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INTRODUCTION

Lidar (light detection and ranging, also LIDAR, LiDAR, and LADAR) advanced rapidly after the
invention of the laser in 1960 (Maiman, 1960; Woodbury et al., 1961; Smullin and Fiocco, 1962;
Schotland, 1966; Cooney, 1968; Melfi et al., 1969). A variety of lidar technologies have been
developed to provide atmospheric and surface properties during the last 60 years (Fiocco and
Smullin, 1963; Weitkamp, 2005; Kashani et al., 2015) to support advancements in digital models of
terrain, cryospheric discovery, terrestrial ecology, hydrology, atmospheric science, and
oceanography. The successful lidar operations of NASA’s Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO, Winker et al., 2010) and Ice, Cloud, and land
Elevation Satellite (ICESat, Markus et al., 2017) and ESA’s Aeolus wind satellite (Kanitz et al.,
2020) highlight a new era of lidar developments and applications. Measurement concepts and
technology are evolving simultaneously in different directions. Doppler lidars with different
measurement capabilities are widely adopted by the wind energy industry (Krishnamurthy et al.,
2012; Bos et al., 2016). Miniaturization and photon-counting instruments are opening completely
new areas in science and applications with cheaper ground–based instruments and ultra-light,
affordable drones. 3D surface mapping by imaging lidar is required across a broad – spectrum of
applications, from construction projects (Pu and Vosselman, 2009) to understand land –
atmosphere interactions (Colin et al., 2010; Faivre et al., 2017). The higher performance
achievable by a time-correlated single-photon counting implemented in a multiple beams
system has been documented (see e.g. Chen et al., 2018). A growing range of terrestrial,
unmanned aerial vehicle (UAV or ‘drone’) (González-Jorge et al., 2017) and airborne scanning
systems is attracting a wide community of professionals to deploy such systems to support large
engineering projects and to monitor in great detail infrastructures of all sorts, from bridges to
buildings and urban canyons (Wang et al., 2013; Roca et al., 2016). The role of lidar will be
increasingly important in the future. Although there are many potentials for new lidar technology
advancements, lidar activities are gradually shifting from technology developments to
applications. Thus, discussions here mainly focus on the opportunities and challenges for
advancing lidar applications in the future.

LOW COST AND TURNKEY ATMOSPHERIC LIDAR SYSTEMS TO
SUPPORT OPERATIONAL APPLICATIONS

To support operational lidar applications, transferring research lidars into turnkey systems and
reduce their costs are necessary steps. During the last 20 years, advances in industrial lasers improved
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lidar system reliability and lowered system development and
operational cost. Recent wind energy developments accelerated
the low cost and turnkey Doppler lidar developments. Now
micropulse type lidars are available for routine aerosol and
water vapor measurements (Welton et al., 2001). Compact
Raman lidars were demonstrated for airborne and ground-
based operations (Wu et al., 2016; Lange et al., 2019).
However, we still need to overcome many issues . First,
atmospheric lidar system designs have to consider providing
quantitative and automatic or semi-automatic lidar data
processing. Second, enhancing system stability has to be one
of the high priorities. Micropulse lidar (MPL) is one of the
successful lidar designs to support aerosol and cloud
observations, and the DOE/ARM program operated MPLs for
the last 20 years. However, temporal variations of MPL system
performance, especially in near range alignment, makes it difficult
to use long-term MPL data to provide consistent long-term
aerosol products. Third, it is critical to consider improving
near-surface (within 500 m) measurements for ground-based
lidar system design. Due to incomplete overlapping between
the transmitting and receiving optical system, near-surface
measurements of aerosol, water vapor, and temperature are
often unavailable or with large uncertainties. However, these
near-surface measurements are critical for many applications.
Future lidar systems with ceilometer’s robustness and increased
capabilities will enhance our atmospheric monitoring capabilities
(Engelmann et al., 2016; Wu et al., 2016; Stillwell et al., 2020).

LIDAR NETWORKS TO SUPPORT
RESEARCH AND OPERATIONS

The spatial variability of atmospheric properties and processes
limits the values of single lidar measurements. Many existing lidar
research networks, such as the European Aerosol Research Lidar
Network (EARLINET, Pappalardo et al., 2014), the Asian Dust
Network (AD-Net, Sugimoto et al., 2016), the National
Aeronautics and Space Administration Micropulse lidar
network (MPLNET, Welton et al., 2001), and the Network for
the Detection of Atmospheric Composition Change (NDACC,
De Mazière et al., 2018), were developed in the past with different
success. For future operation supports, network lidar operations
are critically needed (Bösenberg and Hoff, 2007; National
Research Council, 2009; Wulfmeyer et al., 2015). Different-
scale networks are needed to meet various application needs.
Regional lidar networks can monitor urban air quality and cover
the data gaps for weather models (Langford et al., 2018). A global
lidar network is necessary to study stratospheric and mesospheric
variations (Chu and Yu, 2017; De Mazière et al., 2018).

Robust and cost-effective lidar systems are essential to support
long-term operational lidar networks in the future. Global
ceilometer (a simple elastic lidar) network is the most
successful lidar network to support operation so far. Current
efforts in using ceilometer vertical profiles to characterize the
Planetary Boundary Layer (PBL) structure will further empower
the ceilometer network (Hicks et al., 2019). Lidar technologies for
temperature, water vapor, and wind measurements, which are

regarded as a high priority to fill observation gaps (especially
within PBL) to improve weather and air quality prediction, are
mature for operational lidar networks in the near future
(Goldsmith et al., 1998; Nehrir et al., 2011; Reichardt et al.,
2012; Weckwerth et al., 2016; Wu et al., 2016). Ocean-based lidar
deployments, on buoys, island, ice, and commercial ships, are
needed to fill critical measurement gaps (Mariage et al., 2017). To
fully unleash the power of lidar network observations, the quality
control, archive, and open access of lidar data will be essential.

LIDAR DATA ASSIMILATIONS TO IMPROVE
WEATHER AND AIR QUALITY FORECAST

Lidar data can be used to improve weather and air quality forecast
through data assimilations. Studies show that assimilating
Doppler lidar wind measurements can improve not only
short-time resource predictions of wind farmers (Würth et al.,
2019; Perr-Sauer et al., 2020) but also mesoscale weather forecast
(Pu et al., 2010; Kawabata et al., 2014). Assimilating Raman lidar
water vapor and temperature measurements can fill current
observation gaps in PBL to improve model performance
(Wulfmeyer et al., 2006; Chipilski et al., 2019; Leuenberger
et al., 2020).

While having operational lidar networks and maintaining
high-quality data collections are necessary for operational data
assimilations, further developments of assimilation methods to
effectively use highly temporally and vertically resolved lidar
measurements are still needed. Although it is straightforward
to assimilate lidar water vapor, temperature, and wind
measurements by adjusting corresponding model variables,
fully using high temporal resolution observations requires
further investigations. Assimilating lidar aerosol measurements
can improve PM2.5 forecast (Cheng et al., 2019; El Amraoui et al.,
2020). Using PBL structure information contained within aerosol
vertical structures to refine model PBL representation, however,
needs further explorations. Future reliable lidar data network
measurements and advanced lidar data assimilation approaches
will make high impacts on regional weather and air quality
forecast.

MULTI-PARAMETER LIDAR
MEASUREMENTS TO SUPPORT
ATMOSPHERIC PROCESS STUDY
Supporting atmospheric process study has been one of the main
lidar applications, but the values of individual atmospheric
parameter measurements are limited now after knowledge
gained from the past studies. Therefore, synergizing multiple
lidar measurements is needed in the future. For air quality studies,
multiwavelength elastic lidar measurements can provide aerosol
size and type information. Vertical profiles of relative humidity
and stability within the PBL from lidar water vapor and
temperature measurements are needed to quantitatively
interpret the observed variability in aerosol properties
(Veselovskii et al., 2009).
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Aerosol-cloud interaction is one of the primary sources of
uncertainties in future climate predictions. Ground-based
multiple lidar measurements are critical to untangle the
puzzle. Aerosol size and composition from multiwavelength
lidar, vertical wind from Doppler Lidar, water vapor and
temperature from Raman lidar or DIAL, and droplet
concentrations retrieved from lidar cloud extinction
measurements help to understand aerosol-cloud interactions
for low-level clouds under different dynamical and
thermodynamical conditions. Such multi-lidar measurements
are needed under different aerosol and cloud conditions over
multiple locations to fully understand aerosol-cloud interactions.
For cloud studies, lidar multiple scattering (MS) is still a
challenging issue. MS contains cloud microphysical and optical
information (Donovan et al., 2015). Further exploring MS
information together with lidar depolarization measurements
could increase lidar capabilities to observe optically thick clouds.

PBL processes are still poorly understood and represented
(National Academics of Sciences, 2018a; National Academics of
Sciences, 2018b). The Land-Atmosphere Feedback Experiment
(LAFE) deployed several state-of-the-art lidars at the ARM
Climate Research Facility Southern Great Plains Megasite (SGP)
to study land-atmosphere feedback (Wulfmeyer et al., 2018). LAFE
demonstrated the power of multi-lidar measurements for the PBL
study by providing simultaneous water vapor, temperature,
aerosol, wind, and turbulence profiles. Besides ground-based
multi-lidar observations, airborne multi-lidar observations are
essential for critical atmospheric process studies by sampling
where processes are happening. Aircrafts carrying lidars and
radars can track a fast-moving storm to observe dynamical
interactions (Liu et al., 2019). Compared with operational lidar
applications, supporting atmospheric process study requires more
powerful lidars to provide accurate measurements at fine temporal
and spatial resolutions (Behrendt et al., 2015; Hammann et al.,
2015; Lange et al., 2019).

SYNERGIZING LIDAR WITH OTHER
REMOTE SENSORS FOR ATMOSPHERIC
CHARACTERIZATIONS
Combining lidar with other active and passive sensor
measurements offer new observational capabilities. Currently,
lidar measurements are widely combined with cloud radar
and radiometer measurements for cloud macro- and
microphysical properties characterizations (Stephens et al.,
2002; Wang and Sassen, 2002; Delanoë and Hogan, 2008;
Deng et al., 2010; Wang et al., 2012). Synergizing lidar with
other sensor measurements could advance atmospheric
observation capabilities in many other frontiers (Nehrir et al.,
2017). Although ground-based Raman and DIAL lidars can
provide reliable vertical resolved water vapor and temperature
profiles, these measurements are limited to below clouds when
low or middle-level clouds are presented due to strong cloud
attenuation (Turner et al., 2000). On the other hand, microwave
radiometer profiler can provide all-weather measurements, but
with coarse vertical resolutions (Zhang et al., 2018). Combining

Raman/DIAL lidar and microwave radiometer profiler
measurements could offer improved all-weather water vapor
and temperature profiling capabilities with multi-sensor
optimization retrieval approaches (Turner and Blumberg,
2019). Similarly, the synergy of Doppler lidar and cloud
radar measurements could offer in and out cloud wind fields
to support many critical studies, such as cloud and environment
interactions, especially combined with measurements from
other types of lidars (Turk et al., 2020).

LIDAR SYSTEMS FOR OCEAN
MEASUREMENTS

Oceans control the weather and climate globally and are poorly
observed. Satellite ocean color measurements from passive
visible sensors have provided a sustained synoptic view of
the distribution of ocean optical properties and
biogeochemical parameters, but lacking vertical information
within the water column. Microwave and IR ocean
observations from space only offer ocean surface properties
due to strong water absorptions. Airborne lidars (Hoge and
Swift, 1981; Churnside, 2014) have been used to study ocean
subsurface properties for decades. CALIOP measurements
demonstrated that space-borne elastic lidar signals could
provide depth-resolved values of plankton properties
globally (Lu et al., 2016). However, extract ocean particle
information from elastic-only measurements is still
challenging (Schulien et al., 2017). Ocean-optimized space
lidars synergized with other ocean measurements (Hostetler
et al., 2018; Chen et al., 2019; Jamet et al., 2019) would
transform our ocean measurement capability. Further
advancing lidar measurements with Brillouin scattering,
Raman scattering, and fluorescence signals could provide
ocean mixing layer temperatures, salinity, other chemical
component information simultaneously, at least from
airborne platforms (Hoge et al., 2005; de Lima Ribeiro
et al., 2019).

MULTI-SPECTRAL SURFACE AND
VEGETATION MEASUREMENTS

Multi – spectral lidar systems are expected to fill a major gap in
land science by capturing at the same time two essential features:
the 3D geometry of land targets and the type of observed surface
through the spectral information. Morsy et al., (2017)
demonstrated that the combination of building height and
spectral information achieved a clearly higher accuracy than
elevation data alone in mapping urban land cover. Retrieval of
bathymetry using a single spectral channel is a well – established
lidar application but opportunities for innovations remain
significant, such as the integration of mono-spectral lidar with
passive multi-spectral images to map coastal water (Zhang et al.,
2019). Imaging, multi-spectral lidars combine differential water
absorption with range measurements to map coastal waters and
the land/water boundary very accurately (Morsy et al., 2018)
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SPACE-BASED LIDAR FOR
MEASUREMENTS BEYOND AEROSOL,
CLOUDS, AND SURFACE HEIGHT
Lidar measurements from CALIPSO, CATS, and ICESat satellites
transformed our view of global aerosol, cloud, and ice sheet
distributions (Winker et al. 2010; McGill et al. 2015; Yorks et
al., 2016; Markus et al., 2017; Neumann et al., 2018;
Neuenschwander and Pitts, 2019; Neumann et al., 2019). The
latest NASA Earth science decadal survey recommends several
missions requiring lidars to meet the science measurement
objectives (National Academics of Sciences, 2018a). Global
measurements of tropospheric wind, water vapor, CO2,
temperature, and surface vegetation from space lidars will be
highly desired (Baker et al., 2014; National Academics of Sciences,
2018a; National Academics of Sciences, 2018b), but there are
challenges to overcome. ESA’s Aeolus wind satellite was launched
on August 22, 2018 and demonstrated the feasibility to measure
wind from the space (Kanitz et al., 2020). Its fixed-beam pointing
cannot provide wind speed and direction, however. Further
technological advancements are needed to provide wind speed
and direction measurements to better constrain weather models.
DIAL lidars for water vapor and CO2 from space require high
power lasers with stable narrow-line output, which are under
development. Raman lidar is the only feasible lidar technique to
provide fine vertical-resolved temperature profiles from space, but
it requires high pulse energy 355 nm lasers with above 50W power
(Di Girolamo et al., 2018). There are multiple challenges in
developing and operating such high energy UV lasers for a
space-borne lidar. Lessons learned from Aeolus and
EARTHCARE UV lidars should help future space-based Raman
lidar development. NASA’s PBL and Surface Topography and
Vegetation (STV) incubation programs will accelerate future
space-based new lidar developments. Although needs are
different for different types of space-based lidars, developing
high electrical-to-optical efficiency lasers and low-weight large
telescope will benefit all space-based lidar applications.

MINIATURIZATION AND
PHOTON-COUNTING SURFACE LIDAR
SYSTEMS
The promise of photon–counting LIDAR is to deliver similar
performance as traditional waveform – sampling systems at
significantly reduced mass and power consumption. This may
lead to a host of new applications, made feasible by far –
reaching miniaturization, but requires a fundamentally
different approach to data processing and analysis. Three-
dimensional point clouds are widely used across a wide
spectrum of applications from construction projects to
forestry. Time-correlated single-photon counting (TCSPC) is
a very active area of technological development. Multiple beam
systems can improve substantially the accuracy of time-of-flight
ranging and three-dimensional (3D) imaging, as demonstrated
by Chen et al., (2018).

BIOSPHERIC, CRYOSPHERIC AND
HYDROLOGIC PROCESSES

Multiple–beams and scanning systems are increasingly providing
the measurements necessary to capture biospheric, cryospheric
and hydrologic processes. Detailed 3D measurements of
terrestrial vegetation over space and time are necessary but
very scarce, thus making progress very hard in our
understanding of the role of vegetation in the Earth System,
particularly in the carbon and water cycle. It is not only the
amount of vegetation that is of importance, but it is the detailed
3D structure of vegetation canopies (Menenti and Ritchie, 1994;
Næsset, 1997; Straatsma and Baptist, 2008; Wang et al., 2009;
Bucksch et al., 2014) to determine radiative and convective
exchanges with the PBL (Faivre et al., 2017). Water – related
morphometric features can be extracted from point – clouds
generated by imaging lidars (see e.g. Koenders at al., 2014).

Notwithstanding its short life and sparse spatial coverage, the
data acquired by GLAS on ICESat–1 have boosted unprecedented
advances in understanding the response of alpine glaciers to
climate forcing. The challenge ahead is to bring to fruition the far
better capabilities of ATLAS on ICESat–2, while at the same time
capturing the surface structure at a detail sufficient to understand
mass transport within a glacier.

Accurate measurements of water level deliver unique global
information on water storage and flow, thus filling a major gap in
the observation of the terrestrial water cycle. LIDAR
measurements of water level from space are inherently sparse
in space and time, thus requiring innovative approaches to bring
such information to fruition (Phan et al., 2012).

INFRASTRUCTURE SURVEYS

Monitoring and assessment of very diverse infrastructures require
short – range LIDAR measurements at high accuracy and density
(see e.g. Olsen et al., 2010), which leads to merge multiple point –
clouds acquired by terrestrial laser systems or very large point-
clouds acquired by a moving and unstable platform (e.g. UAV).
Developing efficient and accurate ways to create such large data
sets while minimizing the degradation in data quality remains a
very active area of research.

In structural engineering, accuracy required for change
detection (or deformation measurement) or 3D object
reconstruction is often sub-millimeter, generally about
5 mm or less. This requirement cannot always be met by
the accuracy of the laser scanning point cloud from a single
scan, and the accuracy of the point cloud frommultiple scans is
even worse. Moreover, removal of outliers and mixed pixels are
also critical issues in identifying the real surface of an object.
This is a major challenge in 3D object reconstruction. To meet
this challenge a combination of solutions is needed, from
technological developments in laser scanning to
experimental protocols, passing through high performance
data processing, especially for aligning large point clouds
from multiple scans.
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URBAN LANDSCAPE AND ENVIRONMENT

Generation of 3D models of urban space is by now a mainstream
application of scanning LIDAR systems (Pu and Vosselman,
2009; Vosselman and Maas, 2010), but there is a clear trend
towards the accurate representation of ever-increasing details
within the built-up space, such as individual trees and signposts
(Wang et al., 2017). This requires automatic recognition of
objects, in addition to their very accurate and detailed
representation. The challenge here is technological
evolution towards miniaturization and autonomous data
processing and concurrent advances in algorithms and their
fundamentals. Recent UAV platforms jointly collect imagery
and lidar data. Acquired 3D point clouds may achieve
accuracies and resolutions of some millimeters, so far
limited to terrestrial data capture. Further benefits of
combined processing result from adding lidar range
measurement to multi-view-stereo image matching during
the generation of high-precision dense 3D point clouds.

A majority of the human population lives in urban and
suburban areas. With increasing urbanization, urban
meteorology and air quality have become an emerging area of
great interest. How the properties of urban environments modify
the PBL structure and impact urban weather and air quality is a
largely unresolved question (National Research Council, 2012).
There remain numerous scientific, technical and computational
challenges to improving urban weather and air quality
forecasting. Understanding urban PBL properties and
processes is crucial. Over urban street canyons, characterized
by different scale inhomogeneities regarding the surface type and
terrain height, modern understanding of PBL physics and

parameterization is not sufficient for urban applications
(Kukkonen et al., 2012; Zhang et al., 2012). Although there are
various ways to provide near-surface observations, these are not
sufficient in identifying and quantifying the physical processes
that drive the urban PBL (Muller et al., 2013). The upper 90% of
the urban boundary layer remains under-researched (Barlow,
2014). Regional lidar networks with multi-type lidar systems
could fill the data gap to enhance urban PBL process studies
and improve urban environment predication.

SUMMARY

Future lidar applications can go beyond the traditional fields
discussed above. Short-range 2-D/3-D lidar advanced rapidly
driven by autonomous vehicle development needs. Further
developments of all-fiber lidar could provide a reliable and
cost-effective way to detect turbulence, wind shear, volcanic
ash, supercooled liquid clouds with icing risks, and high ice
water content clouds from aircraft in real-time to support safe
aircraft operations (Schmitt, 2017; Thobois et al., 2019). If we
successfully meet these challenges, lidar measurements from
ground, aircraft, and satellite will continuously transform our
capability to support earth system science study and power new
lidar applications.
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