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Floods are occurring across the globe, and due to climate change, flood events

are expected to increase in the coming years. Current situations urge more

focus on efficient monitoring of floods and detecting impacted areas. In this

study, we propose two segmentation networks for flood detection on uni-

temporal Sentinel-1 Synthetic Aperture Radar data. The first network is

“Attentive U-Net”. It takes VV, VH, and the ratio VV/VH as input. The network

uses spatial and channel-wise attention to enhance feature maps which help in

learning better segmentation. “Attentive U-Net” yields 67% Intersection Over

Union (IoU) on the Sen1Floods11 dataset, which is 3% better than the

benchmark IoU. The second proposed network is a dual-stream “Fusion

network”, where we fuse global low-resolution elevation data and

permanent water masks with Sentinel-1 (VV, VH) data. Compared to the

previous benchmark on the Sen1Floods11 dataset, our fusion network gave a

4.5% better IoU score. Quantitatively, the performance improvement of both

proposed methods is considerable. The quantitative comparison with the

benchmark method demonstrates the potential of our proposed flood

detection networks. The results are further validated by qualitative analysis,

in which we demonstrate that the addition of a low-resolution elevation and a

permanent water mask enhances the flood detection results. Through ablation

experiments and analysis we also demonstrate the effectiveness of various

design choices in proposed networks. Our code is available onGithub at https://

github.com/RituYadav92/UNI_TEMP_FLOOD_DETECTION for reuse.
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1 Introduction

According to a report by the Center for Research on the Epidemiology of Disasters

(CRED, UClouvain) (UNDRR, 2015), floods were among the most destructive disaster

events between 1995 and 2015. Another CRED report (CRED, 2021) states that in 2020,

23%more floods were recorded than the annual average of 163 events and 18%more flood

deaths than the annual average of 5,233 deaths. With the extreme climate changes, floods

are hitting harder than ever. The increased frequency and impact of floods affect not only

developing countries but also developed countries around the world. Floods are causing

large-scale damage to life, property, and the economy of billions of dollars. Robust and
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real-time flood detection can help to provide quick and reliable

aid to affected lives. Also, for faster deployment of rescue

missions, it is crucial to have situational awareness on the

ground. Due to the impacted transport system, inspection

from the ground can be dangerous as well as too slow. In

such scenarios, satellites can help to map large geographical

areas on time.

Synthetic Aperture Radar (SAR) imagery is routinely used to

determine the extent of floods and other products derived.

Compared to optical data such as Sentinel-2 imagery, SAR

satellites data is the preferred tool for flood mapping due to

their capability of capturing images day/night, irrespective of the

weather conditions (Anusha and Bharathi, 2020). SAR systems

operate in the microwave band, which are long wavelengths and

have the capability to penetrate through clouds, to some degree of

vegetation, rain showers, fog, and snow. Additionaly, the

frequent revisit of the Sentinel-1 satellite makes it a good

candidate for flood monitoring.

2 Related work

SAR data from various satellites such as RADARSAT-1,

TerraSAR-X, ENVISAT, COSMO-SkyMed (CSK), and many

others were explored for studies of water detection and flood

mapping, such as (Lu et al., 2015), (Chini et al., 2017), (García-

Pintado et al., 2015). These studies used a wide variety of

methods like basic pixel-wise image difference, hierarchical

split-based distribution difference, hydrodynamic model

adaptation, etc. The launch of Sentinel-1 in 2014, provided

global-coverage free data at 10-m spatial resolution with a

6 days nominal revisit time. Thanks to the improved spatial

and temporal resolution, researchers investigated the use of

Sentinel-1 data for flood detection in several studies, such as

(Twele et al., 2016) where the authors used fuzzy logic-based

classification combined with the Height above nearest drainage

(HAND) index, (Psomiadis, 2016), where image difference with

threshold is applied on bitemporal data, (Martinis, 2017), where

the authors used time series data and the frequency of low

backscatter areas is used to differentiate between permanent

water bodies and floods.

More recently, Deep Learning (DL) algorithms are playing a

major role in the advancement of image processing tasks such as

classification, segmentation, etc. Multiple studies explored

Convolutional Neural Networks (CNN) for the flood mapping

and monitoring task. In (Amitrano et al., 2018), the authors

experimented with a support vector machine and small neural

networks models to analyze multitemporal Sentinel-1 data. The

authors assessed their approach in five flood events using

reference maps produced by the Copernicus Emergency

Management Service (EMS). Similarly, (Tavus et al., 2022),

tested a CNN on multitemporal Sentinel-1 data over four

flood events. In (Liu et al., 2017), the authors proposed a deep

convolutional network to detect flooded areas on multitemporal

SAR data from Radarsat-1 and ERS-2 satellites. They tested it on

only two flood events in Canada and Switzerland. In (Asaro et al.,

2021), the authors aimed to delineate floods from Sentinel-1 data

using the U-Net (Ronneberger et al., 2015) model. The data set

contains three flood events from Belgium, Italy, and the

Netherlands with low-quality labels. (Jeon et al., 2021). study

also used a standard U-Net model to detect river floods using

Sentinel-1 data. (Nemni et al., 2020). experimented with both

U-Net and X-Net (Bullock et al., 2019) on UNOSAT Flood

Dataset (Unitar, 2020). The dataset contains only VV

polarization of Sentinel-1 data and covers floods from eight

countries. Their results highlighted that the U-Net model

performed better. In (Garg et al., 2021), authors proposed an

ensemble of U-Net and U-Net++ models for flood detection. The

NASA-ECTI dataset used in this study contains Sentinel-1 data

on four flood events. The authors also experimented with

DeepLab and U-Net architectures with multiple backbones.

The best results were obtained using U-Net with the

MobileNetv2 backbone.

Optical satellites such as Worldview and Sentinel-2 further

boosted the usage of DL on satellite data. Optical data is generally

unsuitable for capturing flooded areas due to high cloud

coverage. However, there are multiple flood detection studies

that use optical data such as (Moumtzidou et al., 2020), (Mateo-

Garcia et al., 2021), (Peng et al., 2019), and many others.

(Moumtzidou et al., 2020). tested VGG and ResNet-50 models

on multi-temporal Sentinel-2 data from 335 flood events.

(Mateo-Garcia et al., 2021). study compared flood detection

capability of U-Net and SCNN on Sentinel-2 data. The U-Net

performed better compared to SCNN. The WorldFloods dataset

used (Mateo-Garcia et al., 2021) in this study covers 119 flood

events that occurred between November 2015 and March 2019.

(Peng et al., 2019). proposed a Siamese neural network ResPSNet

for detecting floods on very high-resolution optical images. The

model used is a change detection network that operates on bi-

temporal data. The problem with the aforementioned Sentinel-2

dataset is that they suffer from a high percentage of cloud cover

and have associated cloud shadow problems. These problems

persist even after cloud and shadow masking. Also unlike

Sentinel-1, the collected images are not close to flooding time

or during the flood because the optical images during that time

are majorly cloudy and not much of use.

All the above-mentioned DL studies were conducted on a

small dataset with few sites or the quality of the data/labels is not

good. For efficient training and better generalization, DL

algorithms require quality data with a large amount of

coverage. Also, the quality of labels is crucial if the algorithm

is a supervised one. For a long time, there was no good quality

global dataset for flood detection tasks. Recently, Sen1Floods11

(Bonafilia et al., 2020) has been released providing a global uni-

temporal flood detection dataset with Sentinel-2 optical and

Sentinel-1 SAR images. Moreover, the ground truth provided
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by the dataset is manually verified by the experts. The Sentinel-2

images in the dataset are partly cloudy in most of the cases but the

dataset is large and covers different terrain. The availability of a

large representative data set allowed us to explore the potential of

DL in flood detection tasks. This also helps in providing a

solution that can be generalized to unknown sites.

The (Bonafilia et al., 2020) provided a baseline on the

Sen1Flood11 dataset, where they tested a Fully Convolutional

Neural Network (FCNN) on the Sentinel-1 and Sentinel-2

datasets separately. Four recent studies (Akiva et al., 2021;

Konapala et al., 2021), (Bai et al., 2021) and (Yadav et al.,

2022) also experimented with the Sen1Floods11 dataset.

(Akiva et al., 2021). study introduced a domain adaptation

method to segment floods. A model is trained on

multispectral images of Sen1Flood11 and the trained model is

used to get inferences on high-resolution images. The proposed

FIGURE 1
Data overview. The red dots represent the 11 flood sites. The data is captured in 446 tiles.

FIGURE 2
Sen1Floods11 data sample images. From left to right, VV, VH single channel SAR images, Permanent Water, Digital Elevation Model (DEM) and
ground truth are visualized. Elevation range of each sample is shown in top right corner of theDEM visualization. The first row has 0, 1 and second row
has −1, 0, 1 label values. The colors used for the values −1, 0, 1 are white, sky blue, and dark blue, respectively.
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method is self-supervised and hence requires no labels. On the

other hand, (Konapala et al., 2021), and (Bai et al., 2021) are fully

supervised segmentation studies. In (Konapala et al., 2021) the

authors experimented with a combination of Sentinel-1,

Sentinel-2, and digital elevation data. They employed a

standard U-Net segmentation network with 3 channel inputs.

(Bai et al., 2021). combined Sentinel-1 and Sentinel-2 data.

Authors did not compare the performance of the network

separately on Sentinel-1 and Sentinel-2 with the performance

on the fusion of the two. Instead, they directly presented the

results on the fusion. The authors used a cascaded U-Net

architecture (BASNet) for flood detection which resulted in

better feature map refinement and most probably the actual

reason of improved results. (Yadav et al., 2022). extended the

Sen1Floods11 dataset by adding pre-flood Sentinel-1 images and

proposed a dual stream siamese network. Here the authors

perform a change detection task to detect floods and achieved

better results.

Sen1Flood11 contains Sentinel-1 and Sentinel-2 data. But

Sentinel-2 is sensitive to weather conditions. Especially during

floods, it is often the case that a considerable amount of the view

is blocked by the clouds. Also algorithms confuse cloud shadows

with water. This problem is also highlighted in the baseline

evaluation of the Sen1Flood11 dataset. On the other hand,

Sentinel-1 suffers from speckle noise but is not sensitive to

clouds and provides cloud-free data over all areas. Speckle

noise in Sentinel-1 data can be learned (to some extent) by a

DL network but having no information on big parts of the

flooded area makes Sentinel-2 less reliable for the task.

Therefore we focused on developing a robust flood detection

model on Sentinel-1 data.

Flood detection can be performed on uni-temporal as well as

multi-temporal data. In comparison to multi-temporal, uni-

temporal segmentation can sometimes be slightly less accurate

but is faster and lighter on memory. This time and space

efficiency makes uni-temporal segmentation an adequate

option for fast onboard processing, enabling a near-real-time

flood detection and alert system. The automatically segmentation

maps generated on the satellites can be sent to ground stations

through the downlink connection. On the basis of the

segmentation maps generated on the satellites the flood

extension can be quantified. If the flood extension is greater

than a certain decided threshold, the downlink can be prioritized

and flood warnings can be sent in a timely manner.

In this work, we proposed two segmentation models for flood

detection on uni-temporal Sentinel-1 data. The first one is “Attentive

U-Net”which uses VV, VH and ratio (VV/VH) channels as input.

Depending on the flood site, environmental condition, and terrain

morphology, one polarization (e.g., VV) is more important than the

other (VH) to highlight the flooded area. Considering the different

backscatter behaviors of VV and VH, we propose a self-attentive

mechanism to capture the prioritization of channels over a large

number of sites. A secondmodel, the “FusionNetwork”, is proposed

to enhance the first “Attentive U-Net” model using local physical

features of the area which give more context to the network. “Fusion

Network” fuse Sentinel-1, DEM, and permanent water mask data.

An overview of the architecture of the two proposed models is

shown in Figures 3, 4, and more details are provided in Section 4.

3 Dataset

Our proposed networks are trained and evaluated on

Sentinel-1 data from the Sen1Floods11 dataset (Bonafilia

et al., 2020). The dataset contains 446 non-overlapped tiles

from Sentinel-1 and Sentinel-2. Each tile is of size 512 ×

512 pixels. The dataset is recorded over 11 flood events

recorded from 11 different countries across the globe namely

Bolivia, Ghana, India, Mekong, Nigeria, Pakistan, Paraguay,

Somalia, Spain, Sri-Lanka and United States of America. All

flood events were identified from a global database of flood events

maintained by the Dartmouth Flood Observatory (Brakenridge,

2012). These flooded sites cover a wide variety of terrain

morphologies, from flat areas to mountain regions. An

overview of these sites is depicted in the global map; see

Figure 1. The 11 flood events were selected considering the

availability of Sentinel-1 and Sentinel-2 post-event imagery

and minimizing the time gap between the two satellite

acquisitions (image acquired on the same day or within max

two days gap) to provide close-in-time observations of the

flooded areas. Extensive cloud coverage during floods affects

Sentinel-2 data, which in turn questions the reliability of the

models developed on Sentinel-2 data. This problem is also

highlighted in the baseline evaluation of the dataset. Since

SAR is not sensitive towards clouds, we aim to explore the

full potential of Sentinel-1 SAR data alone. The dataset

contains orthorectified and radiometrically corrected Sentinel-

1 SAR images at 10-m resolution, including the two bands for VV

(vertical transmit, vertical receive) and VH (vertical transmit,

horizontal receive) polarization. The dataset also provides global

Permanent Water masks for flooded areas. These masks are

sampled from the surface water dataset from JRC (European

Commission Joint Research Center) (Pekel et al., 2016).

The dataset provides pixel-wise ground truth for all 11 sites.

These ground truth masks are prepared after processing Sentinel-

1 and Sentinel-2 separately and then combining and refining

them with manual verification. First, a histogram is built on the

Sentinel-1 VH band. Otsu thresholding was used in the

histogram, which maximizes the inter-class variance between

flooded and unflooded pixels. This threshold is then applied

across a smoothed focal mean VH band to reduce speckle,

resulting in a binary flood map. Second, Sentinel-2 imagery

was processed by calculating Normalized Difference

Vegetation Index (NDVI=(B8-B4)/(B8+B4), B = band) and

Modified Normalized Difference Water Index (MNDWI=

(B12-B3)/(B12+B3), B = band), followed by cloud removal,
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cloud shadow removal, and manual thresholding to obtain the

binary floodmap. Now, the information from the two floodmaps

is combined to prepare the final ground truth masks. The quality

of the ground truth masks is ensured by hand labeling all 446 tiles

and manual validation (Bonafilia et al., 2020). The ground truth

mask has 0, 1, and −1 values, where 1 represents water, 0 is the

absence of water, and −1 indicates missing data.

In addition to Sen1Floods11, we also used elevation data

(i.e., DEM) from Shuttle Radar Topography Mission (SRTM).

The DEM data is available in 30-m resolution. We upsampled it

to 10-m resolution using bilinear interpolation. Theoretically, the

interpolation procedure could introduce some artifacts and

errors in the resampled DEM. However, the amount and

magnitude of the interpolation artifacts are negligible for

FIGURE 4
Fusion Network. Input1 is a 3-channel input with VV, VH, and DEM bands, Input2 is also a 3-channel input with VV, VH, and PW bands. The two
encoders and decoder follow a similar architecture as that of ‘Attentive U-net’. The attentive output of the two encoders is fused using element-wise
addition operations, and the output of the network is a binary segmentation map.

FIGURE 3
Architecture of Attentive U-Net. The network takes 3-channel (VV, VH, VV/VH) input and generate a binary segmentation map as output.
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low-resolution DEM (GSD > 10 m), such as SRTM DEM

(Muthusamy et al., 2021), (Jung and Jasinski, 2015), (Shen

and Tan, 2020).

We pre-processed Sentinel-1 dataset before feeding it to the

proposed network. The VV backscatter values are clipped in the

range (−23, 0) dB, and the VH in the range (−28, −5) dB. The

clamped backscatters are considered as noise. Finally, the input

data is channel-wise normalized i.e., depending on the network

VV, VH, PW, DEM all input channels are normalized before

feeding to the network. The training, validation, and test splits

used in this work are following the Sen1Floods11 dataset

guidelines provided by the authors (Bonafilia et al., 2020).

Some of the data samples are visualized in Figure 2.

4 Proposed method

In this work, we propose two network architectures for flood

detection, which are shown in Figure 3 and Figure 4. The first

network Figure 3 operates on Sentinel-1 data. Whereas, the

second network 4 utilize global elevation data (DEM) and

permanent water (PW) masks as additional inputs. Both

networks are designed for binary segmentation task. Therefore

the output is a binary map with two classes “Flood” represented

by value 1 and “Background” represented by value 0.

4.1 Attentive U-Net

U-Net is an encoder-decoder architecture that is generally

used for segmentation tasks across various domains. The encoder

consists of a stack of convolutional, pooling, and normalization

layers that process the given input and brings it down to a smaller

encoded representation. The decoder then processes and

upsamples the output of the encoder back to its original size.

The decoder network consists of transposed convolutional layers

for upsampling. The output of the decoder is a segmentation

map. Generally, the input consists of three channels, and the

segmentation map is a 2D map, where each pixel represents the

corresponding class. In the U-Net architecture, Feature maps

from the encoder are concatenated with the up-sampled feature

maps from the decoder. The concatenated output is then

processed using convolutional and normalization operations.

These connections between the encoder and decoder are

called skip connections. U-Net uses skip connections to add

fine-grained shallow features of the encoder to the decoder’s

coarse-grained deep features for precise localization.

There are multiple existing works on SAR data which

explore U-Net architecture for flood detection. These studies

used VV and VH channels as input along with some

information (DEM, Permanent Water, or sometimes empty)

in the third channel. We propose to use the ratio (VV/VH) as

the third channel as it provides important features for flood

detection (Tsyganskaya et al., 2018). U-Net architecture learn

features from all the input channels uniformly. But due to

differences in the geographical area covered in the dataset, VV

and VH backscatter behavior is not uniform. It is often

observed that in a large number of samples, the flooded area

is visible dominantly in one of the channels (VV, VH, ratio) and

missing in others. So, the channel that contains more useful

information for identifying flooded areas should receive more

attention in comparison to others. Since the criteria for a more

important channel is not straightforward, we propose an

attentive U-Net where we let our deep CNN learn the

prioritization of channels using channel-wise self

attention.The architecture of our proposed network is shown

in Figure 3. The input to the network is composed of 3 channels,

the first 2 channels contains VV and VH backscatter. Since the

ratio (VV/VH) provides important features for flood detection

(Tsyganskaya et al., 2018), we used the ratio as the third input

channel. Apart from getting important features from the ratio,

using 3 channel input enables us to utilize ImageNet pre-

trained weights in the encoder network. This helps in faster

and better convergence of the model.

The encoder network encodes input in four stages named as

F1, F2, F3, and F4 feature levels. We used residual (He et al.,

2016) learning in encoder network to avoid any performance

degradation issues. This is implemented as first four levels of

Resnet-50 architecture. The output of each four feature levels is

the source of input to the decoder.

The aforementioned attention mechanism is implemented

using channel-wise attention which self-learns to prioritize

certain channels over others based on the training data. In

addition to this, we also added spatial attention to the

network, which focus on enhancing the spatial features. Both

channel-wise and spatial attention is applied as a module using

Concurrent Spatial and Channel ‘Squeeze & Excitation’ (scSE)

blocks (Roy et al., 2018). The scSE block helps to boost the good

features and suppress the weak ones. The attention block gives

greater weight to important spatial features and significant

channels of the input. The scSE blocks are applied to the

encoder output feature maps, as shown in Figure 3. The

resulting attentive feature maps are then concatenated with

the decoder feature maps F1’, F2’, and F3’.

The decoder network processes the input (F4) from encoder

and upsampled to F3’, which is then concatenated with the

attentive feature map from F3. The concatenated output is then

upsampled to F2’. The same is implemented for F1’. The output of

the network is a binary segmentation map, which contains one

channel with height and width same as that of the input.

4.2 Fusion network

Fusion network is proposed to enhance the flood detection

capability of CNN by using local physical features of the area
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which give more context to the network. In this network, we fuse

Sentinel-1 data from the Sen1Floods11 dataset with global

elevation data (SRTM DEM) and permanent water masks

(PW). With additional DEM information, the network learns

to derive a relation between the flooded regions (from VV, VH)

and the elevation of those regions. By adding PW masks, we

ensure that the network does not lose permanent water bodies

from detection and that more attention is given to the area

around the PW regions. We fuse elevation (DEM) with Sentinel-

1 in one branch and permanent water mask with Sentinel-1 in the

second. We fuse them in a separate branch (encoders) so that the

model learns the relation of the elevation and permanent water

features separately with Sentinel-1 data. After convolutional

operations and self-attention, the features from the two

branches are fused and fed to the decoder network. The

model learns the features from end-to-end training.

An overview of our proposed fusion network is depicted in

Figure 4. It consists of two streams with three channel inputs. The

first stream’s input is composed of VV, VH, and DEM, whereas

the second stream’s input is VV, VH, and PW mask. The two

streams process inputs through “Encoder1” and “Encoder2”. The

architecture of the two encoders is same as that of “Attentive

U-net”. Hence, each encoder network contains four feature

levels. The feature maps from the four feature levels are

enhanced by spatial and channel-wise self attention. This is

implemented by the scSE attention blocks. The attentive

features from the two encoder networks are fused using an

element-wise addition operation. The feature fusion takes

place at all four levels. The resulting feature maps are the

input to the decoder network, where the features are

upsampled, concatenated, and processed to generate the

output segmentation maps. The decoder of “Fusion Network”

is also similar to the decoder of “Attentive U-net”.

4.3 Implementation and training

In this work, we detect the flooded areas by performing a

binary segmentation task with two classes, “Flood” and

“Background”. In the dataset, there is one extra class for

invalid pixels labeled as −1. All invalid pixels (−1) are set to

0 in both the input and ground-truth images. The aim was to

reduce the problem to binary segmentation and avoid

unnecessary disturbance. We also masked out these invalid

pixels from the predictions and ground truth during the

evaluation process.

All experiments are carried out on the original image size

512 × 512. The encoders of both models take input of size

512 × 512 × 3, and the output size of the model is 512 × 512. All

the training inputs are augmented using horizontal and

vertical flips. The encoder networks of both architectures

are initialized with the ImageNet pre-trained ResNet-50

weights He et al. (2016).

The models are trained with a weighted combination of dice

loss (Sudre et al., 2017) and focal (Lin et al., 2017). The dice loss

addresses the problem of data imbalance in the training data

i.e., one (Background) class has more data in comparison to the

other (Flood). The focal loss targets the imbalance between easy

and hard training examples. The below Equation represents the

weighted loss where the value of alpha is 0.2. We experimented

with multiple alpha values. The best results were obtained with

0.2 weights for dice loss and 0.8 for focal loss.

Loss � α p Ldice + 1 − α( ) p Lfocal (1)

We start the training with a learning rate of 5 p 10–4. For better

convergence, the learning rate decayed to 0.00001. The decay rate is

controlledwiththe“reduceonplateau”method,whichdecays therate

by1/10thwhenthe learningcurveissteadyataplateau.Wechoosethe

“adam” optimizer for network training. These hyperparameter

settings were applied for all experiments. Both networks are

trained for 70 epochs. If the learning (loss value) stagnates and the

learning rate reaches 0.00001, the training automatically stops before

70epochs.Sinceweareusinglargepatchesfortraining,thebatchsizeis

kept low and set to two. Both networks were trained on one Google

Colab GPU. The proposed networks are implemented from scratch

using python and TensorFlow.

4.4 Evaluation metric

Our network generate output as pixel-level binary change

map. Therefore, the results are evaluated using pixel-level

metrics. We used two metrics namely Intersection over Union

(IoU) and F1-Score. Eqs 2–4 represents the IoU and F1 score

formula, where True Positive (TP) represents flood pixels that are

correctly classified as water; False Positive (FP) represents non-

flood pixels that are incorrectly classified as a flood; True

Negative (TN) represents non-flood pixels that are correctly

classified as non-flood areas, and False Negative (FN)

represents flood pixels that are incorrectly classified as non-flood.

IoU � TP

TP + FP + FN
(2)

F1 � 2TP
2TP + FP + FN

(3)

F1 � 2IoU
IoU + 1

(4)

4.5 Compared methods

We have selected the more relevant deep learning

segmentation based methods to compare their performances

with our two architectures. The results of our proposed uni-

temporal flood detection networks are compared with (Bonafilia

et al., 2020), FC-Siam-conc (Caye Daudt et al., 2018), (Konapala
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et al., 2021), (Qin et al., 2020), (Bai et al., 2021), (Yadav et al.,

2022), (Akiva et al., 2021) and (Florian and Adam, 2017).

1. FCNN (Bonafilia et al., 2020) is the baseline provided by the

authors of Sen1Floods11. A fully convolutional neural

network with a ResNet-50 encoder was used to segment

floods in this work. The network was experimented on

both Sentinel-1 and Sentinel-2 data separately. We

compare with the results on Sentinel-1 data.

2. U-Net (Konapala et al., 2021) used a standard U-Net for the

flood detection task. Experiments were conducted with

Sentinel-1 alone and different combinations of Sentinel-1,

DEM and Sentinel-2 data. Since we are exploring SAR data,

we kept our comparison fair and related. Therefore, we only

compare with the U-Net results on Sentinel-1 data and on a

combination of Sentinel-1 with DEM.

3. FC-Siam-conc (Caye Daudt et al., 2018) is a fully

convolutional network with two input stream sharing

weights (siamese). The network can be used for fusion

(Cen and Jung, 2018). We used FC-Siam-conc (Caye

Daudt et al., 2018) to fuse the inputs same as that of

‘Fusion Network’. The performance of the output

segmentation network is compared with others.

4. BASNet (Bai et al., 2021) proposed to use fuse Sentinel-1 SAR

and Sentinel-2 multispectral data. The data is fused before

feeding into the network (early fusion). Since there is

resolution difference between the two data, they are first

resampled to match the spatial resolution and then fused

by pixel-wise addition followed by normalization. The model

used in the experiment is a cascaded U-Net called BASNet

(Qin et al., 2019).

5. Additionally, we compared our results with two more

segmentation models U2Net (Qin et al., 2020) and DeepLabv3

(Florian and Adam, 2017). U2Net is a cascaded U-Net model

proposed for refined segmentation. DeepLabv3 network has large

number of layers (i.e., depth), sparse feature learning capability

and cascaded modules. It is more recent segmentation network

with remarkable performance in computer vision. Therefore we

tested U2Net and DeepLabv3 on remote sensing data and

compared the results with ours. Both networks are tested on

Sentinel-1 and DEM inputs i.e., VV/VH/DEM 3-channel input.

5 Results

5.1 Quantitative results

Our two proposed methods evaluated on the test set of

Sen1Floods11 and compared with the existing methods. The

quantitative comparison in terms of “IoU” and “F1-Score” is

given in Table 1.

The results indicate that both of our proposed networks

‘Attentive U-Net’ and ‘Fusion Network’ outperformed the

previous benchmark on Sen1Floods11 dataset. We

experimented two data settings with Attentive U-Net. The

first setting takes VV/VH/ratio as 3-channel input. In the

second setting, we utilize DEM as the third channel, i.e., pass

VV, VH, and DEM as 3-channel input to the network. Although

the performance of both settings is better than the compared

methods, attentive U-Net with DEM show slightly weaker results

in comparison to the one with VV/VH/ratio input. The possible

reason could be that the ratio channel has more important

information in comparison to DEM. Therefore, we

experimented further to test the benefit of the DEM and

proposed a two-stream network named ‘Fusion Network’.

Different combinations of VV, VH, ratio, DEM, and PW were

tested before proposing the best-performing fusion network.

Compared to the FCNN baseline, our “Attentive U-net”

shows 18% improvement in terms of IoU and 14%

improvement in terms of F1 score. “Fusion network” gave a

further improvement of 2% i.e., “Fusion network” gave 20%

better IoU and 16% better F1 score in comparison to baseline.

(Konapala et al., 2021). reported results on U-Net with two data

settings, Sentinel-1 data only and both Sentinel-1 and DEM. Our

“Attentive U-net” gave a 10%–22% better IoU and 7–18% better

F1 score. “Fusion network” gave a boost to the improvements of

‘Attentive U-net’ and resulted in a 12–24% better IoU and a 9%–

20% better F1 score.

Similar improvements can be seen compared to the U2Net

and DeepLabv3 model. The IoU score on U2Net is better than

that of standard U-Net, but could not perform better than the

proposed networks. DeepLabv3 performed better than baseline

and standard U-Net, but the performance is lower than expected.

The possible reason could be that the DeepLabv3 network is too

deep and complex. To train this network, we need a larger data

set. Unlike computer vision datasets, Sen1Floods11 is smaller

dataset and not sufficient to train deep networks like DeepLabv3.

Compared to BASNet, our “Attentive U-Net” shows an

improvement of 3% IoU and 2% F1 score. Fusion Network

show further improvements in results and gave 5% better IoU

and 4% better F1 score. Also when compared with the FC-Siam

fusion method, our ‘Fusion Network’ gave 4% better IoU and 3%

better F1 score. The possible reason could be residual blocks in

the ‘Fusion Network’ which help in overcoming the performance

degradation and attentive modules which enhance the important

spatial features and channels in the network. Quantitatively, the

performance improvement by both proposed segmentation

methods is considerable and the results are additionally

validated by qualitative analysis.

5.2 Ablation study

The term “ablation study” is borrowed from the medical field

and consists of the removal of parts of the nervous system of

vertebrates to understand their purpose. This technique was
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TABLE 1 Quantitative Comparison: Comparison of our Attentive U-Net and Fusion Network method with existing methods. The comparison is made in terms
of average IoU and F1 score on test dataset. The best results and corresponding models are highlighted in bold.

Method Input Data IoU F1-Score

FCNN (Bonafilia et al., 2020) Sentinel-1 0.493 0.660

U-Net (Konapala et al., 2021) Sentinel-1 0.450 0.620

U-Net (Konapala et al., 2021) Sentinel-1, DEM 0.570 0.730

U2Net (Qin et al., 2020) Sentinel-1, DEM 0.620 0.765

DeepLabv3 (Florian and Adam, 2017) Sentinel-1, DEM 0.530 0.692

Attentive U-Net (ours) Sentinel-1 0.672 0.802

Attentive U-Net Sentinel-1, DEM 0.661 0.795

BASNet (Bai et al., 2021) Sentinel-1 + Sentinel-2 0.640 0.780

FC-Siam-conc (Caye Daudt et al.,2018) Sentinel-1, DEM, PW 0.656 0.792

Fusion Network (ours) Sentinel-1, DEM, PW 0.695 0.820

TABLE 2 Ablation Study. The comparison is made in terms of average IoU and F1 score on test dataset. The best scores are highlighted in bold.

Method Encoder Attention Fusion Input data IoU F1-score

Encoder

Attentive U-Net EfficientNet Yes No VV, VH, VV/VH 0.631 0.773

Attentive U-Net ResNet-50 Yes No VV, VH, VV/VH 0.672 0.802

Fusion Network EfficientNet Yes Add (VV, VH, DEM), (VV, VH, PW) 0.650 0.787

Fusion Network ResNet-50 Yes Add (VV, VH, DEM), (VV, VH, PW) 0.695 0.820

Attention

Attentive U-Net ResNet-50 No No VV, VH, VV/VH 0.651 0.788

Attentive U-Net ResNet-50 Yes No VV, VH, VV/VH 0.672 0.802

Fusion Network ResNet-50 No Add (VV, VH, DEM), (VV, VH, PW) 0.667 0.800

Fusion Network ResNet-50 Yes Add (VV, VH, DEM), (VV, VH, PW) 0.695 0.820

Fusion Operation

Fusion Network ResNet-50 Yes Concat (VV, VH, DEM), (VV, VH, PW) 0.675 0.805

Fusion Network ResNet-50 Yes Add (VV, VH, DEM), (VV, VH, PW) 0.695 0.820

Input Data

Attentive U-Net ResNet-50 Yes No VV, VH, JRC 0.651 0.788

Attentive U-Net ResNet-50 Yes No VV, VH, DEM 0.661 0.795

Attentive U-Net ResNet-50 Yes No VV, VH, VV/VH 0.672 0.802

Fusion Network ResNet-50 Yes Add (VV, VH, VV/VH), (VV, VH, PW) 0.665 0.799

Fusion Network ResNet-50 Yes Add (VV, VH, VV/VH), (VV, VH, DEM) 0.671 0.803

Fusion Network ResNet-50 Yes Add (VV, VH, DEM), (VV, VH, PW) 0.695 0.820
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originally introduced by the French physiologist M.J.P. Flourens

Britannica (2020). In DL, ablation is the removal or replacement

of parts of the network or inputs and analyzing the performance

of the resulting model. It helps in investigating the contribution

of different parts or techniques used in the DL network.

From the ablation study, we get an idea of the importance of

choices made in the final proposed networks. Here we show the

ablation study on encoder networks, attention modules, and

fusion methods. Furthermore, we tested the impact of

different input channels in the two networks. The results from

the ablation study are shown in Table 2.

We tested the performance of our two proposed networks with

different encoders. The table shows the comparison of ResNet-50

(one of the most widely used and successful encoders) and

EfficientNet-B4 Tan and Le (2019) (one of the recent and

popular encoders). ResNet-50 shows a 4%–5% better IoU score

compared to EfficientNet. Both proposedmodels are tested with and

without attention modules. The IoU score is dropped by 2%–3%

FIGURE 5
Detection result samples from the Spain site. In visualization contains (A) VV, (B) VH, (C) DEM, (D) ground truth, (E) attentive U-Net network
prediction, and (F) fusion network prediction. Third row contains zoomed version of (E) and (F). The red circles highlight the areas described in the
text. The numbers specified under the prediction maps are the corresponding IoU scores.

Frontiers in Remote Sensing frontiersin.org10

Yadav et al. 10.3389/frsen.2022.1060144

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2022.1060144


when we remove attention from the model. The attention module

enhances the features giving better segmentation results. We also

show the effect of different fusion operations i.e., element-wise

addition and concatenation on our fusion network’s

performance. The experiment shows that the network performed

best with element-wise addition fusion.

The first two input channels of both the “Attentive U-Net”

and “Fusion Network” are from Sentinel-1 i.e., VV and VH. For

the third channel we tested DEM, PW and ratio (VV/VH). This

led to three input combinations per network. In case of

“Attentive U-Net”, the best results were obtained with the

ratio in the third input channel. The possible reason could be

that in this three-channel network setting, the ratio features are

more useful compared to DEM and PW masks. In “Fusion

Network”, however, a combination of (VV, VH, DEM) and

(VV, VH, PW) gave the best results.

5.3 Qualitative results

The qualitative analysis of the proposed methods gives more

information on the results. In a large number of cases, both of our

proposed networks performed equally well with a slight

difference. We choose some of the network predictions where

FIGURE 6
Detection result samples from the Spain site. In visualization contains (A) VV, (B) VH, (C) DEM, (D) ground truth, (E) attentive U-Net network
prediction and (F) Fusion network prediction. Third row contains zoomed version of (E) and (F). The red circles highlight the areas described in the
text. The numbers specified under the prediction maps are the corresponding IoU scores.
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the difference is a bit clear. Three of such samples from the sites

in Spain, Sri-Lanka, and Paraguay are shown in Figures 5–7.

Figure 5 shows flood detection results on the Spain site. Both the

segmentation results show good IoU scores but the segmentation

map from “Fusion Network” is slightly better than the map from

“Attention U-Net”. The major differences are highlighted by red

circles. The first circle 1) shows the misclassified area in the attentive

U-net output and correctly classified in the fusion network output.

The second circle 2) highlights the detailed segmentation by the

fusion network, where the flooded patches are well separated.

Whereas in the segmentation map from attentive U-Net the

boundaries are a bit blur and merged.

Figure 6 demonstrates a case from the Sri-Lanka site where

the permanent water area (highlighted in red circle 1) is not

properly highlighted in the VV channel but is visible in VH with

some noise. The last row shows a zoomed version of the output

segmentation maps. There are misclassified flood areas

(highlighted in red circle 1) in the “Attentive U-Net”

detection map, a large percentage of which is correctly

classified by the ‘Fusion Network’. The unidentified flooded

area in the “Attentive U-Net” detection map is part of

permanent water. Since the PW mask is fed attentively in

the “Fusion Network”, the network has no trouble detecting

this area.

FIGURE 7
Detection result samples from the Spain site. In visualization contains (A) VV, (B) VH, (C) DEM, (D) ground truth, (E) attentive U-Net network
prediction and (F) Fusion network prediction. Third row contains zoomed version of (E) and (F). The red circles highlight the areas described in the
text. The numbers specified under the prediction maps are the corresponding IoU scores. More samples can be visualized on Google Earth Engine
(GEE) Application at https://erritu92.users.earthengine.app/view/flooddetectionunitemporal.
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Figure 7 shows the flood detection results on the Paraguay

site. In the segmentation output from ‘Attentive U-Net’, there are

false detections in the upper part of the detection map

(highlighted in red circle 1). These false detections are on a

high slope (see DEM), and hence cannot be feasibly flooded.

Therefore, accommodating an elevation map can reduce false

positives from the detection process. The sample presented is one

of the many cases where the results from the “Fusion Network”

verify the benefits of DEM by removing false positives in high

slope areas. Our proposed “Fusion network” accommodates

DEM information in a way that enables the network to learn

the relationship between the slope of the area and flooding, hence

avoiding mentioned false positives. It is important to note that

the elevation data is low resolution, which might not help with

fine elevation variations, but is helpful on a larger scale.

For further analysis, we have developed a GEE application

where more results can be visualized and compared on multiple

sites. By comparing the predictions from the two proposed

methods, we can interpret that DEM and PW contribute

significantly toward better flood detection.

5.4 Individual site analysis

Apart from the average scores on test data, we also verify our

detection results on each flooded site. The IoU score of our two

proposed methods ‘Attentive U-Net’ and ‘Fusion Network’ is

compared for each site in the validation set (see Table 3). Major

improvements are noticed in the Sri-Lanka, United States, and

Paraguay sites where the slope variation is high. For others, both

networks achieved similar IoU scores.

A graphical depiction of the sitewise performance is presented in

Figure 8. We used a spider graph. The axis of the graph represents

the evaluation sites and the numbers on all the concentric circles

represent the possible percentage IoU score from 0 at the center to

100 on the outermost circle. The farther toward the end of the spike,

the larger the value. Closest to the center means closer to zero. The

outermost line represents the best performing model and in the

current scenario it is our proposed Fusion Network.

6 Conclusion

In this study, we presented two architectures for segmenting

flooded areas named “Attentive U-Net” and “Fusion Network”. The

“Attentive U-Net” utilizes VV, VH, and the ratio of the two. The

“Fusion Network” is a novel flood detection method that attentively

fuses SAR (VV, VH), DEM, and permanent water masks. Both our

proposedmethods outperformed the benchmark detectionmethods

on the Sen1Floods11 dataset. “Attentive U-Net” shows an

improvement of 4% and “Fusion Network” of 5% in IoU score

than the previous benchmarks on Sen1Floods11.

The evaluation and quantitative comparison with the state-of-

the-art methods demonstrate the high potential of our proposed

flood detection networks. Qualitative evaluation demonstrates that

the addition of globally available digital elevation model and a

permanent water mask enhances flood detection results. Also,

Uni-temporal data is fast (2s per image) to process and consume

less memory. The good detection results of our proposed network

along with the memory and space efficiency are significant

achievements in the direction of onboard satellite processing.

TABLE 3 Performance Comparison of Attentive U-Net and Fusion Network
on each site. The displayed numeric values are the average IoU scores
calculated on all tiles of the individual site.

Site Attentive U-Net Fusion network

Bolivia 0.66 0.69

Ghana 0.54 0.54

India 0.84 0.83

Mekong 0.86 0.86

Nigeria 0.89 0.88

Pakistan 0.36 0.35

Paraguay 0.60 0.65

Somalia 0.57 0.58

Spain 0.70 0.73

Sri-Lanka 0.75 0.86

United States 0.61 0.66

FIGURE 8
Spider Graph: Graphical IoU comparison of our two
proposed flood detection methods “Attentive U-Net” and “Fusion
Network” on each site.
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The overreaching goal of our ongoing research is to provide

fast, robust, and automatic methods for flood emergency

mapping. In the future, we will extend our work to semi-

supervised and unsupervised methods, as labeled data are

often not readily available. Generating good labels in remote

sensing data requires expertise in the field and the low resolution

of the data makes it a time-consuming process. Also, removing

dependency on labels gives us the freedom to train on abundant

sites and the model can then generalize better on unknown sites.
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