sEMG system was employed to 

capture myoelectric activity in patients undergoing the TJA 

under real-world conditions. Studies of both TKA and THA 

demonstrate significant intraoperative and perioperative practice 

variability among high-volume surgeons, including differences 

in surgical approach, implant type, use of tourniquet, patellar 

resurfacing, closure technique, and perioperative medications 

(22, 23). However, TJA procedures at the study’s clinical site are 

performed according to a highly standardized protocol, ensuring 

comparability across patients. Measurements were conducted at 

multiple time points pre- and post-surgery, while patients 

performed a standardized set of mobilization exercises 

supervised by a physiotherapist. This paper proposes a signal 

processing pipeline in order to extract key spatial, spectral, and 

temporal features relevant to clinical recovery monitoring. It 

outlines the feasibility, challenges, and diagnostic potential of 

HD-sEMG-based rehabilitation monitoring in a real-world 

clinical setting.

2 Method

Figure 1 provides a schematic overview of the measurement 

design and the subsequent analysis work�ow.

2.1 Study design and setting

This prospective observational study was designed to identify 

muscle-level factors, potentially predictive, in�uencing 

postoperative outcomes and patient satisfaction following TKA or 

THA. Measurements were conducted at Clinics for Orthopedics 

and Orthopedic Surgery, Saarland University Medical Center, 

Homburg (Saar), Germany. The study was approved by the Ethics 

Committee of the Medical Association of Saarland (approval 

number: HA273/20).

2.2 Study population

A total of 63 patients (34 M, 29 W; mean age ∼64 ± 10 years; 

33 TKA and 30 THA) participated in the study. In all cases, the 

diagnosis was knee or hip osteoarthrosis. For this report, three 

exemplary patients were selected from the study population to 

illustrate initial trends and highlight the interpretive potential of 

the proposed methods. The selected cases include patient 016 

(65 years, male; diagnosis: gonarthrosis; surgery: medial 

parapatellar approach; implant system: Persona®, Zimmer 
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Biomet), 018 (75 years male; diagnosis: gonarthrosis; surgery: 

medial approach; implant system: Persona®, Zimmer Biomet) 

and 031 (68 years, male; diagnosis: coxarthrosis; surgery: lateral 

approach; implant system: AESCULAP® CoreHip®, B. Braun SE).

Patients were recruited at the day of preoperative assessment. 

After receiving detailed study information and providing written 

consent, they were enrolled in the study. Patients undergoing 

primary total knee or hip arthroplasty were included without 

restrictions on BMI or age. Eligibility required the ability to 

independently perform the measurement exercises and complete 

questionnaires, allowing for both pre- and postoperative HD- 

sEMG and PROMs data collection. Exclusion criteria included 

lack of informed consent, minor status, neurological or 

metabolic muscle disorders potentially affecting muscle activity, 

and incomplete datasets or missing follow-up assessments.

2.3 Measurement setup

2.3.1 Measurement workflow
PROMs were acquired at the beginning of each measurement 

session. Under supervision, the patients then performed the 

mobilization exercises while HD-sEMG was recorded. If feasible 

for the patient, both the operated and contralateral sides 

were assessed.

Measurements were conducted ∼5 days pre-surgery and up to 

five times post-surgery (∼2 days, 4–5 days, 6 weeks, 3 months, and 

6 months).

2.3.2 Materials
HD-sEMG was recorded using the TMSi SAGA system (High 

Density Amplifier and 64-channel Ag/AgCl HD-EMG Grids; 

Artinis Medical Systems, Netherlands). Patient-Reported 

Outcome Measures (PROMs), either knee injury and 

osteoarthritis outcome score (KOOS) or hip disability and 

osteoarthritis outcome score (HOOS) served as clinically 

accepted measures (24, 25).

2.3.3 Electrode placement

Electrodes were positioned at m. rectus femoris (TKA) and m. 

gluteus medius (THA). The electrode sites were prepared by 

cleaning the skin with disinfectant, applying a mild abrasive gel, 

and using conductive electrode gel to minimize contact 

impedance and ensure optimal signal quality. In order to ensure 

FIGURE 1 

Conceptual overview of the HD-sEMG assessment and analysis workflow. HD-sEMG signals were recorded during functional leg movements using a 

wearable textile grid and the TMSi SAGA system (A). The EMG signals were processed to extract spatial, temporal, and spectral features and combined 

into five functional indices. Simultaneously, PROMs were collected across multiple postoperative sessions (B). Indices and PROM scores were then 

analyzed and compared to assess neuromuscular recovery and functional progression over time (C).
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consistent electrode placement and to minimize crosstalk this was 

done according to the SENIAM guidelines (surface EMG for a 

non-invasive assessment of muscles) and anatomical landmarks 

proposed by Hermens et al. for standardized and reproducible 

sEMG recording (26).

2.3.4 Exercise protocol
Two different mobilization exercise routines were used for 

TKA and THA patients, respectively. These exercises are well- 

established components of the clinic’s standard rehabilitation 

protocol. Patients were encouraged by the supervising therapist 

to perform ideally ten or more repetitions per exercise and side; 

however, depending on individual physical condition or 

subjective pain levels, this could not always be achieved. The 

routines consisted of eight different exercises divided into two 

parts: Part one was performed while lying or sitting on the 

examination table, and part two in a standing position with 

optional handrail support.

The exercises for TKA included: a) foot dorsi�exion and 

plantar�exion in a lying position, b) knee �exion and extension 

with the foot sliding on the examination table, c) maximal 

isometric knee extension by pressing the straight leg into the 

examination table while lying down, d) knee �exion and 

extension with the foot elevated, e) knee �exion and extension 

while sitting upright on the examination table, f) rolling motion: 

upright standing in a narrow lunge position with the operated 

leg positioned slightly behind, performing a step-like rolling 

movement with the operated foot, g) loading: forward lunge 

with the operated leg in front, actively shifting bodyweight onto 

it, h) posterior stretching: backward lunge with the operated leg 

extended behind, shifting bodyweight onto the front leg to 

stretch the posterior chain.

The exercises for THA included. a) foot dorsi�exion and 

plantar�exion in a lying position, b) hip �exion and extension 

with the foot sliding on the examination table, c) hip �exion and 

extension with the foot elevated, d) hip abduction in a lying 

position, e) maximal isometric hip extension by pressing 

the straight leg into the examination table while lying 

down, f) hip �exion while standing upright by lifting the bent 

leg, g) hip abduction with the extended leg while standing 

upright, h) hip extension while standing upright by moving the 

straight leg posteriorly.

2.4 Signal processing

2.4.1 Data acquisition and initial inspection

HD-sEMG was recorded at a sampling rate of 1,000 Hz using 

the TMSi SAGA system. A manual trigger signal was acquired 

synchronously to the EMG data via the same system to indicate 

the currently performed exercise and its respective repetition (i.e., 

motion onset and peak). Following data acquisition, an initial 

manual inspection of the raw data was conducted to assess signal 

quality. Here, manual correction of trigger events enabled precise 

identification of EMG onset and offset down to the millisecond, 

which was crucial in this exploratory setting given the variability 

in patient performance during the exercises. In cases where 

electrode disconnection or severe motion artifacts were identified 

during a repetition, the affected trial was marked to be excluded 

from further analysis. All subsequent processing was performed 

using a custom MATLAB-based routine.

2.4.2 Data conditioning
2.4.2.1 Pre-processing

The raw EMG signals were bandpass-filtered within a 

physiological range of 20–450 Hz using sixth-order Butterworth 

filters. To reduce low-frequency noise such as motion artifacts 

and DC drift, a high-pass filter at 20 Hz was applied, while 

high-frequency noise was attenuated by a low-pass filter at 

450 Hz (27). Additionally, a second-order IIR notch filter at 

50 Hz with a quality factor of 50 was used to suppress power 

line interference originating from ground loops and 

electromagnetic noise (28).

2.4.2.2 Channel quality assessment

Channel quality was evaluated based on several criteria: a) 

Channel disconnects, defined as channels showing no data. b) 

Insufficient electrode adhesion, indicated by abnormally low 

signal amplitude. c) Signal-to-noise ratio, estimated as the ratio 

between power within the physiological frequency band (20– 

450 Hz) and the signal’s total spectral power (27, 29).

Channels meeting one or more of these criteria were �agged as 

poor quality. If the number of bad channels exceeded two, they 

were excluded from further processing. Otherwise, affected 

channels were reconstructed using two-dimensional bilinear 

interpolation based on neighboring electrodes within the grid.

2.4.2.3 Segmenting

The recorded EMG data were segmented into individual 

repetitions based on manually validated trigger indices. Each 

trigger marked the onset of a specific exercise repetition, and 

segments were extracted from the onset of one repetition to the 

onset of the subsequent one. This approach ensured that each 

segment captured a full contraction cycle, independent of 

temporal variation across repetitions or participants. As 

movement speed may vary between repetitions, the resulting 

window lengths were inherently variable and adapted to the 

actual shape of the recorded activation pattern.

3.4.2.4 Signal quality enhancement

To further improve signal quality and suppress potential residual 

artifacts (e.g., crosstalk), blind source separation was performed via 

independent component analysis (ICA), using the MATLAB 

FastICA algorithm on each segmented repetition (10, 30–32).

Each component was evaluated based on multiple 

physiologically motivated criteria: spatial focus was assessed by 

the variance of the associated mixing vector, spectral plausibility 

required at least 90% of power within the 20–450 Hz band, 

temporal shape fidelity was evaluated by correlating rectified and 

smoothed (500 ms windows) components with the repetition- 

averaged activation profile, while also components with 

exceptionally low zero crossing rate, low Hoyer’s sparseness in 
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either in the component or its mixing vector, or elevated kurtosis 

were also considered non-physiological (31–34).

Rejected components were excluded from the inverse projection 

step, resulting in a denoised reconstruction of the EMG signal. The 

rejection logic could be �exibly adjusted to suit analysis needs—for 

instance, by excluding all components failing a critical criterion, or 

by applying thresholds requiring multiple failed metrics. This 

approach enabled effective noise suppression while maintaining 

physiologically relevant information.

2.4.3 Feature extraction

A set of temporal, spectral and spatial features was extracted 

for each segmented repetition in order to characterize the 

neuromuscular activation pattern from multiple perspectives.

Time-domain features included the integrated EMG (iEMG), 

root mean square (RMS), and the highest exercise-specific RMS- 

amplitude as maximum voluntary contraction (MVC) (35). In 

addition, the activation ratio (AR) was computed as the 

percentage of time the RMS exceeded defined thresholds (5%– 

30% MVC), indicating active contraction periods (36). Lastly, 

sample entropy for each channel was calculated (37).

Frequency-domain features comprised the median frequency 

(MF), zero crossing rate (ZCR), and band power (BP) 

distribution within 20–450 Hz, allowing assessment of spectral 

content, noise, and fatigue indicators (38–40).

Spatial activation was characterized using spatial RMS maps, 

from which Hoyer’s sparseness, center of gravity (CoG), spatial 

dispersion (Spread), spatial entropy, and max-to-mean ratio 

(MMR) were derived (41–45).

2.4.4 Functional indices

To facilitate exploratory interpretation of multidimensional 

EMG features, five functional indices were defined to represent 

higher-level neuromuscular performance domains. All indices 

were calculated by combining physiologically related, normalized 

feature sets. 

• Activation Intensity Index (AII): Captures the overall 

myoelectric activation level, based on iEMG, RMS, BP, and 

mean AR from 10% to 30%

• Efficiency and Focus Index (EFI): Quantifies spatial activation 

economy and localization, using, Hoyer’s sparseness, MMR, 

spatial spread (inversely weighted), and spatial entropy.

• Fatigue and Performance Index (FPI): Re�ects performance 

changes across repetitions by evaluating the trend (slope) of 

activation features (iEMG, RMS, MVC, BP, AR) and control- 

related features (MF, ZCR, Hoyer’s sparseness).

• Coordination and Stability Index (CSI): Represents consistency 

of neuromuscular control, combining inter-repetition variance 

of RMS, MF, BP, and CoG.

• Spatial Correlation Index (SCI): Assesses similarity between 

spatial activation patterns (RMS, BP, MF two-dimensional 

maps) and a reference template (either mean preoperative or 

contralateral state), based on correlation across repetitions.

These indices were designed to summarize complex EMG 

activation behavior into interpretable domains and to support 

exploratory group comparisons, temporal progression analysis, 

and correlation with functional recovery markers. For all indices, 

higher values re�ect “better” results compared to reference.

2.4.4.1 Signal variability compensation

To account for interindividual variability and diffuseness of 

muscle activation, all spatially aggregated features (e.g., iEMG, 

RMS, BP) were computed over a variable focus area, rather than 

using a fixed set of channels. Specifically, channels were 

included if they fell within one weighted standard deviation (i.e., 

spatial spread) around the CoG of the activation map. This 

adaptive method aimed for characterization of the most 

physiologically relevant activation zone, while compensating for 

inter-session variability in spatial spread or underlying activation 

patterns. To our knowledge, this aspect has not yet been 

standardized in current HD-sEMG literature.

2.4.4.2 Index normalization

Towards inter-session and inter-subject comparability, two 

reference-based versions were generated, for functional indices: 

one normalized to the preoperative state, and one to the 

contralateral (non-operated) side, enabling both longitudinal and 

lateral asymmetry assessment. To account for physiologically 

plausible positive or negative deviations from reference values and 

to reduce the impact of outliers, a Gaussian-based normalization 

approach, which to our knowledge is novel in the context of HD- 

sEMG analysis, was explored. For each feature of CSI, the 

deviation from the reference value (either preoperative or 

contralateral) was transformed using a Gaussian similarity 

function centered around the reference value. A heuristically 

defined tolerance zone of ±20% relative to the reference value was 

used to define the width (i.e., σ) of the Gaussian kernel, such that 

values within this range were considered functionally equivalent. 

For FPI though the reference value was set to zero, as this should 

be the ideal state (i.e., constant performance, no fatigue).

2.4.4.3 Global functional index

To obtain a compact summary measure of overall neuromuscular 

function, a Global Functional Index (GFI) was computed by 

combining the five functional indices (i.e., AII, EFI, FPI, CSI, SCI). 

For each session, individual indices were first calculated across all 

exercises, then z-score normalized within the session to ensure 

comparability across features and movement types. The GFI was 

then defined as the equally weighted mean of these normalized 

values, re�ecting an exploratory composite measure of functional 

muscle quality across dimensions of intensity, spatial focus, fatigue 

resistance, motor consistency, and pattern similarity.

2.5 PROM alignment

To evaluate the clinical relevance and interpretability of the 

extracted EMG features and derived functional indices, the 

functional indices were compared with the respective sessions 

PROM-results. This step aimed to explore whether objective 

EMG-based metrics re�ect patient-experienced function and 
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recovery, thereby supporting the potential applicability of HD- 

sEMG analysis in personalized rehabilitation assessment.

3 Results

Figure 2 illustrates the development of functional EMG indices 

over six postoperative sessions for a representative TKA patient 

(016), normalized to either the preoperative status (left) or the 

contralateral side (right). Both the KOOS score and the GFI (red) 

declined after surgery (S2), followed by a gradual recovery across 

sessions (S3–S6). Dimension-specific indices (gray) showed varying 

dynamics: activation- and performance-related indices (AII, EFI, 

FPI) improved over time, whereas coordination and pattern-based 

indices (CSI, SCI) remained reduced. Normalization to the 

contralateral side allowed detection of potential overcompensation 

(EFI > 1), emphasizing the added value of dual-reference 

visualization for nuanced interpretation of neuromuscular recovery.

Figure 3 shows another TKA patient (018). While the KOOS 

score remained relatively stable at a low level, the GFI showed 

progressive improvement postoperatively. Activation indices 

increased strongly, particularly in comparison to the 

contralateral side, suggesting compensatory activation. However, 

low CSI and SCI values throughout all sessions indicated 

persistent deficits in motor coordination and spatial consistency. 

FPI, though offset, shows an almost similar shape as KOOS.

Figure 4 depicts the results for 031, a hip arthroplasty patient. 

The GFI dropped sharply post-surgery and remained consistently 

low, whereas the HOOS score showed delayed but continuous 

improvement. Activation indices (AII, EFI) showed only mild 

recovery, while CSI and SCI remained minimal. FPI mildly 

increase until the last session (S6) where it drops below 

preoperative state. Normalization to the contralateral side 

revealed exaggerated index values in early sessions (e.g., 

AII > 30), likely due to low baseline activity on the healthy limb, 

underscoring the need for robust normalization methods.

4 Discussion

The visualization of functional EMG indices over multiple 

postoperative sessions demonstrated promising alignment with 

subjective functional recovery, as re�ected by the PROMs. 

Notably, the GFI showed consistent improvements over time in 

several cases, suggesting that multidimensional EMG-derived 

metrics can capture relevant aspects of neuromuscular 

adaptation after joint replacement. The use of both preoperative 

and contralateral-side normalization enabled complementary 

perspectives, distinguishing between restitution of baseline 

function and compensatory activation strategies.

Individual case analyses highlighted the nuanced insights gained 

through multidimensional evaluation. In patient 016, improvements 

in activation-related indices (AII, EFI) contrasted with persistently 

low coordination and pattern-based measures (CSI, SCI), 

indicating incomplete motor recovery despite overall functional 

gains. Similarly, patient 018 demonstrated elevated activation levels 

but poor spatiotemporal control, emphasizing that compensatory 

activation alone does not equate to functional recovery. In patient 

FIGURE 2 

Development of functional EMG indices and KOOS score across postoperative sessions in patient 016. Left panel shows values normalized to the 

preoperative state; right panel shows normalization relative to the contralateral (non-operated) side. The GFI (red) and the KOOS score (blue) 

illustrate parallel recovery trends, with an initial decline after surgery (S2) followed by steady improvement across sessions. Gray lines represent 

individual component indices, including AII, EFI, FPI, CSI, SCI, revealing dimension-specific recovery profiles. Note that despite improving global 

activation and performance (AII, EFI, FPI), coordination-related indices (CSI, SCI) remain reduced, indicating potential deficits in 

neuromuscular control.
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FIGURE 3 

Development of functional EMG indices and KOOS score across postoperative sessions in patient 018. Left panel shows index values normalized to 

the preoperative state; right panel shows normalization relative to the contralateral side. The KOOS score (blue) remains relatively stable, while the 

GFI (red) shows a slight improvement across sessions. Activation-based indices (AII, EFI) increase notably, particularly when compared to the 

contralateral side, suggesting compensatory activation. In contrast, coordination and pattern-based indices (CSI, SCI) remain consistently low, 

indicating persistent deficits in neuromuscular control despite the observed increase in global activation levels. FPI behaves notably similar to KOOS.

FIGURE 4 

Development of functional EMG indices and HOOS score across postoperative sessions in patient 031. Left panel shows values normalized to the 

preoperative state; right panel displays normalization relative to the contralateral side. The HOOS score (blue) shows delayed but substantial 

improvement from session 4 onward, whereas the GFI (red) remains consistently low. Activation-related indices (AII, EFI) show minimal recovery 

or even exaggerated values due to low contralateral reference activity, while coordination (CSI) and pattern fidelity (SCI) indices stay markedly 

reduced across all sessions. Also, FPI mildly increases until the last session (S6) where it drops below preoperative state. These findings may 

reflect compensatory, yet inefficient, activation strategies.
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031, representing a hip arthroplasty case, PROM improvements were 

not mirrored by the GFI or coordination-based indices and extreme 

values in contralateral-side normalization suggested normalization 

artifacts due to very low reference activity. These findings 

underscore the value of integrating multiple feature domains into 

composite indices such as the GFI to differentiate between true 

recovery and dysfunctional compensation.

It has to be acknowledged that HD-sEMG decomposition and 

interpretation are subject to interindividual variability. Factors 

such as subcutaneous tissue thickness, muscle mass, training 

status, or patient motivation may in�uence signal quality and 

motor unit detectability (46).

Hence, certain limitations of the current index implementation 

became evident. Manual segmentation was adequate in this setting 

but remains a barrier to clinical scalability, underscoring the 

importance of automation in future studies. In some cases, 

disproportionately high activation values—particularly in AII—led 

to distorted GFI outcomes. This was evident especially when the 

contralateral reference values were low. To mitigate this, future 

index versions may incorporate saturation-like effects through 

logarithmic transformation or apply threshold-based weighting 

schemes to reduce outlier in�uence. These adaptations will require 

validation on a larger patient cohort before they can be 

meaningfully implemented.

While the study’s longitudinal design included repeated 

measurements across up to six sessions per patient, these re�ect 

dynamic recovery trajectories rather than stable baselines. 

Hence, only intra session-consistency-tests and no formal test- 

retest reliability analysis was conducted. Future studies should 

incorporate repeated baseline sessions in stable conditions to 

evaluate inter-session reliability of the proposed indices.

Moreover, some extreme index values (both high and low) 

suggest the need for further refinement of index construction. 

As additional datasets become available, statistical approaches 

such as multivariate regression, principal component analysis, or 

feature importance analysis (e.g., via random forest models) will 

be explored to optimize feature selection and weighting. This 

may allow for more robust, interpretable, and condition-specific 

indices. Adaptive weighting, outlier-resistant normalization, and 

clinically grounded interpretation thresholds are potential 

enhancements to improve sensitivity and generalizability.

4.1 Conclusion & future implications

This study demonstrated the feasibility of applying wearable 

HD-sEMG to assess neuromuscular recovery after total joint 

replacement in a clinical setting. Electrode array placement and 

data-acquisition could be performed reliably by a trained 

assistant physician after a short learning period, suggesting 

improved accessibility compared to earlier generations of 

technology. The GFI and its component metrics provided 

structured, interpretable insights into multidimensional aspects 

of recovery, capturing changes in activation, coordination, and 

signal quality. Preliminary trends indicated a potential alignment 

between EMG-based indices and PROM outcomes, though with 

subject-specific variability, highlighting the value of objective 

muscle monitoring alongside subjective measures.

With an aging population and rising rates of orthopedic 

surgeries, there is a growing need for precise, personalized, and 

data-driven rehabilitation strategies to improve patient outcomes 

and reduce long-term healthcare burdens (47–49). HD-sEMG 

offers a promising modality for non-invasive muscular 

assessment, and ongoing advances in electrode technology, 

signal processing, and real-time analytics are likely to further 

enhance its clinical applicability (17).

Despite promising capabilities, the broader clinical adoption 

of HD-sEMG is currently limited by several practical hurdles, 

including data processing complexity, lack of standardized 

interpretation frameworks, and integration with conventional 

instrumentation and existing rehabilitation protocols. However, 

the increasing availability of more accessible and more user- 

friendly hardware, clinician-oriented software tools (e.g., iSpin, 

MUedit), and open-source toolboxes (e.g., openhdemg) is 

expected to lower the entry threshold for clinical researchers 

and practitioners. Furthermore, as HD-sEMG captures activation 

patterns that are not accessible through conventional methods, it 

may contribute to more nuanced understanding of functional 

compensation, fatigue, or neural drive – especially in 

longitudinal, therapy-guided applications. Future studies should 

continue to evaluate the added value of HD-sEMG in 

complementing established clinical assessments and its potential 

role in personalized, data-driven rehabilitation strategies.

Current findings are exploratory and limited by sample size 

and variability in electrode placement. Due to the 

heterogeneous nature of the population and signal sources, no 

inferential group statistics were conducted yet. Rather, 

individual cases were used to illustrate the interpretive potential 

of the proposed framework. Future work will focus on 

validating the indices across broader cohorts, refining feature 

selection and weighting schemes using statistical methods such 

as multivariate regression and clustering, and exploring HD- 

sEMG’s potential for pre-surgical outcome prediction. 

Additionally, novel methodological approaches like the 

Gaussian-based normalization with tolerance zones and the 

CoG-centered adaptive channel selection will be further 

investigated in future work to evaluate their robustness, 

optimize parameter settings and assess their impact on index 

stability and interpretability across broader datasets. Statistical 

group comparisons are also subject of future validation studies. 

Ultimately, this research may support individualized monitoring 

of recovery trajectories and enable adaptive rehabilitation 

strategies tailored to patient-specific neuromuscular profiles.
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