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High-quality digital surface models (DSMs) generated from structure-from-motion (SfM)
based on imagery captured from unmanned aerial vehicles (UAVs), are increasingly used
for topographic change detection. Classically, DSMs were generated for each survey
individually and then compared to quantify topographic change, but recently it was shown
that co-aligning the images of multiple surveys may enhance the accuracy of topographic
change detection. Here, we use nine surveys over the Illgraben debris-flow torrent in the
Swiss Alps to compare the accuracy of three approaches for UAV-SfM topographic
change detection: 1) the classical approach where each survey is processed individually
using ground control points (GCPs), 2) co-alignment of all surveys without GCPs, and 3)
co-alignment of all surveys with GCPs. We demonstrate that compared to the classical
approach co-alignment with GCPs leads to a minor and marginally significant increase in
absolute accuracy. Moreover, compared to the classical approach co-alignment
enhances the relative accuracy of topographic change detection by a factor 4 with
GCPs and a factor 3 without GCPs, leading to xy and z offsets <0.1 m for both co-
alignment approaches. We further show that co-alignment leads to particularly large
improvements in the accuracy of poorly aligned surveys that have severe offsets when
processed individually, by forcing them onto the more accurate common geometry set by
the other surveys. Based on these results we advocate that co-alignment, preferably with
GCPs to ensure a high absolute accuracy, should become common-practice in high-
accuracy UAV-SfM topographic change detection studies for projects with sufficient
stable areas.
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INTRODUCTION

Unmanned aerial vehicles (UAVs) are increasingly used for topographic mapping (e.g., Anders et al.,
2019). High-resolution Digital Surface Models (DSMs) can be created from UAV imagery with
unprecedented accuracy and low costs from structure-from-motion (SfM) techniques (Westoby
et al., 2012; Fonstad et al., 2013). UAV-SfM derived DSMs have therefore been extensively generated
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for research in a broad range of disciplines and environments
(e.g., De Haas et al., 2014; Immerzeel et al., 2014; Lucieer et al.,
2014; Smith et al., 2016).

Topographic change detection is a compelling approach for
linking geomorphic processes and forcings to surface change
(Cook, 2017). Effective change detection requires repeated
surveys of an area of interest at the relevant geomorphic time
scale, sufficient accuracy and precision to resolve changes of the
relevant magnitude, and a consistent reference frame for accurate
comparison (Cook, 2017). The recent advances in UAV-SfM
techniques have made it possible to meet these criteria at
relatively low cost and time demands, resulting in a surge of
UAV-SfM based geomorphic change detection studies (e.g.,
Eltner et al., 2016; Anders et al., 2019). However, especially for
topographic change detection it is of key importance that the
differenced DSMs are both accurate and spatially consistent
(Feurer and Vinatier, 2018).

To obtain high-quality DSMs from UAV-SfM, either very
accurate camera locations (direct georeferencing; Turner et al.,
2013; Hugenholtz et al., 2016; Zhang et al., 2019) or precisely
located ground control points (GCPs) (indirect
georeferencing; James and Robson, 2014; Carrivick et al.,
2016), both at cm-scale precision, are needed to
georeference the three-dimensional (3D) model and to
optimize camera interior parameters and camera positions
and orientations. In the absence of both very accurate
camera locations and ground control points large errors and
distortions may be present in generated 3D models
(Carbonneau and Dietrich, 2017; James et al., 2017).

In the classical UAV-SfM topographic change detection
approach, 3D models are made for each survey and then
compared to quantify topographic change (e.g., Duró et al.,
2018). Recently, however, Feurer and Vinatier (2018)
demonstrated that processing aerial images from multiple
surveys as a single block in the alignment phase of structure
from motion (SfM) processing allows for computing coherent
multi-temporal DSMs when using low accuracy GCPs—an
approach referred to as co-alignment (Cook and Dietze, 2019)
or time-SIFT (Feurer and Vinatier, 2018). Cook and Dietze
(2019) showed that co-alignment of UAV-derived imagery
without ground control results in a nearly identical
distribution of measured changes compared to the classical
approach using GCPs. They found that compared to a
standard approach without ground control, co-alignment
increases the relative accuracy level of change detection from
several meters to 10–15 cm. A drawback of this approach,
however, is that it results in high comparative (relative)
accuracy between the surveys, but that external (absolute)
accuracy is low inhibiting comparison with external data. The
recent findings by Feurer and Vinatier (2018) and Cook and
Dietze (2019) show that there is great potential in using co-
alignment in producing higher-accuracy DSMs for topographic
change detection. However, key questions that are left
unanswered are: 1) do high-accuracy GCPs affect the accuracy
of UAV-SfM based topographic change detection through co-
alignment; and 2) how does co-alignment perform on datasets
consisting of large numbers of surveys.

Here, we compare the absolute and relative accuracies of three
approaches for UAV-SfM topographic change detection using
nine surveys over the Illgraben debris-flow torrent in the Swiss
Alps: 1) the classical approach where each survey is processed
individually using GCPs, 2) co-alignment of all surveys without
GCPs, and 3) co-alignment of all surveys with GCPs. We
demonstrate that combining co-alignment with GCPs leads to
the most accurate topographic change detection, outperforming
the classical approach by a factor 4, and that co-alignment
particularly improves the accuracy of poorly aligned surveys in
the dataset. We therefore advocate that co-alignment should
become common practice in future UAV-SfM topographic
change detection studies. This approach can be easily applied
and semi-automated in SfM software, such as Agisoft Metashape
Pro (formerly Photoscan Pro) as demonstrated here, but also in
most alternative SfM software packages.

STUDY SITE

We study bed-elevation change as a result of debris-flow activity
in the Illgraben torrent in the southwestern Swiss Alps. This study
focusses on the lowest 950 m of the channel (Figure 1), which has
an average gradient of ∼4°, an average width of ∼25 m, has steep
banks and is incised into an alluvial fan. The alluvial fan surface
on the west side of the channel is completely covered by forest. On
the east side of the channel the lowest 450 m is covered by houses,
roads, a football field, and some forest, while further upstream the
banks are fully covered by forest.

There is a long history of debris flows in the Illgraben torrent,
with multiple debris flows and debris floods each year (McArdell
et al., 2007; Berger et al., 2011; Bennett et al., 2014; De Haas et al.,
2020). These debris flows are generally triggered by intense
rainfall during summer storms between May and October, and
originate from a catchment that extends from the top of the
Illhorn mountain (elevation 2,716 m a.s.l.) to the Rhone River on
the valley floor (610 m a.s.l.). The channel stretching from the
Illhorn mountain to the Rhone River has a length of ∼6.5 km. On
the lowest 4.8 km of the channel 29 check dams are present—this
reach has an unconsolidated bed (Schürch et al., 2011; De Haas
et al., 2020). For the last 2 km downstream the channel traverses a
large alluvial fan. At the downstream end of the channel an
automated observation station is operated by the Swiss Federal
Institute for Forest, Snow and Landscape Research (WSL), which
records a myriad of flow properties and collects imagery
(McArdell et al., 2007; Schlunegger et al., 2009).

METHODS

Data Acquisition
UAV imagery of the study reach was captured during nine
surveys between November 8, 2018 and August 30, 2019,
covering the activity of nine debris flows (Table 1). Between
each survey one debris flow typically occurred, although for two
surveys the cumulative effect of two debris flows which occurred
within a day of each other was captured. The surveys were flown
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with a DJI Mavic 2 Pro using Litchi flight planning software. The
Mavic 2 Pro is equipped with a 1” CMOS sensor collecting
imagery with a size of 20 megapixels. Imagery was captured in
two separate flights during each survey, at an altitude of 100 m
above the ground surface resulting in a ground sampling distance
of 2.5 cm. Flight planning was optimized over time and differed
between surveys. In general, images were captured with a side
overlap of 80% and a forward overlap of 70%. During some
surveys nadir images were captured from both channel banks and
the middle of the channel and images with a 25° off-nadir camera
pitch over the middle of the channel looking in an upstream
direction, while during other surveys nadir and 25° off-nadir
images were captured over both the banks and channel (Table 1).
Our survey follows a narrow channel, and therefore the along-
channel overlap is limited to only three flight lines—this may
have lowered the overall quality of our models compared to
surveys with a larger numbers of overlapping flight lines in all
directions. The number of aerial images in the surveys varied
between 168 and 396 (Table 1). A total of 29 anthropogenic and
natural terrain features were used as ground control points
(GCPs), including manholes, road surface marks, cobbles and

boulders (Figure 1). These GCPs were measured with a Leica
network RTK GNSS system with ∼2 cm accuracy.

Data Processing
The SfM processing was performed using Agisoft Metashape
Pro (v. 1.5.2). Our general procedure in Agisoft Metashape Pro
was as follows. We set photo location accuracy to 10 m in the XY
direction, and 100 m in the Z direction, while we used the GCP
location accuracy as reported by the Leica network RTK GNSS
system (1–5 cm). Photo alignment was performed at high-
quality settings using 60,000 and 20,000 key and tie point
limits, respectively. These numbers were chosen because they
enabled more aggressive point cloud filtering without creating
holes in our datasets compared to the default of 40,000 and
4,000 key and tie points, respectively, while at the same time
limiting calculation time compared to calculating the maximum
possible number of key and tie points. The alignment was
typically optimized by removing 1) tie points present in less
than three images, 2) with a reconstruction uncertainty larger
than 50, 3) with a projection accuracy larger than 10, and 4) a
reprojection error larger than 1. After each of these steps the

FIGURE 1 |Orthophoto and hillshaded DSM of the study area, showing the locations of the GCPs and validation points. Imagery from survey 7 (30-07-2019). The
center of the study area is located at 46°18’25.55"N and 7°38’2.97"E.
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alignment was optimized using adaptive camera model fitting.
GCPs were included between filter steps 3 and 4. Dense clouds
were generated at high quality and mild depth filtering.
Orthophotos were generated using a smoothed mesh of the
sparse point clouds, and exported with a ground sampling
distance of 2.5 cm. Note that using the sparse point cloud to
generate the orthophotos works for our study, where both GCPs
and validation points are in stable, relatively flat, areas, but that
for studies in rougher terrain it would be beneficial to generate
orthophotos based on the dense point cloud. To filter erroneous
points and overhanging vegetation from the dense point clouds
we adopted the approach of De Haas et al. (2020) using LAStools
(rapidlasso GmbH). The procedure removes low noise
(i.e., noise below the actual ground surface) and filters
overhanging vegetation, while retaining natural detail in the
channel, and mostly avoids clipping at steep sections at the
channel banks and check dams. Low noise points are typical for
dense point clouds generated using UAV photogrammetry, and
were filtered by removing points more than 0.1 m below a
smoothed 20th height percentile surface with a step size of
0.5 m (cf. Isenburg, 2019). To remove overhanging vegetation
ground points were classified using the lasground functionality
in LAStools with “ultra fine” settings, after which all non-
ground points were removed. Lasground uses the ATIN
algorithm designed for lidar point clouds (Axelsson, 2000)
which is found to be reliable for photogrammetric data as
well (Serifoglu Yilmaz et al., 2018; Anders et al., 2019). This

approach removes overhanging and sparse vegetation in the
channel, but retains most of the fine details in the channel at the
expense of including dense vegetation in geomorphologically
inactive areas which were not of interest to our analysis. Finally,
filtered points were rasterized into a DSM with a ground
sampling distance of 5 cm using a TIN triangulation by
LasTools.

We compared three workflows for generating DSMs and
change detection (Figure 2): 1) the classical approach where
each survey was individually processed using GCPs; 2) the co-
alignment approach where the imagery from the nine surveys is
processed together without GCPs (cf. Cook and Dietze, 2019);
and 3) the co-alignment approach with GCPs. The co-alignment
approach for processing UAV imagery for optimized change
detection was first proposed by Cook and Dietze (2019) – we
take the co-alignment approach a step further and apply it to nine
surveys while also using GCPs. Following Cook and Dietze (2019)
we imported the photographs from the nine surveys into a single
chunk in Metashape Pro and performed the point detection and
matching, initial bundle adjustment, and optimization steps on
the combined set of photographs (Figure 2). Following the
alignment and optimization steps, the photos from the
different surveys were separated by creating nine duplicates of
the original chunk and keeping only those photos from the
relevant time step calculating dense clouds for each survey
while preserving common position information and camera
calibrations.

TABLE 1 | Survey characteristics and dates of captured debris flows.

Survey Acquisition Debris
flow(s)

Photos: aligned/total
(oblique)

Tie points Mean reprojection error (pix)

(10)
GCP

CA CA +

(10) GCP
10GCP GCP CA CA+10GCP CA+GCP 10GCP GCP CA CA+10GCP CA+GCP

1 Nov 11,
2018

—— 187/
209
(48)

183/
209
(48)

183/
209 (48)

140,314 373,613 395,098 367,071 392,593 0.51 0.54 0.50 0.51 0.75

2 April 30,
2019

Dec 4,
2018

396/
396
(198)

245/
396
(198)

245/
396 (198)

304,722 508,452 320,344 286,866 324,734 0.50 0.72 0.56 0.55 0.62

3 June 16,
2019

June 10,
2019 (2)

292/
292
(125)

226/
292
(125)

226/
292 (125)

227,009 342,393 308,593 298,261 305,060 0.43 1.45 0.51 0.5 0.54

4 June 22,
2019

June 21,
2019

320/
320
(151)

306/
320
(151)

306/
320 (151)

225,184 388,484 433,148 400,242 444,214 0.43 0.47 0.48 0.46 0.51

5 July 4, 2019 July 2,
2019 and
July 3,
2019

240/
331
(164)

228/
292
(164)

228/
292 (164)

207,899 393,895 396,461 380,749 396,260 0.44 0.47 0.49 0.48 0.52

6 July 17,
2019

July 15,
2019

121/
207
(80)

112/
207
(80)

112/
207 (80)

40,279 56,380 68,552 66,039 68,478 1.43 1.86 0.63 0.8 1.21

7 July 30,
2019

July 26,
2019

204/
204
(39)

170/
204
(39)

170/
204 (39)

164,941 544,434 250,151 243,764 250,220 0.43 0.87 0.47 0.47 0.55

8 Aug 14,
2019

Aug 11,
2019

151/
168
(40)

142/
168
(40)

142/
168 (40)

76,208 249,589 138,849 135,906 141,354 0.93 0.54 0.64 0.88 1.25

9 Aug 30,
2019

Aug 20,
2019

168/
168
(40)

148/
168
(40)

148/
168 (40)

135,665 357,270 261,060 252,282 268,837 0.46 0.55 0.49 0.49 0.55
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Data Analysis
We employed two different approaches to assess 1) the absolute
accuracy of the models and 2) the relative accuracy of the models
(a measure for the accuracy of the change detection). To
determine the absolute accuracy of the models we used 10
GCPs to build the models (Figure 1), and used the remaining
GCPs as check points. The absolute accuracy was then
determined by quantifying the offset between check points in
the models and reality in xy and z directions. For this analysis the
xy coordinates of the check points were identified on the
orthophoto, while their elevation was extracted from the
corresponding DSM.

To analyze the relative accuracy of change detection using the
three approaches, we selected 48 validation points that consisted of
anthropogenic and natural terrain features that were unchanged
during the study period (Figure 1). These point were well-spread
through our study area, and include terrain features comprising
cobbles, boulders, manholes, and road surface marks. To quantify
the accuracy of the models we then quantified the absolute offset,
both in the xy and z directions, between these points on the DSMs
of the nine time steps. This quantification was done by calculating
the mean absolute offset in xy and z directions, relative to the mean
location of the points in the nine surveys. We further evaluated
offset as a function of the distance to the most nearby GCP, to
assess if and how the accuracy of the change detection varies with
distance from the most nearby GCP for the two approaches that
include GCPs. We did not compare entire point cloud regions
because the channel changed substantially between events, and the
banks were largely covered by forest with an irregular surface not
suitable for accurate matching of the point clouds of the different
surveys.

This data analysis approach results in five scenarios: 1)
10GCP: individually processing of each time step using 10
GCPs; 2) GCP; individually processing of each time step using
all GCPs; 3) CA; co-alignment of the nine surveys without using
GCPs; 4) CA+10GCP; co-alignment of the nine surveys using 10
GCPs; 5) CA+GCP; co-alignment of the nine surveys using
all GCPs.

RESULTS

Agisoft Metashape Pro managed to co-align the nine surveys
without problems, despite the substantial changes in the debris-
flow torrent during the survey period (De Haas et al., 2020) and
the large area of forest in our study area that partly changed in
appearance between the autumn, spring, and summer flights. We
did find that surveys 6 and 8 were relatively poorly aligned, both
when processed individually and when co-aligned. These surveys
had relatively large root mean square reprojection errors and a
relatively low number of tie points (Table 1). The root mean
square reprojection errors of surveys 6 and 8 are 1.2 and 0.8 pix,
respectively, while the root mean square reprojection error of the
other surveys is on average 0.6 pix. In addition, surveys 6 and 8
had ∼60,000 and 150,000 tie points, respectively, compared to an
average of ∼320,000 tie points in the other surveys.

Absolute Accuracy
The absolute accuracy of the co-alignment approach without
GCPs is very low, with a mean xy offset of 11 m and a mean z
offset of 21 m (Figure 3A), which is the result of the low-accuracy
global positioning system (GPS) onboard the DJI Mavic 2 Pro. In

FIGURE 2 |Generic workflows of the three tested approaches for UAV-SfM based topographic changes detection: (1) the classical approach where each survey is
processed individually and ground control is applied (GCP); (2) co-alignment without ground control (CA); (3) co-alignment with ground control (CA+GCP).

Frontiers in Remote Sensing | www.frontiersin.org February 2021 | Volume 2 | Article 6268105

de Haas et al. UAV-SfM Survey Co-Alignment

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles#articles


FIGURE 3 | (A,B) Absolute mean and median accuracy in the (A) xy direction and (B) z direction for all surveys combined, processed with the classical approach
where surveys are processed individually using 10 GCPs (10GCP), co-alignment without GCPs (CA) and co-alignment with 10 GCPs (CA+10GCP), showing the highest
accuracy of the co-alignment including GCP and a very low absolute accuracy for co-alignment without GCPs. Error bars denote standard deviation for the mean and
25th and 75th percentile for the median (C,D) Mean and median offset in the (C) xy direction and (D) z direction for all surveys combined, processed with the

(Continued )
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part these offsets may result from distortions such as doming, but
the effect of such distortions on the total offset is likely minor
compared to the offset resulting from the relatively large GPS
error. The classical approach wherein surveys are processed
individually using GCPs results in a mean xy offset of 0.17 m,
while the co-alignment approach using GCPs results in a slightly
lower mean xy offset of 0.15 m. This difference is only marginally
significant (t-test, p � 0.09). In the z direction the mean offset is
0.08 m for the classical approach and 0.07 m for the co-alignment
approach with GCPs (Figure 3B), which is a marginally
significant difference (p � 0.06). There is thus only a small
difference in absolute accuracy between the classical approach
wherein surveys are processed individually and the co-alignment
approach when a number of GCPs is used. However, the relative
accuracy between these approaches does differ significantly when
tested against a larger number of validation points with 1) a better
spread, 2) inclusion of the forested area where image matching is
more challenging, and 3) larger distances to the nearest GCP,
compared to the GCPs used as check points here, as shown below.

Relative Accuracy
We assess the relative accuracy of the DSMs generated via the
classical and co-alignment approaches with all available GCPs
(scenarios GCP and CA+GCP), because using all available GCPs
is the common practice in UAV-SfM topographic change
detection studies, and co-alignment without GCPs (scenario
CA). The classical approach wherein surveys are processed
individually using GCPs results in the largest offset between
the DSMs of the nine surveys in both the xy and z directions
(Figures 3C,D). The mean offset between the surveys in the xy
direction for the classical approach is 0.17 m and for both the co-
alignment with and without GCPs the offset is 0.09 m. In the z
direction the mean offset between the surveys is 0.25 m for the
classical approach, while it is 0.08 m for the co-alignment
without GCPs and 0.06 m for the co-alignment with GCPs.
These differences are all significant in a t-test with p < 0.05.
As such, co-aligning the surveys improves the xy offset by
approximately a factor 2, while the improvement in the z
direction approaches a factor 3 for co-alignment without
GCPs and 4 for co-alignment with GCPs.

For both the classical approach and co-alignment with GCPs,
the offset in the xy and z directions increases with distance from
the nearest GCP (Figures 3E,F), in line with previous research
(e.g., Kraus, 2011; Tonkin and Midgley, 2016). This trend is more
pronounced for the z offset compared to the xy offset. The
distance of the validation points to the nearest GCP was
relatively small in our survey, ranging from a few m to almost
100 m, and we find that the offset most strongly increases when
the distance to the nearest GCP exceeds 10 m, typically by a factor
three moving from a distance of ∼10 m to ∼100 m.

If we break down the errors per survey, we see that surveys 6 and
8 have large offsets in both the xy and z directions for the models
generated via the classical approach (Figures 3G,H). The xy offset
of 0.4 m for survey 6 is approximately a factor 4 larger than the
typical offset of ∼0.1 m. The z offset for survey 6 is even more
dramatic with a value of 0.97m compared to a typical value of
0.15m for themodels made via the classical approach. For survey 8
the offset in the xy and z directions exceeds the typical offset of the
other surveys by approximately a factor 2. Interestingly, when
applying the co-alignment approach, either with or without GCPs,
the xy and z offsets of these surveys are strongly reduced.While the
offsets of surveys 6 and 8 are still slightly larger than that of the
other surveys in this case, it has dropped to an acceptable offset of
0.1 m in both the xy and z directions. This shows that co-alignment
forces otherwise poorly aligned surveys onto the more accurate
common geometry set by the other surveys, thereby strongly
decreasing the offset between the surveys and increasing the
accuracy of topographic change detection.

The low relative accuracy of the models of surveys 6 and 8
predominantly results from a low number and poor distribution of
tie points. In particular, limited numbers of tie points were created
on the forested channel banks for these surveys (possibly as a result
of relatively strongwinds), which caused the tie points to concentrate
along the narrow channel bed and the inhabited areas in the north of
our study area. This caused a weak model geometry, resulting in a
low accuracy elevationmodel wherein the channel-bed elevationwas
largely underestimated while the channel bank elevation was mostly
overestimated or vice versa. These deviations were commonly larger
than a few meters. This is illustrated in Supplementary Figure S1,
which shows how the classical approach locally led to a ∼2m bias in
the topographic change between surveys 6 and 7 over a part of the
channel bed.

DISCUSSION AND CONCLUSION

Our results show that co-aligningmultiple surveys throughUAV-
SfM leads to more accurate topographic change detection
(relative accuracy) compared to the classical approach where
each survey is processed individually, as previously found by
Feurer and Vinatier (2018) and Cook and Dietze (2019). Co-
alignment with GCPs leads to a marginally significant increase in
absolute accuracy compared to the classical approach where each
survey is processed individually using GCPs. Using GCPs in the
co-alignment procedure does lead to a slightly increased
topographic change detection accuracy compared to co-
aligning without GCPs, but both approaches perform well
with an offset in the xy and z directions below 0.1 m. Such
accuracy is more than sufficient for most applications of change
detection in a wide range of fields including geosciences, forestry,

FIGURE 3 | classical approach where surveys are processed individually using GCPs (GCP), co-alignment without GCPs (CA) and co-alignment with GCPs (CA+GCP),
showing a higher accuracy of the co-alignment approaches (E,F) Distance to the nearest GCP vs. the mean offsets in the xy and z directions, respectively, showing that
the 3Dmodel accuracy decreases with increasing distance to the nearest GCP. The fitted lines represent themoving average (G,H)Mean offset in the (G) xy direction and
(H) z direction for the nine surveys analyzed here. The image shows that the co-alignment approaches lead to a lower offset in the xy and z directions compared to the
classical approach, especially for the poorly aligned surveys 6 and 8.
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ecology, archaeology, mining and engineering (e.g., Lucieer et al.,
2014; Torres-Sánchez et al., 2014; Braun et al., 2015; Lee and
Choi, 2015; Qin et al., 2016; James et al., 2017; Duró et al., 2018;
Hemmelder et al., 2018). Co-alignment allows for more reliable
change detection because during the reconstruction all images
(from all surveys) are optimized within the same adjustment,
using homologous image points covering several surveys and
therefore resulting in a joint camera geometry. Potential
systematic errors are therefore spatially consistent, and as a
result do not influence comparisons between the 3D models of
the surveys, such that their comparative accuracy is much higher
and topographic change detection is more accurate. The increase
in relative accuracy is the result of the generation of common tie
points between multiple surveys, which impose a joint geometry
(Cook and Dietze, 2019). Our results show that especially when
multiple surveys are co-aligned, this forces poorly aligned
surveys, which retain this poor quality even after adding a
large number of GCPs, onto the more accurate common
geometry set by the other surveys (Figures 3G,H). This
strongly improves the accuracy of topographic change
detection for those surveys that are poorly aligned using the
classical approach.

A key limitation of the co-alignment approach is that
sufficient common tie points may not be generated when an
area changes too much in appearance between surveys or when
there have been too much changes in the area of interest (Cook
and Dietze, 2019). Yet, for our study area co-alignment was
successful, despite that substantial changes occurred in the
torrent bed (De Haas et al., 2020), and changes in appearance
from autumn to summer in the forest that covers the largest part
of our study area.

While Cook and Dietze (2019) suggested that co-alignment
without GCPs can be used for change detection with a level of
detection comparable to that of a survey grade GCP-constrained
pair of models, for our dataset combining nine surveys, co-
alignment without GCPs outperforms the classical approach
where surveys are processed individually with GCPs. This can
be attributed to our finding that the co-alignment procedure
forces surveys with poor alignment into a common geometric
framework, strongly limiting their offset from the other surveys.
Still, as pointed out by Cook and Dietze (2019) one has to bear in
mind that 3D models created through co-alignment in the
absence of GCPs may still contain absolute errors and
distortions such as doming (James and Robson, 2014;
Carbonneau and Dietrich, 2017). Moreover, the absolute
location of models created in the absence of GCPs typically
has a low accuracy—here we find an absolute xy offset of
∼10 m and z offset of ∼20 m - inhibiting comparison with
external sources such as lidar topography (e.g., Neugirg et al.,
2016; Izumida et al., 2017).

In short, given the higher accuracy of topographic change
detection obtained by co-alignment approaches, especially when
combined with GCPs, compared to the classical approach where
surveys are processed individually with GCPs, we advocate that
co-alignment should become common practice in UAV-SfM
based topographic change detection when sufficient stable
areas are available. The co-alignment approach was found to

enhance the accuracy of topographic change detection by a factor
3-4 in the z direction and a factor 2 in the xy direction. A
particularly large advantage of co-alignment is that it forces poor
quality (parts of) surveys to the more robust common geometry
set by the other surveys, which strongly increases the
comparability of the surveys and the accuracy of topographic
change detection. The co-alignment approach can be applied and
be semi-automated in most SfM software packages, such that
there should be no technical limitations in applying co-alignment
instead of the classical approach processing each survey
separately providing sufficient processing power.

Although this work and that presented by Feurer and
Vinatier (2018) and Cook and Dietze (2019), shows that
there is great potential in using co-alignment or time-SIFT
for creating DSMs from aerial imagery, so far this method has
only been tested on a limited number of sites and under a
limited range of conditions. Future research is thus needed to
identify the full potential and limitations of this approach. To
identify this, we need studies assessing the performance of co-
alignment in a wide range of environments, for example
systematically exploring the effects of different sensors,
flight plans, image tilt, number and distribution of GCPs,
and different survey combinations.
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