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In vegetation canopies cross-shading between finite dimensional leaves leads to a peak in
reflectance in the retro-illumination direction. This effect is called the hot spot in optical
remote sensing. The hotspot region in reflectance of vegetated surfaces represents the
most information-rich directions in the angular distribution of canopy reflected radiation.
This paper presents a new approach for generating hot spot signatures of equatorial
forests from synergistic analyses of multiangle observations from the Multiangle Imaging
SpectroRadiometer (MISR) on Terra platform and near backscattering reflectance data
from the Earth Polychromatic Imaging Camera (EPIC) onboard NOAA’s Deep Space
Climate Observatory (DSCOVR). A canopy radiation model parameterized in terms of
canopy spectral invariants underlies the theoretical basis for joining Terra MISR and
DSCOVR EPIC data. The proposed model can accurately reproduce both MISR
angular signatures acquired at 10:30 local solar time and diurnal courses of EPIC
reflectance (NRMSE < 9%, R2 > 0.8). Analyses of time series of the hot spot signature
suggest its ability to unambiguously detect seasonal changes of equatorial forests.

Keywords: DSCOVR EPIC, terra MISR, vegetation hotspot signature, directional area scattering factor (DASF),
seasonality, tropical forests

INTRODUCTION

The global forest ecosystem absorbs about 25% of the total anthropogenic CO2 emission from
atmosphere via carbon accumulation to forest biomass (Reichstein et al., 2013). Forests store 75% of
terrestrial carbon, and account for 40% of the carbon exchange with atmosphere each year
(Schlesinger and Bernhardt, 2012). Within the forest ecosystem, tropical forests contain about
40–50% of the terrestrial carbon stock (Lewis et al., 2009) and are potentially responsible for about
70% of terrestrial carbon sink (Pan et al., 2011). Monitoring and quantifying changes in tropical
forests therefore play a critical role in understanding the global carbon cycle and future climate
change.

Monitoring of dense vegetation such as equatorial rainforests represents the most complicated
case in optical remote sensing because reflection of solar radiation saturates and becomes weakly
sensitive to vegetation changes. At the same time, the satellite data are strongly influenced by
changing sun-sensor geometry. This makes it difficult to discriminate between vegetation changes
and sun-sensor geometry effects. For instance, studies on Amazon forest seasonality based on
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analyses of data from single-viewing sensors disagree on whether
there is more greenness in the dry season than in the wet season:
the observed increase in vegetation indices were explained by an
increase in leaf area, an artifact of sun-sensor-geometry and
changes in leaf age through the leaf flush (Huete et al., 2006;
Brando et al., 2010; Samanta et al., 2012; Morton et al., 2014;
Saleska et al., 2016). The impact of droughts on Amazon forests
has also been debated (Saleska et al., 2007; Samanta et al., 2010;
Samanta et al., 2011; Xu et al., 2011). Conflicting conclusions
among these studies arose from different interpretations of
surface reflectance data acquired under saturation conditions
(Bi et al., 2015). Developing methodologies that allow us to
unambiguously interpret reflectance of dense forests is worthy
of special attention.

Broadly used approaches for interpretation of satellite data
from single-viewing sensors consider the viewing and solar zenith
angle dependence of reflected radiation to be a problematic
source of noise or error, requiring a correction or
normalization to a “standard” sun-sensor geometry (Lyapustin
et al., 2018). Transformation of such data to a fixed standard sun-
sensor geometry therefore invokes statistical assumptions that
may not apply to specific scenes. The lack of information about
angular variation of forest reflected radiation introduces model
uncertainties that in turn may have significant impact on
interpretation of satellite data (Gorkavyi et al., 2021).

Unlike single-angle methodologies, multiangle approaches
exploit angular variation of surface reflected radiation as
unique and rich sources of diagnostic information and enable
the rigorous use of the radiative transfer theory. In vegetation
canopies cross-shading between finite dimensional leaves leads to
a peak in reflectance in the retro-illumination direction. This
effect is called the hot spot in optical remote sensing (Gerstl and
Simmer, 1986; Ross and Marshak, 1988; Kuusk, 1991; Myneni,
1991). The hotspot region in reflectance of vegetated surfaces
represents the most information-rich directions in the angular
distribution of canopy reflected radiation. The hot spot
phenomenon correlates with canopy architectural parameters
such as foliage size and shape, crown geometry and within-
crown foliage arrangement, foliage grouping, leaf area index
and its sunlit fraction (Ross and Marshak, 1991; Qin et al.,
1996; Goel et al., 1997; Qin et al., 2002; Yang et al., 2017;
Pisek et al., 2021). Angular signatures that include the hot
spot region are critical for monitoring phenological changes in
equatorial forests (Bi et al., 2015). Availability of hot spot
signatures of equatorial forests would make monitoring their
changes more reliable.

The Multiangle Imaging SpectroRadiometer (MISR) on Terra
platform provides simultaneous multiangle observations of
surface reflectance since December 1999. Its observing strategy
allows for a good angular variation of surface reflectance in
equatorial zone. However spatially and temporally varying
phase angle1 could be far from zero, making frequent
observations of canopy reflectance in the hot spot region
impossible. The NASA’s Earth Polychromatic Imaging Camera

(EPIC) onboard NOAA’s Deep Space Climate Observatory
(DSCOVR) was launched on February 11, 2015 to the Sun-
Earth Lagrangian L1 point where it began to collect radiance
data of the entire sunlit Earth every 65–110 min in June 2015. It
provides imageries in near backscattering directions (Marshak
et al., 2018).

The DSCOVR EPIC observations therefore provide unique
information required to extend angular sampling of the MISR
sensor to the hot spot region. The objectives of this paper are to 1)
develop a new methodology that synergistically incorporates
features of Terra MISR and DSCOVR EPIC observation
geometries and results in hot spot signatures of equatorial
forests; 2) generate angular signatures of equatorial rainforests
for the period of concurrent TerraMISR and DSCOVR EPIC data
and asses their quality; 3) demonstrate their value for monitoring
seasonal changes of the equatorial forests.

THEORETICAL BASIS

Reflectance of Dense Vegetation
The Bidirectional Reflectance Factor (BRF) is defined as the ratio
of the surface-reflected radiance to radiance reflected from an
ideal Lambertian surface into the same beam geometry and
illuminated by the same mono-directional beam (Martonchik
et al., 2000; Schaepman-Strub et al., 2006). It describes the
magnitude and angular distribution of surface reflected
radiation in the absence of atmosphere and varies with the
directions to the Sun, Ω0 ∼ (θ0,φ0), and to the sensor,
Ω ∼ (θ,φ). In this paper, the directions are expressed in terms
of zenith, θ0 and θ, and azimuthal, φ0 and φ, angles. We will use
symbols μ0 and μ for cos θ0 and cos θ, respectively.

For sufficiently dense vegetation such as equatorial forests, the
BRF can be accurately approximated as (Knyazikhin et al., 2013)

BRFλ(Ω0,Ω) � ρ(Ω0,Ω)i0
1 − p

× ωλ(1 − p)
1 − pωλ

� DASF(Ω0,Ω) ×Wλ .

(1)

The first factors on the right-hand side of Eq. 1 is the
Directional Area Scattering Factor (DASF), which describes
the canopy BRF if the foliage does not absorb radiation. The
spectrally invariant DASF is a function of canopy geometrical
properties, such as the tree crown shape and size, spatial
distribution of trees on the ground, and within-crown foliage
arrangement (Knyazikhin et al., 2013). The second factor, Wλ, is
the Canopy Scattering Coefficient (CSC), i.e., the fraction of
intercepted radiation that has been reflected from, or
diffusively transmitted through, the vegetation (Smolander and
Stenberg 2005; Lewis and Disney 2007). The spectrally varying
CSC is weakly sensitive to variation in the sun-sensor geometry. It
conveys information about leaf optical properties (Knyazikhin
et al., 2013; Latorre-Carmona et al., 2014; Adams et al., 2018).

Our forest BRF is parameterized in terms of spectrally
invariant parameters (Knyazikhin et al., 2011; Stenberg et al.,
2016). Here i0 is the canopy interceptance defined as the portion
of photons from the incident solar beam that collide with foliage1The phase angle is the angle between the directions to the Sun and sensor
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elements for the first time. The symbol ρ designates the
directional escape probability, i.e., the probability by which a
photon scattered by a foliage element will exit the vegetation in
the directionΩ through gaps. Spherical integration of π−1ρ| cos θ|
results in 1 − p, where p is the recollision probability, defined as
the probability that a photon scattered by a foliage element in the
canopy will interact within the canopy again. The spherical
integration significantly weakens the sensitivity of p to sun-
sensor geometry. Finally, ωλ is the wavelength dependent leaf
albedo, i.e., the fraction of radiation incident on a leaf surface that
is reflected or transmitted.

The directional escape probability controls the shape of the
BRF. Indeed, photons scattered by sunlit leaves will escape the
vegetation in the retro-illumination direction with unit
probability since their paths are free of foliage elements.
Photon paths in off-backscattering directions are more likely
obstructed by leaves and the likelihood of photons escaping the
canopy is consequently reduced. We follow methodology
developed in (Yang et al., 2017) to simulate the hot spot
effect. Kuusk’s model of the hot spot incorporated into the
extinction coefficient of the radiative transfer equation is used
to estimate the escape probability (Supplementary
Appendix SA).

Our primary objective is to derive DASF from TerraMISR and
DSCOVR EPIC observations. For vegetation canopies with a dark
background, or sufficiently dense vegetation where the impact of
canopy background is negligible, the DASF can be directly
retrieved from the BRF spectrum in the weakly absorbing
spectral interval, without involving canopy reflectance models,
prior knowledge, or ancillary information regarding leaf
scattering properties. We follow methodology developed in
(Marshak and Knyazikhin 2017; Song et al., 2018) to
approximate this variable using BRFs at NIR and green
spectral bands: DASF is the ratio R/(1 − s) where R and s are
intercept and slope of the line passing two points(BRFλ

ωλ
, BRFλ), λ � green, NIR. Thus,

DASF(Ω0,Ω) � BRFgreenBRFNIR

BRFgreen − β(BRFNIR − BRFgreen) . (2)

Here β � (1 − ωNIR)ωgreen/(ωNIR − ωgreen) where ωNIR and
ωgreen represent leaf albedo of the brightest leaf at NIR and
green spectral bands integrated over bandwidths. Its values are
ω555 � 0.461, ω865 � 0.978 (β � 0.0196) for MISR and ω551 �
0.490 ω779 � 0.966 (β � 0.035) for EPIC. These values were
obtained from Lewis and Disney’s approximation (Lewis and
Disney, 2007) of the PROSPECT model (Féret et al., 2008) with
the following parameters: chlorophyll content of 16 μg cm−2;
equivalent water thickness of 0.005 cm−1, and dry matter content
of 0.002 g cm−1.

Approximation of DASF
The probability of photons escaping the vegetation canopy
depends on scattering order. The directional escape probability
in Eq. 1 is an average over scattering orders (Supplementary
Appendix SB). We approximate ρ(Ω0,Ω) by probabilities
calculated for single scattered photons (Supplementary

Appendix SC). We use the inclination index of foliage area to
parameterize the leaf normal distribution (Ross 1981). This index
characterizes the deviation of leaf orientation from the spherical
distribution. It allows us to approximate the geometry factor, G,
that appears in (Supplementary Appendix SA7 as G � 0.5α,
where the weight α varies between 0 and 2. The leaf normals, ΩL,
are simulated by spherical distribution corrected for the
deviation, i.e., g(ΩL) � α. The corresponding scattering
anisotropy (Supplementary Appendix SA2) becomes:

j(Ω) �
1
3π (sin ϑ − c cos ϑ) + τL

3 cos ϑ

0.5π
, (3)

where ϑ � π − acosΩΩ0 is the scattering angle (the angle between
incident and scattered radiation) and τL represents the leaf
transmittance, which was set to 0.5 in our calculations. Under
these assumptions DASF in the upward directions rearranges to
the form (Supplementary Appendix SC)

DASF ≈
ρ1i0

1 − p(1) �
1

1 − p(1)
j(Ω)
μ0μ

1 − tψL

ψ
. (4)

Here p(1) is the single scattering approximation of the recollision
probability (Supplementary Appendix SC); t � exp(−0.5) � 0.61;
ψ � μ−10 + μ−1(1 − 8HS); the factor 8HS is defined by
Supplementary Appendix SA4, and L is an effective extinction
coefficient. Thus, our model depends on two parameters. They are
the hot spot parameter h that appears in 8HS and the effective
extinction coefficient L. The former determines the shape of DASF,
while the latter controls its magnitude.

MATERIALS AND METHODS

Study Area
Our study is focused on equatorial evergreen broadleaf forests
that include Amazonian central rainforests (0°–10°S and
70°–60°W), Congo rainforests in Central Africa (5°S–5°N and
20°–30°E) and Southeast Asian rainforests (19.80°–26.57°N and
92.5°–105°E). Figure 1 shows locations of our study area. The
seasonal transition between wet and dry seasons is a distinct
feature of tropical rainforests, which leads to intra-annual
patterns of leaf flushing and abscission.

About 95% of our Amazonian central rainforest is covered
with terra firme rainforests (Nepstad et al., 1994). The average
annual rainfall during the 2000–2019 period is about 2,600 mm.
The seasonal cycle consists of a short dry season, June to October,
and a long wet season thereafter.

The equatorial rainforests of Central Africa are the second
largest and least disturbed of the biodiversly-rich and highly
productive rainforests on Earth (Cook et al., 2020). Our study
area includes central and part of western and northeast Congolian
lowland forests. The Congo basin exhibits bimodal precipitation
pattern and has two wet and two dry seasons per year (Yang et al.,
2015). The wet seasons occur in March-April-May and
September-October-November, while dry season months are
December-January-February and June-July-August. The
average annual rainfall over the past 2 decades is about 1761 mm.
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FIGURE 1 |DSCOVR EPIC 10 km land cover map (WWW-VESDR 2021) on Robinson projection with Center meridian at 20°E. Our study area includes Amazonian
central rainforest (Region 1: 0°–10°S and 70°–60°W), Congo rainforests (Region 2: 5°S–5°N and 20°–30°E) and Southeast Asian rainforest (Region 3.1: 23.50°–26.57°N
and 92.5°–98.62°E; Region 3.2: 19.80°–21.54°N and 97.93°–105°E). Our study areas are depicted as squares, which are part of evergreen broadleaf forests.

FIGURE 2 |MISR observing geometry. Here the X and Y axes point toward the North and East, respectively. (A)Directions from ground pixel to MISR cameras form
view lines on the polar plane, each characterizing by slope, k, and intercept, b. (B) Sun-sensor geometry is parametrized in terms the solar zenith angle (SZA), intercept b
and phase angle (PA), the latter is the angle between the directions to the Sun and sensor. We assign the sign “plus” to the phase angle if the MISR view direction
approaches the direction to the sun from North (i.e., above the dotted red line perpendicular to the MISR view line), and “minus” otherwise.
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Our third region consists of two sub-regions depicted as
Region 3.1 (23.50–26.57°N and 92.5–98.62°E) and 3.2
(19.80–21.54°N and 97.93–105°E). The first one is a
subtropical moist broadleaf forest ecoregion in
Mizoram–Manipur–Kachin rain forests. It occupies the lower
hillsides of the mountainous border region joining India,
Bangladesh, and Burma (Myanmar). The average annual
rainfall over the past 20 years is about 1,545 mm. The dry
season is from October to April, and wet season is May to
September. Region 3.2 represents a subtropical moist broadleaf
forest ecoregion in Northern Indochina. The wet seasons occur in
May to September while dry season months are October to April.

Data Used
Various variables from several independent satellite sensors over
our study area were used in this research. These include land
cover maps and leaf area index (LAI) from the MODerate
resolution Imaging Spectroradiometer (MODIS), precipitation
from Tropical Rainfall Measuring Mission (TRMM), surface
bidirectional reflectance factor (BRF) from Multi-angle
Imaging SpectroRadiometer (MISR) on the Terra platform and
BRF from Earth Polychromatic Imaging Camera (EPIC) on Deep
Space Climate Observatory (DSCOVR).

MODIS land cover dataset. Collection 6 Terra and Aqua
MODIS land cover product from 2001 to 2019 at yearly temporal
frequency and 0.05° spatial resolution (Friedl and Sulla-Menashe
2015) was used to identify our study area. This product provides
several classification schemes. The map of LAI classification
scheme was adopted in this research. Figure 2 illustrates LAI
classification scheme used by DSCOVR EPIC operational
algorithm for the generation of Vegetation Earth System Data
Record (WWW-VESDR 2021).

MODIS LAI datasets. Collection 6 Terra and Aqua MODIS
LAI products (Myneni et al., 2015a; Myneni et al., 2015b) for the
period February 2000 to December 2019 were used in this study.
The LAI dataset provides 8-days composite LAI at 500-m spatial
resolution. The C6 MODIS LAI product was evaluated against
ground-based measurements of LAI and through inter-
comparisons with other satellite LAI products (Yan et al.,
2016; Yan et al., 2016).

TRMM precipitation dataset. Monthly precipitation data
from the TRMM (3B43 version 7) at 0.25° spatial resolution
for the period January 2000 to December 2019 (WWW-TRMM
2011) was used in this study. This dataset provides the best-
estimate precipitation rate and root-mean-square precipitation-
error estimates by combining four independent precipitation
fields (Huffman et al., 2007).

DSCOVR EPIC MAIAC dataset. Level 2 DSCOVR EPIC
Multi-Angle Implementation of Atmospheric Correction
(MAIAC, version 1) surface BRF and aerosol optical depth
(AOD) at 551 nm from 2016 to 2019 were also used. The
EPIC instrument has provided imageries in near
backscattering directions with the phase angle between 4° and
12° at ten ultra-violet to near infrared (NIR) narrow spectral
bands until June 27, 2019, when the spacecraft was placed in an
extended safe hold due to degradation of the inertial navigation
unit (gyros). DSCOVR returned to full operations on March 2,

2020 after the navigation problem had been resolved. AfterMarch
2020 the range of phase has substantially increased towards
backscattering reaching 2° (Lyapustin et al., 2021; Marshak
et al., 2021).

The MAIAC BRF are available at four spectral bands; they are
433 (band width 3.0) nm, 551 (3.0) nm, 680 (2.0) nm and 780
(2.0) nm. Data are projected on a 10-km SIN grid and available at
65–110 min temporal frequency (WWW-MAIAC 2018). EPIC
sees Amazonian rainforests between 11 UTC and 18 UTC, Congo
forests between 5 UTC and 14 UTC and Southeast Asian
rainforests between 1 and 7 UTC.

MISR datasets. The MISR sensor views each 1.1 km ground
pixel symmetrically about the nadir in the forward and aftward
directions along the spacecraft’s flight track. Image data are
acquired with nominal view zenith angles relative to the
surface reference ellipsoid of 0.00 (camera An), 26.10 (Af and
Aa), 46.50 (Bf and Ba), 60.00 (Cf and Ca) and 70.50 (Df and Da) in
four spectral bands centered at 446 (band width 41.9 nm), 558
(28.6) nm, 672 (21.9) nm, and 866 (39.7) nm. MISR obtains
global coverage between ±82° latitudes in 9 days (Diner et al.,
1998; Diner et al., 1999). Level 2 version 3 MISR land surface
(WWW-MISR_SURFACE 1999) and aerosol (WWW-
MISR_AEROSOL 1999) products for the period of January
2016 to December 2019 over our study area were used. The
surface reflectance parameter BRF in 9 view angles and fourMISR
spectral bands is at 1.1 km spatial resolution. The aerosol optical
depth is available at 4.4 km spatial resolution. Both parameters
are projected on Space Oblique Mercator (SOM) projection, in
which the reference meridian nominally follows the spacecraft
ground track.

Directions from ground pixel to MISR cameras form view
lines on the polar plane, which are characterized by slope,
k � tan υK, and intercept, b (Figure 2A). The slope is aligned
with ground track and is roughly constant with υK ≈ 15.5°. The
intercept is associated with location of pixel within the MISR
360 km swath. We parameterize MISR BRF in terms of the solar
zenith angle, phase angle and intercept. The phase angle, c, is
calculated as

c � acosΩΩ0 � acos(cos θ cos θ0 + sin θ sin θ0 cos(φ − φ0)) ,
(5)

where Ω0 ∼ (θ0, φ0) and Ω ∼ (θ,φ) are directions from ground
pixel to the Sun and sensor, respectively. We assign the sign
“plus” to the phase angle if theMISR view direction approaches to
the direction to the Sun from North,
i.e., sin θ cos(υK − φ)> sin θ0 cos(υK − φ0), and “minus”
otherwise (Figure 2B).

Data Processing
The MODIS LAI and TRMM precipitation data over forested
pixels were selected using flags indicating highest retrieval quality.
The 8-days 500 m LAI products over our study area (Figure 1)
were spatially aggregated to 0.01° and 0.1° resolutions which were
then used in our analyses.

The MISR and DSCOVR EPIC surface BRF over our study
area were first refined by removing pixels with aerosol optical
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depth over 0.3. MISR and EPIC datasets were further re-projected
to 0.01° and 0.1° Climate Modeling Grids (CMG), respectively.
For each pixel, MISR and EPIC DASFs were calculated using Eq.
2, which then were used to generate monthly DASFs. If there were
several observations of a pixel within a given month, a median
DASF value was assigned to such pixel.

Area-averaged DASF as a function of mean SZA and phase
angle, c, is defined as

DASF(SZA, c) � ∑xy∈ADASFxy(SZAxy, VZAxy) cos SZAxy∑xy∈A cos SZAxy
,

(6)

where the summation is over pixels (x, y) in the selected area A at
which the phase angle takes a given value c.

Hot Spot Parameter and Effective Extinction
Coefficient
Equation 4 is used to simulate DASF. It depends on the hot spot
parameter, h, and effective extinction coefficient, L. The former is
a function of SZA and determines the angular shape of DASF,
while the latter controls its magnitude and depends on LAI. The
following two-step fitting technique was implemented to derive
equations for h and L using monthly MISR DASF.

Step 1: Matching angular shapes of observed and modeled
DASF. For a given month, we used SZAxy and monthly average
MODIS LAI as a first approximation to the effective extinction
coefficient (i.e., Lxy ≈ LAIxy) to simulate DASFxy at each pixel
(x, y) in MISR view angles as a function of h. Next, we used Eq. 6
to calculate area-averaged simulated-DASF as a function of hot
spot parameter, h. Finally, we selected h that minimized
(R2 − 1)2 + (s − 1)2, where R2 and s are the coefficient of
determination and slope of the relationship between area
averaged values of observed and simulated DASFs. The
selected hot spot parameter provides the best agreement
between angular shapes of modeled and observed DASF.

Step 2: Matching magnitudes of observed and modeled DASF.
For a givenmonth, we used SZA and h (SZA) to simulateDASFxy

at MISR view angles as a function of L. Eq. 6 was used to calculate
area averaged simulated-DASF as a function of effective
extinction coefficient, L, i.e., DASF�mod(c, L). We selected L
that minimizes Normalized Root Mean Square Error
(NRMSE) between simulated, DASF�mod, and observed,
DASF�MISR, area-averaged DASFs, i.e.,

NRMSE(L) �
																																
1
N∑c[DASF�mod(c, L) −DASF�MISR(c)]2√

1
N∑cDASF�MISR(c, L) →min.

(7)

This value of L matches magnitudes of observed and modelled
DASFs.

Monthly MISR DASF data for the 2017 to 2019 period over
our study area (Figure 1) were used to execute our two-step
fitting procedure. The SZA exhibits small variation within our
regions during a month and therefore can be accurately

represented by its monthly mean. A time series of the
solutions to the Step-1 procedure therefore gives a set of the
hot spot parameters corresponding to different SZA. Seasonal
variations of LAI in equatorial forests allowed us to accumulate
solutions to the Step-2 procedure corresponding to different
values of MODIS LAI. We used those sets to derive
dependences of the hot spot parameter and effective extinction
coefficient on SZA and LAI, respectively.

Figure 3 shows an example of our two-step fitting technique
for Congo forests (region 2) in September-2018. As illustrated
in Figure 4, Eq. 4 approximates observed DASF to within
NRMSE � 8% and R2 � 0.85. The largest difference between
observed and simulated DASFs occurred at phase angles above
900. Such points are separated by an ellipse in Figure 4. For PA
> 900, MISR BRFs were mainly acquired by off-nadir F and D
cameras, which have higher uncertainties compared to near
nadir observations.

The sets of solutions to the Steps 1 and 2 procedures allowed us to
regress the hot spot parameter, h, and effective extinction coefficient,
L, versus SZA and MODIS LAI, respectively, as (Figure 5)

h(SZA) � 5.96 − 5.90 cos SZA ≈ 11.92 sin2SZA

2
, (8)

L � 2.93 · LAIMODIS − 8.53 (9)

There was no correlation between L and SZA, as expected.
Thus, our model for DASF of equatorial forests is generated by

Eq. 4 with the hot spot parameter h and effective extinction
coefficient L given by Eqs 8, 9. It has two input parameters; they
are Sun position in the sky, Ω0 ∼ (θ0,φ0), and MODIS LAI.

RESULTS

Assessment of DASF
Observed versus modeled DASF.We used monthly MISR DASF
for the period between 2017 and 2019 to derive equations for
the hot spot parameter and effective extinction coefficient.
The proximity between observed and modeled DASFs were
characterized by NRMSE � 8%, R2 � 0.85 (Figure 4). We
analyzed modelled and observed monthly DASF for Year
2016 to see if the performance metrics is similar to that of
the training data set. Figure 6 illustrates monthly MISR
DASF and its simulated counterpart for Amazonian forests
in April 2016. The largest differences between them are at
high phase angles. Figure 7 shows MISR DASF plotted
versus modeled DASF accumulated over our study area
during Year 2016. The comparison suggests a good
performance of Eq. 4 to simulate MISR DASF over
equatorial forests.

Diurnal variations of observed and modeled DASFs. The
next step in the assessment of our approach is to see if the model
can reproduce diurnal variation of monthly EPIC DASF. Figure 8
shows examples of diurnal variations in observed and modeled
DASFs for 3 regions in our study area. As one can see the largest
deviation between model and observation occurs when SZA
exceeds 600. The uncertainty of the MAIAC BRF product is
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low for the EPIC observations near the local noon. It however
may significantly increase at high zenith angles resulting in an
underestimation of surface BRF (Lyapustin et al., 2021). And this
is what we see in Figure 8.

Scatter plot of diurnal courses of modeled and EPIC DASFs
accumulated over Amazonian, Congo forests and region 3.2 in
southeast Asia during the 2017 to 2019 period is shown in
Figure 9. Note that data from December to November over
Congo forests are not present in this plot. For these regions, our
model approximates diurnal courses of the observed DASFs to
within NRMSE � 7% with R2 � 0.82.

On average, modeled DASF over Congo during December
through February overestimates observed DASF by about 20%.
About 70% of data on the scatter plane are located within a 15%
circle centered at mean values of EPIC and modeled DASFs and
therefore differ from respective mean values by less than 15%.

For the region 3.1 in Southeast Asian rainforest, modeled
DASF overestimates observations by about 5%. The data are also
concentrated on the scatter plane: about 75% of data on the
model-vs.-observation scatter plane are concentrated within a
15% circle centered at mean values of observed and modeled
DASFs. The R2 is consequently low (Y � 0.8X+0.08, R2 � 0.32).

In summary, Eq. 4 can accurately reproduce DASF in terms of
proximity to both angular variations observed by MISR and
diurnal courses measured by DSCOVR EPIC sensor. It
therefore provides a strong basis for synergy of DSCOVR
EPIC and Terra MISR sensors to monitor changes in
equatorial forests. Our next step is to see if the model can
detect changes.

Monitoring Equatorial Forests
The forest structural organization determines the magnitude and
angular variation of DASF (Schull et al., 2011; Knyazikhin et al.,
2013). Its angular signatures therefore provide unique and rich
sources of diagnostic information about forests. Here we analyze
DASF over our study area to see if it can detect seasonal changes
of the equatorial forests.

The seasonal transition between wet and dry seasons is a
distinct feature of equatorial rainforests, which leads to intra-
annual patterns of leaf flushing and abscission (Samanta et al.,
2012; Bi et al., 2015). Since our study is focused on structurally
intact and undisturbed regions of the equatorial forests (i.e., no
changes in forest geometry), variation in leaf area is a key factor
causing variation in DASF.

We start with analyses of variation in the DASF acquired over
Amazonian central rainforest. In situ studies and satellite data
indicated higher leaf area during the dry season relative to the wet
season (Huete et al., 2006; Hutyra et al., 2007; Myneni et al., 2007;

FIGURE 3 | (A)MISR DASF of region 2 (Congo forests) in September-2018 (hollow circles). Its step-1 and step-2 approximations are shown as crosses and dots,
respectively. The dashed line is a polynomial fit to the Step-2 approximation. (B) MISR DASF versus step-1 (crosses) and step-2 (circles) approximations. NRMSEs
between MISR DASF and its Step 1 and Step 2 approximations are 12 and 4%, respectively. Mean SZA (std) � 21.20 (1.50), h � 0.8, LAI � 5.6, L � 7.15.

FIGURE 4 |MISR DASF vs. its Step-2 approximation accumulated over
our study area during the 2017 to 2019 period. NRMSE � 8%; R2 � 0.85. The
ellipse separates values of DASF at Phase Angles (PA) above 900.
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Hilker et al., 2014; Jones et al., 2014). The growth-limiting impact
of water deficit on rainforest during the dry season is alleviated
through deep roots and hydraulic redistribution (Oliveira et al.,

FIGURE 5 | (A). Hot spot parameter h vs. cos (SZA). (B) The effective extinction coefficient vs MODIS LAI derived frommonthly MISR DASF for the period between
2017 and 2019.

FIGURE 6 | (A) MISR DASF of Amazonian forests in April-2016 (hollow circles) and its approximation by Eq. 4 (dots). The dashed line is a polynomial fit to the
modeled DASF. (B) MISR DASF vs. modeled DASF. NRMSE � 4%.

FIGURE 7 | MISR DASF vs. its approximation by Eq. 4 accumulated
over our study area during Year 2016. NRMSE � 9.2%; R2 � 0.83.

FIGURE 8 | Diurnal courses of monthly EPIC DASF (solid line), modeled
DASF (dashed line) and SZA (dotted line) for region 3.2 in Southeast Asian
(diamonds), Congo (triangles) and Amazonian (circles) forests on 2017-02-24,
2018-06-14 and 2018-07-24, respectively. A SZA level of 600 is shown
as a horizontal dashed line. NRMSE values for Southeast Asian, Congo and
Amazonian forests are 3.9, 3.6 and 16.3%, respectively. RMSE for Amazonian
forests is 3.1% if SZA < 600.
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2005; Pierret et al., 2016), resulting in a sunlight mediated
seasonality in leaf area (Bi et al., 2015). Figure 10 illustrates
these findings, that is, green leaf area increases during the dry
season (June to October), has high values during the early part of
the wet season (November to October) and decreases thereafter
(March to May).

Let us compare observed DASFs from the late dry season
(October) and middle part of the wet season (March). Eq. 4
predicts that an increase in the effective extinction coefficient,
with SZA unchanged, increases themagnitude of DASF at all phase
angles, i.e., results in an upward shift in the angular signature of the
DASF, as illustrated in Figure 3. The SZAs in the select region of
Amazonian forests in March (SZA � 25.5, std � 1.2) and October
(SZA � 20.5, std � 1.1) are very close. At low SZA such a small
difference minimally impacts the shape of angular signatures. As
one can see in Figure 11, both MISR and EPIC show a distinct
decrease in DASF in all phase angles between October and March
with no discernible change in the overall shape of the angular
signatures. Such a simple change inmagnitude can only result from
a change in LAI since other structural variables, such as tree crown
shape and size do not vary seasonally in this forest.

Let us now consider DASF in the early (June) and late
(October) dry seasons. LAI has changed from about 5.5 to 6.4.
MISR and EPIC measurements are made at significantly higher
SZA in June (SZA � 37.6, std � 2.3) compared to October (SZA �
20.6, std � 1.1). The magnitude and shape of angular signatures
are impacted when both canopy properties and SZA vary as
middle panel in Figure 11 illustrates. This makes the comparison
of the signatures difficult. We can transform the June’s signature
to the sun-sensor geometry in October using Eq. 4. As right panel

of Figure 11 demonstrates the transformed DASF is a downward
shift of the October’s DASF, indicating a lower LAI in June.
DASFs of the remining regions in our study area exhibit similar
behavior (not shown here).

Our next example demonstrates time series of DSCOVR EPIC
DASF acquired over the Congolese forests. The Congo basin
exhibits bimodal precipitation pattern and has two wet and two
dry seasons per year (Yang et al., 2015). The wet seasons occur in
March -April-May and September-October-November, while dry
season months are December to February and June to August.
Unlike Amazonian forests, monthly average LAI follow the
patterns of precipitation (Figure 12). It exhibits notable
bimodal seasonal variations.

The above analyses have demonstrated that an increase in LAI,
with SZA unchanged, results in an upward shift in the angular
signature of the DASF (Figure 3). The EPIC DASF at fixed solar
zenith and phase angles therefore should covary with LAI. The
Earth-observing geometry of the EPIC sensor is characterized by
phase angle between 20 and 120. A question then arises whether or
not such small variation in phase angle can be ignored. Therefore,
we examine two algorithms to generate EPIC time series. The first
one selects EPIC observations at SZA � 250, 300 and 450

irrespective of values of the phase angle. If there are no
reflectance data under these illumination conditions during a
month, we transform DASF to a desired SZA. In the second case,
we select observation at fixed sun-sensor geometries. Figure 13
shows LAI and DASF at fixed SZA � 300 and varying phase angle.
At low SZA, the EPIC time series correlates well with the bimodal
seasonal variation of LAI, as expected. This also suggests that Eq.
4 is an effective tool to fill missing data at a given fixed SZA.

An increase in SZA however can eliminate the bimodal feature
of DASF. This is illustrated in Figure 14 showing annual courses
of EPIC DASF generated by the two algorithms introduced above.
As one can see in left panel of this figure, the EPIC time series at
SZA � 450 becomes flat between May and October. Two factors

FIGURE 9 | Correlation between diurnal courses of modeled and EPIC
DASFs accumulated over Amazonian, Congo forests and region 3.2 in
southeast Asia during the 2017 to 2019 period. Data from December to
February over Congo forests are excluded. NRMSE � 7%. The
relationship between these data is characterized by a regression line with a
slope of 1 and negligible intercept; R2 � 0.82.

FIGURE 10 | Annual courses of monthly-average precipitation and LAI
over the Amazonian central rainforest. Monthly data were accumulated over
the time period February 2000 to December 2019.
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are responsible for this effect. First, the decrease of phase angle to
its local minimum in July enhances DASF and therefore tends to
suppress decrease in DASF due to the dry season decrease in LAI.
At low SZA LAI has a stronger impact on DASF than phase angle.

The impact of phase angle however increases with SZA and can
become a dominant factor causing variation in DASF. In our
example, this occurs at a SZA of 450 and higher. As right panel of
Figure 14 illustrates, DASF at fixed SZA and phase angle retains
its bimodal property. Thus, both SZA and phase angle should be
taken into account when analyzing DSCOVR EPIC data. Eq. 4
therefore becomes of particular importance for analyses of EPIC
observations over vegetated land. A strong effect of phase angle
on EPIC reflectance was recently documented in (Marshak et al.,
2021). Our analyses reinforce this effect.

SUMMARY AND CONCLUSIONS

We used Directional Area Scattering Function (DASF) to
characterize angular signatures of equatorial forests. It
describes the canopy BRF if the foliage does not absorb
radiation and is a purely structural variable. For vegetation
canopies with a dark background, or sufficiently dense
vegetation where the impact of canopy background is
negligible, the DASF can be accurately approximated from
the BRF in the weakly absorbing spectral intervals without
involving canopy reflectance models, prior knowledge, or
ancillary information regarding leaf scattering properties
(Knyazikhin et al., 2013). Equation 2 is used to obtain
approximations of DASF from the Terra MISR and DSCOVR
EPIC data. The DASF becomes independent on spectral band
composition of a sensor acquiring surface reflectance data,
which is an important prerequisite for achieving consistency
and complementarity between DSCOVR EPIC and Terra MISR
observations.

We adapted a model for the canopy hot spot implemented
in the operational algorithm for generation of Earth System
Data Record (VESDR) from DSCOVR EPIC observations
(Yang et al., 2017; WWW-VESDR 2021). In this approach,
the sunlit leaves are treated as a stochastic reflecting boundary,
which depends on distribution of leaves in the canopy space
and the Sun position in the sky. Photons reflected by the
boundary can either enter the vegetation canopy or exit it. The
shaded leaves represent the interior points. Their interactions
with photons are described by a stochastic radiative transfer
equation. The directional escape probability that appears in

FIGURE 11 | Changes in MISR (circles) and EPIC (triangle) DASFs of Amazonian central rainforests from October to March (A), from June to October (B) and
transformation of EPIC DASF in June to sun-sensor geometry in March (C). Numbers in parentheses in legends show std of solar zenith angle. Relative difference
between MISR and EPIC DASFs is below 8%. Values of NRMSE between MISR DASF and its modeled counterpart do not exceed 9%.

FIGURE 12 | Annual courses of monthly-average precipitation and LAI
over the Congolese forests. Monthly data were accumulated over the period
February 2000 to December 2019.

FIGURE 13 | Time series of LAI (circles), observed (diamonds) and
transformed (dashed line) EPIC DASF at SZA � 300 for the period from 2015
to 2018.
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Eq. 1 is a weighted sum of photons reflected by the boundary
and canopy interior points. Kuusk’s model of the hot spot
incorporated into the extinction coefficient (Supplementary
Appendix SA) is used to evaluate the escape probability as a
function of scattering order, which is then used to calculate the
average escape probability (Supplementary Appendix SB).
Contributions of multiple scattered photons are accounted by
the recollision probability.

Here we simplified this model. First, a one-dimensional
radiative transfer equation is used to simulate canopy radiative
regime (Supplementary Appendix SA6). Second, the average
escape probability is approximated by a probability calculated
for first order scattered photons (Supplementary Appendix
SC). Under these assumptions, DASF is approximated by a
simple equation that depends on two parameters. They are the
hot spot parameter that appears in the canopy hot spot
coefficient and the effective extinction coefficient. The
former determines the shape of DASF, while the latter
controls its magnitude. These two parameters should be
specified to generate angular signatures of equatorial forests.

In spite of substantial theoretical advancement in
modeling the radiative transfer in vegetation canopies,
quantitative data on the hot spot are still few and far
between. Here we specified the hot spot parameter by
fitting shapes of observed and modeled DASF using
MODIS LAI as an initial approximation to the effective
extinction coefficient. The hot spot parameter was found
to be almost proportional to 1 − cos SZA (R2 � 0.96) with a
coefficient of proportionality around 6 (left panel in
Figure 5). The trigonometric term can be interpreted as a
correction of the canopy hot spot coefficient (Supplementary
Appendix SA4) for errors due to its approximation by a
constant value (Supplementary Appendix SA) whereas
the coefficient of proportionality as a mean linear
dimension of foliage elements (Knyazikhin and Marshak
1991; Nilson 1991) specific to equatorial forests. This
equation for the hotspot parameter was used in all our
calculations.

The effective extinction coefficient determines the magnitude
of the DASF. Theoretically this variable can be obtained by

replacing the 3D extinction coefficient with an effective
value that provides a best agreement between horizontally
averaged canopy reflectances and solutions of 1D radiative
transfer equations. Basically, it depends on LAI, leaf normal
distributions and clumping indices. In our approach, the
effective extinction coefficient was obtained by matching
magnitudes of MISR and shape-adjusted modeled DASFs.
This coefficient was found to be linearly related to the MODIS
LAI (R2 � 0.65, right panel in Figure 5). We used this
relationship in all our calculations.

Note the MODIS LAI was used as a first approximation to
the effective extinction coefficient, which then was iterated to
its optimal value. Alternatively, one can use relationships
between LAI and various vegetation induces (e.g., NDVI) to
make rough estimates of LAI first and then iterate them to the
extinction coefficient. This procedure may result in
relationships between the extinction coefficient and
vegetation indices, which can make the model dependent
on the hot spot parameter and vegetation indices.

Our model for angular signatures of equatorial forests can
accurately reproduce both MISR angular signatures acquired
at 10:30 local solar time and diurnal course of EPIC
reflectance (NRMSE<9%, R2 > 0.8) and therefore assures
consistency and complementarity between DSCOVR EPIC
and Terra MISR observations. This provides a powerful tool
to argue for changes in vegetation structure as it was
demonstrated in our analyses of seasonal variations of
angular signatures acquired over equatorial forests.
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