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Due to strict spectral band requirements, the three-band (TB) chlorophyll-a concentration
(Cchla) estimation algorithm cannot be applied to GOCI image, which has great potential in
frequently monitoring inland complex waters. In this study, the TB algorithmwas expanded
and applied to GOCI data. The GOCI TB algorithm was subsequently calibrated using an
in-situ dataset which contains 281 samples collected from 17 inland lakes in China
between 2013 and 2020. MERIS TB and GOCI band ratio (BR) models were selected
as comparisons to assess the proposed model. The results showed that the proposed
GOCI TB model has similar accuracy with MERIS TB model and overperformed GOCI BR
model. The root mean square error (RMSE) of the GOCI TB, MERIS TB, and GOCI BR
algorithms are 14.212 μg/L, 12.096 μg/L, and 20.504 μg/L, respectively. The mean
absolute percentage error (MAPE) (when Cchla is larger than 10 μg/L) of the three
models were 0.377, 0.250, and 0.453, respectively. Similar conclusion could be drawn
from a match-up dataset containing 40 samples. Finally, a simulation experiment was
carried out to analyze the robustness of the models under various total suspended matter
concentration (CTSM) conditions. Both the in-situ validation and simulation experiment
indicated that the GOCI TB factor could effectively eliminate the optical influence of CTSM.
Furthermore, the broader spectral range requirement of GOCI TBmodel made it proper for
many other multispectral sensors such as Sentinel two Multispectral Instrument (S2 MSI),
Moderate Resolution Imaging Spectroradiometer (MODIS) (onboard the Terra/Aqua
satellite), and Visible Infrared Imaging Radiometer Suite (VIIRS) (onboard the National
Polar-orbiting Partnership satellite). Compared with the GOCI BR algorithm, the GOCI TB
algorithm has stronger stability, better accuracy, and greater potential in practice.
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1 INTRODUCTION

Cchla, a basic indicator of phytoplankton biomass, has been widely
used to indicate trophic status and water quality in oceans and
inland waters (Honeywill et al., 2002; Lee et al., 2011; Neil et al.,
2019). Remote estimate Cchla based on satellite sensor in large
aquatic ecosystem provides numerous advantages compared with
standard field measurements (Kutser, 2004). Cchla can be
estimated using remote sensing data based on its unique
spectral properties (Bresciani et al., 2011; Huang et al., 2014;
Kravitz et al., 2019; Liu et al., 2020). But such estimates present
difficulties for optically complex water bodies. Dall’Olmo and
Gitelson (Dall’olmo and Gitelson, 2005; Dall’olmo and Gitelson,
2006) developed and validated a semi-analytical TB algorithm to
estimate Cchla of optical complex inland water. The TB algorithm
has been verified in different study areas (Zimba and Gitelson,
2006; Gitelson et al., 2007; Xu et al., 2009; Gurlin et al., 2011;
Yacobi et al., 2011; Moses et al., 2012; Augusto-Silva et al., 2014;
Huang et al., 2014), and improved by researchers (Le et al., 2009;
Duan et al., 2010; Yang et al., 2010; Chen et al., 2013). However,
due to its strict band requirements, the algorithm has only been
successfully applied on hyperspectral image (Moses et al., 2012;
Moses et al., 2014) and some narrow-band ocean color remote
sensors such as the MEdium Resolution Imaging Spectrometer
(MERIS) (Shi et al., 2013; Augusto-Silva et al., 2014; Huang et al.,
2014) and Sentinel-3 Ocean and Land Colour Instrument (S3
OLCI) (Liu et al., 2020).

GOCI is the world’s first geostationary ocean color
multispectral system, with medium spatial resolution (500 m)
and very high temporal resolution (1 h). Its high frequency
refresh rate provides great potential for inland complex water
monitoring (Huang et al., 2015a; Guo et al., 2020). However, in
previous studies of remotely estimate of Cchla using GOCI images,

researchers tend to use empirical models such as BR model, with
indistinct mechanisms (Huang et al., 2014; Bao et al., 2015;
Huang et al., 2015b). For GOCI data, an accurate and
explainable Cchla estimation algorithm is urgently needed.

In this study, two questions are addressed. First, could the
GOCI BR algorithm correctly describe Cchla patterns in optically
complex inland waters? Then, is there a clear theory foundation
to apply the TB algorithm to GOCI? Focusing on these two
questions, the objectives of this paper are 1) extend the TB model
to make it proper for GOCI images; 2) calibrate and validate the
proposed model in highly turbid inland waters in China using a
dataset covering a long time series and a large spatial scale; and 3)
assess the robustness and potential of the proposed model.

2 MATERIALS AND METHODS

2.1 In-situ Data
Field measurements from 12 cruises, including 281 points, were
conducted to calibrate and validate the TB and BR algorithms.
The sampling areas covered several turbid productive inland
waters in China (Figure 1), including Hongze Lake, Taihu
Lake, Dongting Lake, Datong Lake, Changhu Lake, Honghu
Lake, Huanggai Lake, Wushan Lake, Poyang Lake, Liangzi
Lake, Huangda Lake, and Cihu Lake. The sampling stations
are illustrated in Figure 1 and their associate details are listed
in Table 1. All measurements and water samples were obtained
within 6 h of solar noon (13:00 GMT +8). At each station, the
following parameters were measured: remote sensing reflectance
(Rrs(λ), sr−1), Cchla, CTSM, and absorption of phytoplankton
(aph(λ)). In 281 samples, 188 of them were randomly selected
as calibration dataset and the left 93 samples were used to validate
the performance of the Cchla estimation models.

FIGURE 1 | Locations of the study area and distribution of the sampling stations.
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The in-situ measured Rrs and Cchla were used for model
calibration and validation. In-situ measured CTSM was used to
discuss the sensitivity of the models.

2.1.1 Measurement of Rrs

Rrs(λ) measurements were conducted by means of an ASD
FieldSpec spectroradiometer, which has a spectral range of
350–1,050 nm at increment of 1.5 nm. The spectral resolution
was interpolated into 1 nm after measurement. According to the
above-water measurement method described in the Ocean
Optical Protocols (Mueller et al., 2003), the above-water
measurement method was used to measure the radiance
spectra of the reference panel, water, and sky, respectively. At
each site, ten spectra were collected, from which abnormal ones
were eliminated and valid ones retained and averaged. Specific
observation geometry was applied to effectively avoid the
interference of a ship with the water surface and the influence
of direct solar radiation during the measurement (Tang et al.,
2004). Finally, Rrs(λ) was derived via the following equation
(Tang et al., 2004; Le et al., 2009)

Rrs(λ) � (Lt − r × Lsky)/(Lp × π/ρp) (1)
Where Lt is the total radiance received from the water surface; Lsky
is the radiance from sky; Lp is the simultaneously observed
radiance of the reference gray board. In this process, skylight
reflectance at the air-water surface (r) was taken as 2.2% for calm
weather, 2.5% for wind speed of up to 5 ms−1, and 2.6–2.8% for
wind speed of about 10 ms−1 (Tang et al., 2004). The reflectance
of the gray diffuse board (ρp) had been accurately corrected to be
30% in the factory, before we used it to carry out these field
experiments.

2.1.2 Measurement of Water Constituents’
Concentration
Water samples were collected from the water surface (<20 cm)
and kept in a cooler with ice. The fraction of each sample was used

to measure concentrations of water constituents. Water samples
were filtered through 0.7 μm Whatman GF/F glass fibre filters
that had been combusted at 550°C for 4 h. The glass fibre filters
were dried at 105°C for 4 h. CTSM was obtained by measuring the
difference in weights between combusted and dried glass fibre
filters. Water samples for measuring Cchla were filtered with GF/C
filters (Whatman). Chlorohphyll-a was extracted with ethanol
(90%) at 80 °C for 6 h in darkness and then analyzed
spectrophotometrically at 750 and 665 nm with a correction
for phaeopigments using a spectrophotometer (Shimadzu UV-
3600) (Chen et al., 2006).

2.1.3 Measurement of aph(λ)
The water samples were filtered and analyzed by a
spectrophotometer (Shimadzu UV-3600) to obtain aph(λ)
using the quantitative filter technique (Cleveland and
Weidemann, 1993). First, the water samples were filtered
through GF/C (Whatman) glass fibre filters to obtain TSM,
and the absorbance of TSM was measured using a
spectrophotometer. Pigments were removed from the water
samples with NaClO and the water samples were refiltered to
obtain tripton. The absorbance of tripton was obtained from
these glfibre filters using a spectrophotometer. Data processing to
calculate aph(λ) from the absorbance of tripton and TSM,
respectively, was performed as described by Huang et al. (2011).

2.2 Satellite Data
Level-1b GOCI images covering Taihu Lake and Hongze Lake
were downloaded from the Korea Ocean Satellite Centre (http://
kosc.kordi.re.kr/). For the algorithm validation, the sampling
times for the in-situ match-up data were ±0.5 h for the GOCI
transit time. There were 40 match-up points (11 from Taihu Lake,
Aug. 2013, five from Taihu Lake, Aug. 2019, 10 from Hongze
Lake, Apr. 2019, and 14 from Hongze Lake, Nov. 2020) for GOCI
images. These images were vector masked to remove land and
islands after geometric correction. The GOCI atmospheric
correction was carried out using an improved land

TABLE 1 | Summary statistics of water parameters, including the concentrations of Cchla (μg/L), CTSM (mg/L), and aph(675) (m
−1), of all 17 cruises.

Lake Samples Cchla (μg/L) CTSM (mg/L) aph(675) (m
−1)

Hongze Lake (Apr. 2019) 25 10.06 ± 6.85 26.21 ± 11.30 0.16 ± 0.08
Hongze Lake (Jan. 2020) 24 17.91 ± 5.84 39.10 ± 14.71 0.44 ± 0.10
Taihu Lake (Aug. 2013) 25 42.58 ± 24.79 68.84 ± 48.64 —

Taihu Lake (Nov. 2020) 31 20.88 ± 3.72 23.66 ± 16.49 —

Taihu Lake (Aug. 2016) 18 46.65 ± 29.27 75.57 ± 37.19 —

Taihu Lake (Mar. 2017) 44 31.19 ± 10.70 73.68 ± 30.54 0.48 ± 0.22
Taihu Lake (Aug. 2019) 57 40.87 ± 12.80 36.78 ± 17.56 —

Dongting Lake (Jan. 2018) 8 0.78 ± 0.25 7.69 ± 6.31 —

Datong Lake (Jan. 2018) 6 4.75 ± 1.70 — —

Changhu Lake (Jan. 2018) 6 6.43 ± 5.31 42.32 ± 10.30 —

Honghu Lake (Jan. 2018) 8 8.99 ± 4.03 12.83 ± 8.14 —

Huanggai Lake (Jan. 2018) 5 69.51 ± 19.72 18.68 ± 9.72 —

Wushan Lake (Jan. 2018) 2 3.74 ± 0.56 45.80 ± 24.66 —

Poyang Lake (Jan. 2018) 9 2.21 ± 0.66 3.15 ± 1.86 —

Liangzi Lake (Jan. 2018) 7 0.97 ± 0.47 13.63 ± 5.54 —

Huangda Lake (Jan. 2018) 4 8.82 ± 1.33 3.00 ± 1.21 —

Cihu Lake (Jan. 2018) 2 30.51 ± 0.21 6.44 ± 2.99 —
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target-based atmospheric correction method (Guanter et al.,
2010; Liu et al., 2015).

2.3 Expanding of the TB Algorithm
The TB algorithm that developed by Dall’Olmo and Gitelson
(Dall’olmo and Gitelson, 2005; Dall’olmo and Gitelson, 2006) is
based on the following relationship between Cchla and Rrs:

Cchla ∝ [R−1
rs (λ1) − R−1

rs (λ2)] × Rrs(λ3) (2)
where Rrs is a function of the inherent absorption (a(λ)) and
scattering (bb(λ)) properties of the medium, according to the
basic radiative transfer equation (Gordon et al., 1988).

Rrs(λ) � f t
Qn2

bb(λ)
a(λ) + bb(λ) (3)

Absorption a(λ) can be separated into absorption related to
aph, ad, aCDOM, and pure water (aw), while bb(λ) is the
measurement of total backscattering. f/Q is depended on Sun
zenith angle (Morel and Gentili, 1993), and can be approximated
to be 0.0945 (Gordon et al., 1988), and t/n2 = 0.54 (Austin, 1974;
Clark, 1981).

The difference between the reciprocal reflectance R−1(λ1) and
R−1(λ2) is approximated by

R−1
rs (λ1) − R−1

rs (λ2)∝
aph(λ1) + aw(λ1) − aw(λ2)

bb
(4)

based on the following assumptions: (a) bb is spectrally invariant
between λ1 and λ2; (b) aph(λ1) >> aph(λ2); (c) ad(λ1) +
aCDOM(λ1) ≈ ad(λ2) + aCDOM(λ2).

Then, the third band, λ3 is included to remove the effect of bb.
λ3 is chosen to be in the near infrared (NIR) wavelengths, where
reflectance by aph, ad, and aCDOM is minimal:

Rrs(λ3)∝ bb(λ3)
a(λ3) + bb(λ3) ≈

bb
aw(λ3)∝ bb (5)

The aph could be extracted by combining Eqs 4, 5:[R−1
rs (λ1) − R−1

rs (λ2)] × Rrs(λ3)∝Cchla (6)
Eq. 6 is the basic formula of the traditional TB algorithm, where

λ1 is in the spectral region in which chlorophyll-a shows maximum
absorbance (λ1 = 660–690 nm). λ2 is in the spectral region in which
chlorophyll-a shows minimum absorbance. The absorption of
tripton and CDOM at λ2 are very close to those at λ1 (λ2 =
700–730 nm). λ3 is located in the spectral region such that Rrs(λ3)
is minimally affected by absorption of water constituents (λ3 =
740–760 nm). Therefore, in multispectral sensors, only thin-band
multispectral sensors like MERIS and S3 OLCI were widely used.
According to the previous description, MERIS centre wavelengths
for TB algorithm are λ1 = 681nm, λ2 = 708nm, and λ3 = 753 nm. To
simplify the discussion, Eq. 6 could be written as:[R−1(681) − R−1(708)] × R(753)∝Cchla (7)

According to some previous studies (Smyth et al., 2006; Chen
et al., 2014), the ratio of absorption in different wavelength is
fixed:

εa(λ1, λ2) � a(λ1)/a(λ2) (8)
What’s more, the GOCI band five is located in 660 nm

(Table 1), which is nearby band 6 (680 nm). Then, the
following equation can be established:

aph(680) � εaph(680, 660) × aph(660) (9)
Therefore, the position of λ2 in the standard TB algorithm

could be moved from 710 to 660 nm to fit the GOCI band setting.
Eq. 4 could be written as:

R−1(680) − R−1(660)

∝
(εaph(680, 660) − 1) × aph(660) + aw(680) − aw(660)

bb
(10)

Then, the expanded TB algorithm could be expressed as the
following equation by combing Eq. 5 and Eq. 10 in the
assumption that εaph(680,660) is fixed:[R−1

rs (680) − R−1
rs (660)] × Rrs(745)∝Cchla (11)

2.4 Accuracy Assessment
MAPE and RMSE were used to indicate errors in the estimated
values, which could be calculated through the following
equations:

RMSE �
������������∑n
i�1
(yi − y′i)/n

√
(12)

MAPE � 1
n
∑n
i�1

∣∣∣∣∣∣∣∣yi − y′i
yi

∣∣∣∣∣∣∣∣ (13)

Where n is the number of samples; yi is the measured value; y’ i is
the estimated value. In practical, MAPE indexes under different
Cchla levels fluctuated dramatically. To better reflect the model
performance, MAPElow (only the samples that measured Cchla less
than 10 μg/L were included) andMAPEhigh (only the samples that
measured Cchla greater or equal to 10 μg/L were included) were
calculated separately.

2.5 Simulation Experiment
The main theoretical advantage of TB model is it will eliminate
the optical influence of CTSM in NIR spectral range. Therefore, we
analyzed this influence based on a bio-optical model calibrated by
Huang et al. (2011). In the bio-optical model, Rrs was expressed as
a function of CTSM, Cchla, and aCDOM(λ0) (Appendix A). To
reveal the influence of CTSM to Cchla estimation models,
we simulated Rrs spectra between 400 and 800 nm under
different Cchla and CTSM combinations. Cchla and CTSM were
ranging from 1 μg/L to 200 μg/L, and 1 mg/L to 200 mg/L,
respectively. aCDOM(λ0) was set to 0.5. Then, we defined a
variable named model factor difference (Δ factor) to evaluate
the stability of model factors toCTSM. The expression of Δ factor is
as follows:

Δf actor(Cchla,CTSM) � f actor(Cchla,CTSM) − f actor(Cchla, 1) (14)
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where factor represents the three Cchla model factors, that is,
MERIS TB (MTB) factor (i.e., [R-1 rs(681)- R-1 rs(708)] Rrs(753)),
GOCI TB (GTB) (i.e., [R-1 rs(680)- R-1 rs(660)] Rrs(745)) factor,
and GOCI BR (GBR) factor (i.e., Rrs(745)/Rrs(680)). All the
factors were calculated from Rrs at a specific Cchla and CTSM

level. Δ factor represents the stability of the current factor toCTSM.
A Δ factor close to 0 means the current factor is not sensitive to
CTSM at the current Cchla level.

3 RESULTS

3.1 Rrs Spectra Characteristics
The average Rrs (Figure 2A) of 15 cruises exhibited wide
variability in terms of both magnitude and shape. Spectra of
Wushan Lake and Cihu Lake were not plotted because we only
collected two samples in these two lakes. This is inadequate to
generate the correlation line. For eutrophicationic water, such as
Huanggai Lake (Jan. 2018) and Taihu Lake (Aug. 2016), strong
phytoplankton absorption formed the Rrs peaks around 570, 700,
and 815nm, and the trough near 675 nm. For some other cruises
such as Changhu Lake (Jan. 2018), its high turbidity and light
eutrophication determined the stronger reflectance in red spectral
range and weaker trough near 675 nm (Figure 2A). For relatively
clean waters that contain less CTSM and Cchla, like Liangzi Lake
(Jan. 2018), the average Rrs curve have small magnitude and weak
phytoplankton characters in red and NIR spectral ranges.

The correlation coefficients between Rrs and Cchla at each
wavelength (Figure 2B) also indicated the complexity of the
samples. Datasets with significant trough at 680 nm and peak at
700 nm exhibited similar correlation curves. However, for lakes
with high turbidity and low eutrophication level, like Changhu
Lake, the correlation line looks flat: peak in 700 nm disappeared
because high turbidity weakened the Rrs sensitivity to Cchla.

In conclusion, the complex optical properties of inland water
require a Cchla estimation model that could eliminate the optical
influence of other water color constituents, especially CTSM.

3.2 aph Spectra Characteristics
The average aph spectrum (Figure 3) contains three peaks. The
first one is at 440 nm, which is caused by chlorophyll-a,
chlorophyll-b, chlorophyll-c, carotenoid, and other accessory
pigments. The second peak at 625 nm is caused by
phycocyanin. The last one around 675 nm is mainly caused by
the absorption of chlorophyll-a (Haardt and Maske, 1987;
Dekker, 1993).

In order to investigate the rationality of the core assumption of
the GOCI TB model, i.e., the stability of εaph, we calculated linear
correlation coefficients between aph at 680 nm and other spectral
bands (i.e., line r (680, λ) in Figure 3). Overall, the r(680, λ) line had a
similar shape with the average aph line. This means the main
factor that affects inter-band correlation of aph is its magnitude.
In detail, the correlationship became stronger in the spectral
range from 400 to 500 nm. Then, a trough appears in 550 nm. In

FIGURE 2 | Average spectrum of 17 cruises (A) and the correlation coefficients between Cchla and Rrs (λ) (B) in the spectral range of 400–900 nm.

FIGURE 3 | Average aph spectral and the correlation coefficients
between aph(λ) and aph(680) [r(680,λ) in the figure] in the spectral range of
400–800 nm.

Frontiers in Remote Sensing | www.frontiersin.org March 2022 | Volume 3 | Article 8038845

Guo et al. Extended Three Band Model

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


the wavelength range between 600 and 690 nm, r(680, λ) is entirety
greater than 0.9. The strongest correlation appears in
660–690 nm, where the r (680, λ) line is above 0.98. For the
bands beyond 690 nm, with the increasing of wavelength, the
correlation coefficients rapidly decrease together with the aph
spectrum.

The relationship between aph(660) and aph(680) (Figure 4) of
all the available in-situ samples denote that when the intercept is
set to 0, the linear fitting R2 is 0.965. This means aph(660) can
explain more than 96% changes of aph(680) in our dataset.
Therefore, the assumption in Eq. 9, i.e., εaph(680,660) is fixed,
is considered to be reasonable in this study (εaph(680,660) = 1.23).

3.3 Calibration and Validation of the Models
Three algorithms were calibrated and validated in this study, they
are: MERIS TB algorithm (based on Eq. 7), GOCI TB algorithm
(based on Eq. 11), and GOCI BR algorithm Rrs(745)/Rrs(680)
(Huang et al., 2014; Bao et al., 2015) was selected as the model
factor. The whole in-situ dataset was randomly separated into 188
calibration samples and 93 validation samples. The parameters of
the three models were determined in the calibration dataset by a
simple linear fitting method (Figures 5A,C,E). Their expressions
are as follows:

Cchla � 260.850 × [R−1
rs (681) − R−1

rs (708)]Rrs(753)
+26.342 (R2 � 0.878, P < 0.001) (15)

Cchla � 763.230 × [R−1
rs (680) − R−1

rs (660)]Rrs(745)
− 4.485 (R2 � 0.823, P < 0.001) (16)

Cchla � 127.940 ×
Rrs(745)
Rrs(680) − 35.436 (R2 � 0.569, P < 0.001)

(17)

In the validation dataset, RMSE of the MERIS TB, GOCI TB,
and GOCI BR models are 12.943 μg/L, 13.313 μg/L, and
22.613 μg/L, respectively. MAPElow samples are 8.089, 7.725,
and 29.898, respectively. MAPEhigh are 0.433, 0.463, and 0.915,
respectively (Figures 5B,D,F). The results indicated that GOCI
TB algorithm performs better than GOCI BR algorithm and
similar with MERIS TB algorithm. Wavelengths in the brackets
represent specific band centers of MERIS and GOCI.

3.4 Performance in Match-Up Samples
Table 2 shows the atmospheric correction results of the
40 match-up points. The average MAPE and RMSE over all
spectral bands are 0.216 and 4.578 × 10−3, respectively. Generally,
the atmospheric correction yields satisfactory accuracy, especially
for red and NIR bands.

The Cchla estimation results from GOCI TB and BR models
represent that, generally, the performance of the two models are
similar with those of in-situ dataset (Figure 5). RMSE of BR and TB
models are 12.42 μg/L and 9.90 μg/L, respectively. This means that
GOCITBmodel improved the accuracy for about 25%.MAPEof BR
and TB models are 0.94 and 0.60, respectively. The improvement
was about 56%. This suggesting that the GOCI TB model could
improve more estimation accuracy in low Cchla conditions.

3.5 Cchla Maps
We applied GOCI TB and BR models to the preprocessed GOCI
images and yielded the Cchla maps (Figure 6). Generally, the
GOCI TB and GOCI BR Cchla maps have similar spatial
distribution: high Cchla values appeared in Zhushan Bay,
Meiliang Bay, north of Gonghu Bay, and south west lake. Low
Cchla region distributed in the center lake. Notably, an opposite
trend appeared between GOCI TB Cchla series and GOCI BR Cchla

series: from 8:30 to 15:30, Cchla is getting larger in GOCI TB Cchla

maps and smaller in the GOCI BR yielded ones.

4 DISCUSSION

4.1 Error Distribution Analysis
TB model can eliminate the optical influence of total suspended
matter in NIR spectral range. To visualize this elimination, MAPE of
each sample was calculated for all the threemodels and plotted in the
Cchla-CTSM space (Figure 7). The results indicated that, generally,
MERIS TB and GOCI TB have similar MAPE distribution. GOCI
TB algorithm performs slightly better in low Cchla (Cchla < 10 μg/L),
high CTSM (CTSM > 30mg/L) region, where GOCI BR result exhibits
significant error (Figure 5E and Figure 7C).

To understand the failure of the GOCI BR algorithm in low
Cchla, high CTSM condition, we carried out a further analysis.
Based on GOCI band settings, the linear correlation coefficients
of BR factor with both Cchla and CTSM were calculated (Figure 8).
What interesting is, the correlation map of CTSM has a similar
distribution with that of Cchla. Even the overall correlation
coefficients of CTSM are lower than Cchla, the significant
correlation between BR factors and CTSM at 680, 745, and
865 nm indicated the unneglectable influence of suspended
matter in BR model. Meanwhile, the correlation coefficients

FIGURE 4 | Scatter plot of aph(660) and aph(680).
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between GOCI TB factors and CTSM was 0.286, which is obviously
lower than that of BR factors (higher than 0.5 in Figure 8B). This
comparison suggesting that compared with GOCI BR factor,
GOCI TB factor could effectively eliminate the impact of TSM
and yield a more reliable Cchla estimation result.

4.2 Theoretical Analysis of the Model
Sensitivity to CTSM
The simulation experiment results will be discussed as follows:
For each Cchla level, we calculated Δfactor under all CTSM

FIGURE 5 | Scatter plot of (A)MERIS TBmodel; (C)GOCI TBmodel; (E)GOCI BRmodel, and the validation result of (B)MERIS TBmodel; (D)GOCI TBmodel; (F)
GOCI BR model.

TABLE 2 | Atmospheric correction errors.

Band MAPE RMSE(sr−1)

B412 0.423 8.030 × 10−3

B443 0.239 6.146 × 10−3

B490 0.127 4.436 × 10−3

B555 0.127 5.550 × 10−3

B660 0.140 4.393 × 10−3

B680 0.133 3.862 × 10−3

B745 0.238 2.528 × 10−3

B865 0.301 1.677 × 10−3

average 0.216 4.578 × 10−3
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conditions to yield a sensitivity line in Figure 9. For an ideal
factor that could completely erase the impact of CTSM, the
sensitivity line will be y = 0 (the dashed lines in Figure 9),
which means no matter how much TSM is in the water, the
spectral factor kept the same. Therefore, the distance of Δfactor

line to the dashed line reflects the stability of the current factor.
The results (Figure 9) indicated that the three factors have

different stable Cchla ranges. Generally, the influence of TSM to
Cchla spectra factors are increasing together with CTSM. However,

For MERIS TB factor, the most stable Cchla range is about 70 μg/L
(Figure 9B). High Cchla sensitivity and low Cchla sensitivity lines
equally distributed around the dashed line. GOCI TB factor is
insensitive to CTSM when Cchla is smaller than 40 μg/L
(Figure 9C). With the increasing of CTSM, offset of the high
Cchla sensitivity line became larger. Δ GBR has a linear
relationship with CTSM. For lower Cchla, the factor difference is
higher, which indicates that the GOCI BR factor is unstable in low
Cchla conditions.

FIGURE 6 | Cchla maps that yielded by BR and TB algorithm using GOCI image in 13 May 2013.

FIGURE 7 | Scatter plot of the MAPE versus CTSM and Cchla of (A) MERIS TB model; (B) GOCI TB model; (C) GOCI BR model. The vertical and horizontal
histograms in each plot represent the concentration distributions of Cchla and CTSM, respectively.
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In conclusion, the MERIS TB and GOCI TB factors perform
similar: they both have stable Cchla ranges, which are around
76 μg/L and less than 40 μg/L, respectively. GOCI BR algorithm
did not show a stable region: with the increasing of CTSM, the
factor became more and more sensitive to TSM. The simulation
results can partly explain the model performances in section 4.1.

4.3 Comparison of Cchla Maps Yielded From
GOCI TB and BR Models
Water constituents time series of specific water body has been
widely reported (Le et al., 2013; Feng et al., 2014; Palmer et al.,
2015). Meanwhile, we proved that different models have different
performance under varied conditions (section 3.4). Then, how
will this difference affect the spatial-temporal distribution of Cchla

maps? To answer this question, we calculated the correlation
coefficients between GOCI TB and BR yielded Cchla maps pixel by
pixel (Figure 10A). A positive correlation coefficient denotes that
Cchla yielded from TB and BR algorithms have similar temporal
changes, and vice versa. The results indicated that in high Cchla

regions, like Zhushan Bay, Meiliang Bay, Gonghu Bay, and south
west lake, two map series showed strong consistency. The

correlation coefficients are generally higher than 0.8. However,
a large negative correlation region in the center lake means that
the two series have totally opposite Cchla trends in this region.
CTSM sensitivity discussed in section 4.2 can explain this
phenomenon: resuspention in the center lake increased CTSM

and the instability of GOCI BR model. The histogram of
correlation coefficient map (Figure 11B) demonstrated that
the two models yielded opposite trends in a considerable
region of Taihu Lake. This will definitely influence the
statistical analysis in long-term water Cchla monitoring missions.

4.4 Influence of Position and Width of Band
λ2 to GOCI TB Model
Our expansion to the TB model is focusing on λ2. Following the
original ideal of the TBmodel, we analyzed the effect of band λ2 to
the GOCI TB model by calculating the band-by-band correlation
coefficients between Cchla and GOCI TB factor.

We fixed the positions of λ1 and λ3 and changed band λ2 from
600 to 740 nm to yield the correlation coefficient line (Figure 11).
The widest and highest correlation peak (the first peak in Figure 11)
appears at around 710nm, where is close to the theoretical optimal

FIGURE 8 | Correlation maps of GOCI BR factors to (A) Cchla and (B) CTSM. Marks “*”, “**”, and “***” represent for p value less than 0.05, 0.01, and 0.001,
respectively.

FIGURE 9 | Sensitivity simulation result of (A) GOCI BR model, (B) MERIS TB model, and (C) GOCI TB model in different CTSM and Cchla conditions.
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band position in previous researches (Dall’olmo and Gitelson, 2005;
Le et al., 2011). Therefore, the first peak is the best choice when the
sensor could provide proper spectral bands. It is also worth noting
that the second peak exists at around 660 nm (Figure 11). In fact,
this peak had been reported by Dall’olmo and Gitelson, 2005 and Le
et al. (2009) researches. This suggesting that 660 nm is always a
potential selection for TB models.

To further discuss the impact of bandwidth to the GOCI TB
model, we resampled Rrs (660) to 5, 15, 25, and 35 nm width,
respectively. Then, we calculated the GOCI TB factor based on
the resampled Rrs (660) and their correlation coefficients with
Cchla (Figure 11). The result denoted that, even the bandwidth
was set to 35 nm, the GOCI TB factor still have high
correlation coefficient with Cchla (larger than 0.87). This
means that the GOCI TB factor is not sensitive to the width
of band λ2.

4.5 Potential of the Expanded TB Algorithm
An obstacle of applying traditional TB algorithm is band λ2,
which located in range of 690–710 nm (Dall’olmo and Gitelson,

2005; Dall’olmo and Gitelson, 2006). By a strict theoretical
derivation, the expanded TB model suggests that when the
sensor set no bands in 690–710 nm, λ2 can be moved to
660–690 nm. The expanded TB algorithm has both clear
mechanism and satisfactory performance. In fact, apart from
GOCI, the proposed model can be also applied to multispectral
sensors like S2 MSI, MODIS (onboard the Terra/Aqua satellite),
and VIIRS (onboard the National Polar-orbiting Partnership
satellite) (Figure 12).

Therefore, for MODIS (250/500 m band settings), VIIRS, and
S2 MSI, their TB and best-fitted BR models were calibrated using
the in-situ dataset (Table 3). In general, all the sensors perform
better using TB model. Especially for MODIS and S2 MSI. For

FIGURE 10 | Time series correlation coefficients between TB model and BR yielded Cchla maps (A), and its probability density plot (B).

FIGURE 11 | Correlation coefficients of GOCI TB factors to Cchla.

FIGURE 12 | Band settings of (A)MERIS, (B) S3 OLCI, (C) S2 MSI, (D)
GOCI, (E) MODIS, (F) VIIRS (λ*2 and λ2 represents the second band of the
original TB and expanded TB models).
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MODIS, compared with BR model, the TB model decreased the
RMSE, MAPElow and MAPEhigh by 24.70%, 29.76%, and 17.77%.
These reductions for S2 MSI are 25.62%, 30.48%, and 16.50%,
respectively. For VIIRS, the band width of λ2 is so broad
(Figure 12) that it is partly out of the second high correlation
peak (Figure 11). Even though, TB model still improved the
performance slightly.

Conclusively, the expanded TB algorithm provides a wider
choice for accurately monitoring inland complex water.

5 CONCLUSION

In this research, the TB algorithm is expanded for GOCI image to
remotely estimate Cchla for optically complex water. The GOCI
TB model was calibrated and validated by a comprehensive in-
situ measured dataset and GOCI images. By comparing with
MERIS TB and GOCI BR algorithms, the following conclusions
can be drawn:

1) In the expanded TB algorithm, λ2 is located in the spectral
range between 680 and 700 nm or 660–680 nm. The core
assumption of the expanded TB algorithm is reasonable. The
validation result indicated that GOCI TB algorithm have
similar accuracy with MERIS TB algorithm.

2) In highly turbid waters, GOCI BR factor cannot explain the
change of Cchla. Meanwhile, the GOCI TB algorithm
successfully eliminates bb at NIR spectral range and
performs well in high CTSM conditions.

3) Compared with the BR algorithm, GOCI TB algorithm can
yield more reasonable Cchla map for water environment
monitoring and analyzing.

4) The expanded TB algorithm is proper for other multispectral
sensors like S2MSI,MODIS, andVIIRS. It provides wider choice
for the future inland water remote monitoring missions.
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APPENDIX A

The total absorption a and backscattering coefficients bb were
modeled as the sum of absorption and backscattering from water
constituents, as follows:

a(λ) � ad(λ) + aph(λ) + aCDOM(λ) + aw(λ) (A1)
bb(λ) � bbp(λ) + bbw(λ) (A2)

where the subscripts d, ph, and w represent non-algal particle,
phytoplankton, and pure water, respectively. ad(λ) and aph(λ)
can be parameterized using the following equations:

ad(λ) � apd(λ) × CTSM (A3)
aph(λ) � apph(λ) × Cchla (A4)

where apd(λ) and apph(λ) are the specific absorption coefficients of
non-algal particle and phytoplankton, respectively;

The absorption of CDOM can be parameterized by:

aCDOM(λ) � aCDOM(λ0) × exp( − S(λ − λ0)) (A5)
where aCDOM(λ0) is the absorption coefficient of CDOM at the
reference wavelength λ0; S is the CDOM absorption spectrum
slope; λ0 was set to 440 nm. S was set to 0.013(Li et al., 2006). As
CDOM don’t make obvious contributions to the Red-NIR
spectrum (Zhang et al., 2014), in this study, the sensitivity of
Cchla models to aCDOM was not discussed. aCDOM(λ0) is set to 0.5.

The backscattering coefficients of non-algal particle can be
parameterized using the following equation:

bbp(λ) � bpp(λ) × CTSM × b̃p (A6)
where bpp(λ) and b̃p are the specific coefficients and backscattering
probability of non-algal particle. In this study, b̃p is set to 0.05(Li,
2007). The backscattering probability of pure water is 0.5. apd(λ),
apph(λ) and bpp(λ) were from Dall’olmo and Gitelson, 2006
(Huang et al., 2011) research. The simulation was processed
combing Eqs. A1–A6, and (3).
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