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Quantifying carbon uptake or gross primary production (GPP) from agroecosystems is
important for understanding the spatial and temporal dynamics of carbon fixation by crops.
The availability of high-resolution remote sensing data can significantly improve GPP
estimation of small-scale agricultural fields. Multispectral satellite data with 3-m spatial
resolution and frequent global coverage are available from the PlanetScope network of
satellites. However, this data remains largely unexplored for studying the carbon dynamics
of agroecosystems. The overarching goal of this study was to develop a simple empirical
method for quantifying the GPP of dryland maize (Zea mays L.) using remotely sensed
vegetation indices along with in-situ measurements of photosynthetically active radiation
and leaf area index by linking it with carbon uptake data from an eddy covariance flux
tower. Four vegetation indices were investigated: the normalized difference vegetation
index (NDVI), the soil adjusted vegetation index (SAVI), the weighted difference vegetation
index (WDVI), and the two-band enhanced vegetation index (EVI2). This study was
conducted over a three-year period from 2017 to 2019 in East-Central Texas. A total
of 12 GPP prediction models were developed using individual yearly data and were used
for predicting GPP of the other 2 years. Predicted maize GPP values were then compared
against tower-based GPP. The NDVI models were the least successful in predicting GPP
and had the highest root mean square error (average: 10.1 3 gC m−2; maximum: 26.3 gC
m−2). Models based on SAVI performed especially well with error ranging from 0.05 to
0.94 gC m−2. The slope of the regression between SAVI-based estimated GPP and
measured GPP was not different from 1.0 in all combinations of years. The success of the
SAVI-based GPP models for predicting dryland maize carbon uptake indicates that it was
the least affected vegetation index by changing soil background condition in this row
cropping system.
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INTRODUCTION

Photosynthetic carbon dioxide (CO2) uptake and respiration are important mechanisms that
determine the carbon source or sink status of agroecosystems (Mowrer et al., 2020). Developing
crop management practices that promote carbon sequestration are pivotal as modern agricultural
production methods have contributed substantially to energy consumption and greenhouse gas
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(GHG) emissions around the globe (Weinheimer et al., 2010; Bai
et al., 2019). Gross primary production (GPP), the total CO2

captured by an ecosystem through photosynthesis, is the largest
terrestrial carbon sink (Menefee et al., 2020). A portion of GPP is
consumed during plant respiration and the remainder is stored as
net primary production (NPP) or biomass (Suyker et al., 2004).
As GPP is closely associated with photosynthetic activity,
monitoring GPP can assist in determining the vulnerability of
ecosystems to changes in climate, land use, and human activity.

In agroecosystems, GPP is closely correlated with crop
biomass production. A large portion of the crop biomass is
usually removed from the field during harvest. The remaining
plant biomass in the field is tilled back into the soil or left on the
surface. Tillage practices can cause substantial soil disturbances,
which in turn increases organic matter decomposition and
respiration (Govindasamy et al., 2020; Zapata et al., 2021).
Respiratory loses of carbon coupled with the removal of
harvestable biomass can lead to steady decline in soil carbon
stocks over time in agricultural lands. Because of the contributory
effects of both environmental factors and management practices
on carbon dynamics, accurately estimating GPP of agricultural
systems is essential for understanding how cropping systems
interact with atmospheric carbon pools, both as sink and
source of CO2 emissions.

Remote sensing using satellite, aerial, and ground-based
platforms has improved our ability to study the impact of
human activities on ecosystem development and processes,
including plant growth analysis and carbon cycling (Padilla
et al., 2012; Rajan et al., 2014; Murray et al., 2016; Shafian
et al., 2018). Integrating satellite and aerial images with data
analytic algorithms has greatly improved over the past few
decades and is now commonly used in many agroecological
studies. Satellite remote sensing has several benefits compared
to ground-based measurements. The main advantage is that
satellite data can cover larger areas compared to ground-based
sensors and is a reliable and easy-to-access data source for
assessing remote locations. Various studies have investigated
the capacity of using satellite GPP estimation in determining
the fate of carbon across different ecosystems at the regional and
global scales (Potter, 1999; Rambal et al., 2014). In agricultural
settings, remotely sensed carbon uptake estimation can also
improve yield forecasts as GPP is tightly linked to crop
biomass production, such as herbage, grain, or fiber biomass
(Alganci et al., 2014; He et al., 2018).

Over the past few decades, multiple methods of modeling GPP
using remote sensing data have been developed, including the
Vegetation Photosynthesis Model (VPM), Greenness and
Radiation (GR), and Temperature and Greenness (TG) models
(Wu et al., 2014; Jin et al., 2015; Dong et al., 2017; Jiang et al.,
2021). Many of these methods use a statistical relationship
between a vegetation index (VI) estimated from remotely
sensed data and GPP to estimate gross carbon uptake with
minimal additional inputs. Other methods, like VPM, use a
light-use efficiency (LUE) based approach where GPP is
related to the product of the fraction of absorbed
photosynthetically active radiation (fAPAR) and LUE of the
plant being studied. This type of model was originally

proposed by Monteith (1977) and has since been widely used
and modified to suit the needs of GPP modeling efforts (He et al.,
2018). The most common modification of this approach is to
replace fAPAR or the efficiency term with a VI estimated from
remote sensing data. Multiple studies have shown that LUE and
VIs are well correlated and that VI can replace LUE components
in modeling GPP (Wu et al., 2010; Verma et al., 2015).

The advent of high-resolution (both spatial and temporal)
imaging satellites offers excellent potential to improve GPP
estimation via enhanced precision, however, it has been
under-investigated. One such high-resolution imaging
satellite network is the PlanetScope network (Planet Labs
Inc., San Francisco, CA, United States), which consists of
over 130 multispectral imaging satellites providing images
with three spectral bands in the visible range and one near-
infrared (NIR) band. PlanetScope satellites take daily images
with a spatial resolution of 3-m from a 400 km sun-
synchronous orbit, offering much greater spatial resolution
than other commonly used satellite systems (i.e., MODIS has a
250-m resolution for most bands and daily repeat cycle;
LANDSAT has 30-m resolution for most bands and 16-day
repeat cycle).

For in-situ GPP estimation, one of the most common and
effective methods is the eddy covariance method. Eddy
covariance is a micrometeorological method that is extensively
used for measuring gas fluxes (Baldocchi, 2020). Using eddy
covariance, net ecosystem exchange of CO2 (NEE) between the
biosphere and atmosphere is determined as the covariance
between vertical wind velocity and CO2 concentration (Rajan
et al., 2013). High-speed measurements of wind velocity and CO2

concentration are generally made using fast-response
instruments (i.e., 10 Hz or above). During daytime, the
measured NEE using this method represents the balance
between gross CO2 uptake through photosynthesis (GPP) and
CO2 that is released through ecosystem respiration which
includes both autotrophic and heterotrophic respirations.
Nighttime fluxes are solely ecosystem respiration from both
autotrophic and heterotrophic sources.

Combining PlanetScope satellite data with GPP estimated
using the eddy covariance method could help to construct
high-accuracy GPP prediction models. Such models could be
extremely useful for upscaling flux data measurements as well as
estimating crop yield and carbon footprint on much larger spatial
and temporal scales. However, such studies involving high
resolution satellite data and eddy covariance-based
measurements of GPP from dryland agricultural systems are
scarce. In this study, we developed relatively simple
regression-based models of GPP using VIs estimated from
PlanetScope satellite data and compared it with eddy
covariance-based GPP estimates from a conventional dryland
maize (Zea mays L.) field in East-Central Texas. Our goal was to
test relatively simpler VI-based GPP regression models as an
alternative to complex LUE models. Specifically, the study
examined four VIs, the normalized difference vegetation index
(NDVI), the soil adjusted vegetation index (SAVI), the weighted
difference vegetation index (WDVI), and the two-band enhanced
vegetation index (EVI2).
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MATERIAL AND METHODS

Site Information
A three-year study was conducted in a 34-ha dryland maize field
located at the Texas A&MResearch Farm (Figure 1) near College
Station, TX (30°32′46.2″N, 96°25′19.7″W, elevation 112 m). The
region has a humid subtropical (Köppen Cfa) climate with an
average annual temperature of 20.6°C. The 30-year average
precipitation is 1,018 mm, which has a bimodal pattern with
the highest rainfall usually occurring in May, June, and October
(Menefee et al., 2021). There were three soil types in the study
field, all with predominantly shrink-swell clay minerals.
Approximately 90% of the field was covered by Ships clay
(Chromic Halpludert) and Weswood silty clay (Udifluventic
Haplustepts) and the remaining area was covered by Weswood
silt loam (Udifluventic Haplustepts) (Figure 1).

The maize field was managed using practices that were typical
for the region. Maize was planted on 10 March [day of year
(DOY) 69] in 2017, 6 March (DOY 65) in 2018, and 7 March
(DOY 66) in 2019 with a seeding rate of 60,000 seeds ha−1. Disc-
tillage was performed before planting in 2017 and 2018. Due to
unusually wet soil conditions and a short planting window, pre-
plant tillage was not performed in 2019. High-yielding maize
hybrids were planted each year (B-H 8845 VTB in 2017, Pioneer
P1602 AM in 2018, and DeKalb 67–42 in 2019). Row spacing was
0.76 m. Nitrogen fertilizer was applied after planting at a rate of
125 kg N ha−1 as urea ammonium nitrate (32-0-0) in all 3 years.

Maize was harvested on 25 July in 2017 (DOY 206), 19 July in
2018 (DOY 200), and 12 August in 2019 (DOY 224). Plant
residues were shredded post-harvest and tilled into the soil
using disc tillage.

Satellite Imagery Data
Satellite imagery from cloud-free days with full area coverage was
downloaded from Planet Labs Inc., (San Francisco, CA,
United States). Twelve images were selected during the 2017
growing season (DOY 79–203), 18 images were selected in 2018
(DOY 66–200), and 14 images (DOY 65–221) were selected in
2019. The spectral bands include red (590–670 nm), green
(500–590 nm), blue (455–515 nm), and NIR (780–860 nm).
Images have a radiometric resolution of 16 bit with a pixel
size of 3 m × 3 m. Downloaded images were analyzed using
the ENVI image processing software (Version 5.3; Harris
Geospatial, Boulder, CO, United States). The digital number
values were converted to top of atmosphere reflectance and
subsequently to surface reflectance using coefficients supplied
with the Planet Radiance product (PlanetLabs, 2021). The
conversion to surface reflectance corrects for the impacts of
aerosols, ozone, and water vapor using internal models and
additional input data from MODIS (PlanetLabs, 2021). The
average band values of the entire study field (approximately
112,000 pixels) were then extracted for calculating VIs as follows:

NDVI � (NIR − Red)
(NIR + Red) (1)

SAVI � (NIR − Red)
(NIR + Red + 0.5)p1.5 (2)

WDVI � NIR − (1.06pRED) (3)
EVI2 � 2.5p

NIR − RED

1 +NIR + 2.4pRED
(4)

Soil Adjusted Vegetation Index was calculated with a soil
adjustment factor of 0.5 (Huete, 1988). Weighted Difference
Vegetation Index was calculated using the slope of the soil
line, 1.06 (Clevers, 1991). Enhanced Vegetation Index 2 was
calculated as a two-band version, with a gain factor of 2.5, a
soil adjustment factor of 1.0 (different from that of SAVI), and an
aerosol correction of 2.4 (from the blue band) (Zhang, 2015). As
we needed a VI value for each day of the growing season, simple
linear regression analysis was used to estimate daily VI values
between two acquisition dates.

Eddy Covariance Instrumentation and Flux
Processing
The eddy covariance flux tower was established in February 2017
and continuously maintained until December 2019. Data collected
during the growing season (from planting until harvest) was used
in GPP modeling. The main instrumentation included two fast-
response instruments: a gas analyzer for measuring CO2 and water
vapor concentration (Model LI-7550; LI-COR Biosciences,
Lincoln, NE, United States) and a three-dimensional sonic
anemometer (Model CSAT-3, Campbell Scientific, Logan, UT,
United States) for measuring wind velocity and sonic

FIGURE 1 | (A) Location of the study field near College Station, Texas,
United States; (B) Eddy covariance flux tower in the field; (C) High-resolution
PlanetScope satellite image of the study field with the white outline indicating
the boundary and the yellow star indicating the location of the flux tower.
Numbers 1–3 represent soil types present at the site and orange lines indicate
the boundary between soil types.
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temperature. Instruments were attached to a horizontal mast on a
tripod facing south-east, the direction of the prevailing winds in the
region (Figure 1). The height of the horizontal mast was adjusted
routinely to maintain a 2 m instrument height above the plant
canopy to maintain an approximate 200 m fetch (measurement
radius). The gas analyzer was calibrated annually, and its internal
chemicals (CO2 and H2O scrubbers) were replaced as
recommended by the manufacturer. Both instruments were
connected to LI-COR’s SmartFlux on-site data recording and
flux processing system. Data from both instruments were
collected at 10 Hz frequency.

Open-source EddyPro (version 6.2.2) software (LI-COR
Biosciences, Lincoln, NE, United States) was used for flux
processing. EddyPro performed several post-processing
corrections before computing the final half-hourly NEE fluxes.
These corrections included coordinate rotation, frequency
response corrections, corrections for air density fluctuations, and
sensor separation delays (Menefee et al., 2020). Following post-
processing, EddyPro flagged data quality based on internal
turbulence tests. High-quality data was marked with a “0”,
moderate quality with a “1”, and low quality with a “2”. Low-
quality data mainly occurred during precipitation events and when
the friction velocity was less than 0.2. Routine maintenance
(i.e., calibration), instrument shutdown during management
activities (i.e., planting), and occasional power failure also created
gaps in the data. Gap filling was used to predict missing and poor-
quality data points. We used the Max Plank Institute for
Biogeochemistry’s R-based gap-filling program (REddyProc
version 72 written in R Gui 3.4.1), which fills data gaps based on
a marginal distribution algorithm (Reichstein et al., 2005) that uses
meteorological variables to calculate the missing flux data. The same
program also partitioned NEE into its two component fluxes, GPP
(assimilatory fluxes) and Reco (respiratory flux) using a nighttime-
based flux partitioning method. In the nighttime-based flux
partitioning method, the REddyProc algorithm determines
relationship between temperature and nighttime CO2 flux, given
that all nighttime flux is Reco. This relationship is then used to
calculate daytime Reco as a function of temperature and finally GPP
is calculated from NEE and Reco as NEE is the sum of Reco and GPP
(Rajan et al., 2013). Finally, all half-hourly GPP values were summed
up to estimate daily carbon uptake. Daily GPP values were then used
for estimating weekly averages for developing regression models.

Weather
Additional meteorological instruments were installed at the site
to collect weather and soil data. Particularly, air temperature and
relative humidity were measured using an HMP155A probe
(Vaisala, Vantaa, Finland). Photosynthetically active radiation
(PAR) was measured using a quantum sensor (LI-190R, Li-COR,
Lincoln, NE, United States). A tipping bucket-style rain gauge
(TE525, Texas Electronics, Dallas, TX, United States) was used to
measure precipitation. All additional meteorological instruments
were connected to a CR3000 datalogger (Campbell Scientific,
Logan, UT, United States). Readings from the instruments were
collected every 2 s, which was later used for computing half-
hourly averages. Precipitation was estimated as the cumulative
sum over the half-hourly period.

Leaf Area Index
Plant samples were collected every other week from six selected
areas within the field. At each location, 15 plants were randomly
selected and destructively sampled for leaf area. Leaf area was
measured by passing sampled leaves through an LI-3100 leaf area
meter (LI-COR, Lincoln, NE, United States). Leaf area index
(LAI) was calculated using measured leaf area and plant
population data.

Gross Primary Production Model
Development and Validation
Considering that the amount of CO2 that is fixed during
photosynthesis is generally proportional to the amount of PAR
absorbed by the plant canopy, a common method for estimating
GPP could be formalized as follows:

GPP � LUE*PAR*fAPAR (5)
where LUE is light use efficiency (g C MJ−1), PAR is incoming
photosynthetically active radiation (micromoles m2 s−1), and
fAPAR is the fraction of PAR absorbed by the plant canopy.
The measurements of LUE and fAPAR usually require
significant field data collection. To extend the application
of this model, a few changes have been proposed by multiple
authors. For example, GPP has been shown to be
proportional to VI * PAR in a similar manner compared
to LUE * PAR, for a wide variety of crops, including maize
(Gitelson et al., 2012; Peng et al., 2013; He et al., 2018).
Additionally, LAI has been shown to correlate well with
fAPAR in grasslands dominated by plants with
horizontally oriented leaves and croplands with plenty of
between-plant spaces (e.g., row spacing), where LAI is
typically less than 4 (Arnó et al., 2013).

In this study, we hypothesized that the eddy covariance based
GPP would be proportional to the product of VI, LAI, and PAR as
shown in Eq. 6.

GPP αVI*LAI*PAR (6)
To test this hypothesis, we developed GPP regression models

using single-year remotely sensed VIs, LAI, PAR, and eddy
covariance GPP data. Simple linear regression models were
developed using the product of VI * LAI * PAR as
independent variable and eddy covariance-based GPP as
dependent variable. Using data from each year, we developed
four models using NDVI, SAVI, WDVI and EVI2. In total, twelve
GPP prediction models were developed using data from 3 years.
These single-year data based linear regression models were then
used to predict GPP for the other 2 years. For example, linear
regression models developed using 2017 data were used to predict
GPP in 2018 and 2019. Simulated GPP was then compared to in-
situ GPP to determine model accuracy.

Statistical Analysis
Statistical analysis was performed using SigmaPlot (Version 14.0)
and R (Version 3.4.1). The index of agreement (d-index) was
calculated using the following equation Eq. 7:
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d � 1 − ⎡⎢⎣ ∑(y − x)2∑(∣∣∣∣x − �y
∣∣∣∣ + ∣∣∣∣y − �y

∣∣∣∣)2⎤⎥⎦ (7)

where x is the modeled value and y is the observed value. The
d-index shows the degree of agreement between the modeled data
and the measured data. D-index values range between 0 and 1,
with better fits being closer to 1.0. Root mean square error
(RMSE) was calculated as follows Eq. 8:

RMSE �
���������∑(x − y)2

n

√
(8)

Agreement between modeled and in situ GPP was also
investigated using simple linear regression. Linear regression
analysis was performed using SigmaPlot and the slope of the
model was compared to 1.0 using the t-test function within
SigmaPlot. The coefficient of determination (R2) was also used
to compare the agreement between predicted and measured GPP.

RESULTS

Seasonal Progression of Vegetation Indices
and Gross Primary Production
There were differences in maize growth during the three
growing seasons which was reflected in the seasonal VI
curves and eddy covariance GPP (Figures 2, 3, respectively).
All four vegetation indices followed a similar pattern which
peaked around DOY 150 in all 3 years. This seasonal variation in

growth was primarily driven by changes in weather,
predominately precipitation (Figure 4). This was evident in
the strong agreement between cumulative precipitation and
cumulative GPP (R2 = 0.97).

In all 3 years, maize was planted in early March. However,
March of 2017 had warmer average air temperature than that of
2018 and 2019 (19.1°C compared to 17.5°C and 14.7°C,
respectively) and high soil moisture, likely leading to faster
crop establishment that year. Daily GPP was the highest in
2018 (26.8 g Cm−2) compared to 2017 (20.9 g Cm−2) and 2019
(20.0 g Cm−2). This maximum daily GPP period coincided with
reproductive growth phases in May and June, where 2018 was
warmer than 2017 or 2019 (26.9°C compared to 25.1 and 25.5°C).
During the senescence phase of the 2019 growing season, daily
GPP was higher compared to that of 2017 and 2018, which was
reflected in all four vegetation indices. This late-season GPP and
visible plant growth was largely influenced by the growth of
warm-season weeds, particularly Bermudagrass (Cynodon
dactylon) and Palmer amaranth (Amaranthus palmeri) during
the latter portion of the growing season, driven by high
precipitation received at the site during the post-maturity
period of maize. There were considerable differences in
precipitation between the 3 years. Growing season
precipitation (March–July) in 2019 was considerably higher
(618 mm) than the other 2 years. The least amount of growing
season precipitation was received in 2018 (330 mm).
Precipitation in 2017 was 452 mm. Annual precipitation was
1,346 mm for 2017 (including rain from Hurricane Harvey),
1,234 mm for 2018, and 1,060 mm for 2019. Despite some

FIGURE 2 | Seasonal progression of vegetation indices over the growing seasons in 2017, 2018, and 2019 for a dryland maize field located near College Station,
Texas, United States. Vegetation indices include the normalized difference vegetation index (NDVI), the soil adjusted vegetation index (SAVI), the weighted difference
vegetation index (WDI), and the enhanced vegetation index 2 (EVI2).
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differences in the seasonal pattern of GPP and precipitation, total
carbon uptake between the 3 years was similar. Cumulative
growing season GPP was 1,361 g Cm−2 in 2017, 1,408 g Cm−2

in 2018, and 1,374 g Cm−2 in 2019.

Gross Primary Production Models
Prediction models for GPP were developed for each year using
weekly average values of VI*PAR*LAI and eddy covariance-
based GPP (p < 0.0001). All twelve models were linear in nature
with R2 between 0.92 and 0.96 (Table 1). Figure 5 shows the
relationship between weekly averages of VI*PAR*LAI and in-
situ GPP for all 3 years combined. Similar to single-year models,
there was a strong linear relationship between VI*PAR*LAI and
in-situ GPP when the data were combined. The SAVI-based
model had the highest R2 value of 0.95. When data were
combined, a first-order polynomial model provided the
highest R2 for EVI and WDVI.

Testing of Gross Primary Production
Models
We used GPP prediction models developed using single-year data
to predict GPP for the other 2 years and compared the results
with in-situ GPP from those years. Figure 6 presents in-situ GPP
in 2017 plotted against predicted GPP. In this case, models
developed using 2018 and 2019 data were tested for its
accuracy for predicting 2017 GPP. Among the four VI models,
GPP models using SAVI estimated in-situ GPP with greater
accuracy (lowest RMSE). Analysis for the slope using t-test
showed a 1:1 relationship between in-situ GPP and predicted
GPP using SAVI models developed using 2018 and 2019 data. A
weekly time series of 2017 in situ GPP and SAVI-based
predictions are shown in Figure 9A for easy comparison.
Other VI-based GPP models significantly overestimated 2017
GPP (slope <1).

Figure 7 presents in-situ GPP in 2018 plotted against
predicted GPP. In this case, models developed using 2017
and 2019 data were tested for its accuracy for predicting
2018 GPP. Similar to the previous year, SAVI-based GPP
models predicted in-situ GPP in 2018 with greater accuracy
(lowest RMSE). A time series graph is provided in Figure 9B.
Analysis for the slope using t-test showed that the slope of the
regression line was not significantly different from 1 (p > 0.05)
in both years. Among other VIs, EVI and WDVI-based GPP
models based on 2019 data predicted in-situ GPP with accuracy
similar to that of SAVI. However, the RMSE of these model
predictions were higher than that of SAVI (Table 2). Among the
VIs, NDVI prediction model using 2019 training data had a
particularly high RMSE (26.3) and greatly overestimated actual
GPP in 2018.

FIGURE 3 | Daily gross primary production (GPP) of maize during the
2017, 2018, and 2019 growing seasons.

FIGURE 4 | Monthly average air temperature and cumulative
precipitation across the 3 years (2017–2019) near College Station, TX,
United States. The high precipitation in August 2017 was due to Hurricane
Harvey.

TABLE 1 | Slope and intercept of linear regression models developed using eddy
covariance-based gross primary production and the product of vegetation
index, leaf area index, photosynthetically active radiation. Vegetation indices that
were studied include the normalized difference vegetation index (NDVI), the soil
adjusted vegetation index (SAVI), the enhanced vegetation index 2 (EVI2), and
the weighted difference vegetation index (WDVI). R2 is the coefficient of
determination.

Vegetation index Slope Intercept R2

2017

NDVI 1.25 1.90 0.92
SAVI 2.22 2.66 0.95
EVI2 1.54 2.77 0.95
WDVI 2.58 2.87 0.95

2018

NDVI 2.34 1.53 0.96
SAVI 2.21 2.49 0.96
EVI2 2.22 2.62 0.96
WDVI 3.66 2.69 0.95

2019

NDVI 1.46 2.36 0.94
SAVI 2.29 2.44 0.94
EVI2 2.34 2.55 0.93
WDVI 4.04 2.59 0.93
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FIGURE 6 |Measured 2017 gross primary production (GPP) against predicted GPP using the 2018 and 2019 GPP models. Straight lines are regression lines and
the dotted red line is the 1:1 line.

FIGURE 5 |Measured gross primary production (GPP) plotted against the product of vegetation index (VI), photosynthetically active radiation (PAR), and leaf area
index (LAI). Vegetation indices include the normalized difference vegetation index (NDVI), the soil adjusted vegetation index (SAVI), the enhanced vegetation index 2
(EVI2), and the weighted difference vegetation index (WDVI).
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Figure 8 presents in-situ GPP in 2019 plotted against
predicted GPP. In this case, models developed using 2017
and 2018 as training data were tested for its accuracy for
predicting 2019 GPP. As with the previous years, SAVI-based
prediction models were the most successful with the lowest
RMSE and 1:1 agreement. A time series graph showing weekly
in situ GPP and SAVI-based predictions are provided in
Figure 9C. Unlike other years, 2018 GPP prediction models
developed using NDVI, EVI2 and WDVI also estimated in-situ
GPP accurately (slope = 1). However, 2017 GPP prediction
models using NDVI, EVI2 and WDVI overestimated 2019 in-
situ GPP.

DISCUSSION

Globally, croplands contribute to more than 10% of terrestrial
GPP (Ai et al., 2020). Primary production of crops is an
indicator of the physiological, climatic, and management
constraints affecting plant growth and development. As a
C4 crop, maize has one of the highest GPP among
cultivated crops under ideal growing conditions (Suyker and
Verma, 2012). The magnitude of daily GPP that was measured
at our study site using the eddy covariance method was similar
to GPP of maize measured in the U.S. Great Plains under
rainfed conditions (Suyker and Verma, 2012; Dold et al.,
2019). As GPP is an important metric for understanding
CO2 fixation through photosynthesis at the field, regional,

and/or global scales, remote sensing-based methods are
commonly employed for estimating GPP (Turner et al.,
2006; Chen et al., 2021).

On a global scale, data from the Moderate Resolution
Imaging Radiometer (MODIS) sensor aboard NASA’s Terra
satellite is commonly used to assess terrestrial ecosystem
function and GPP (Turner et al., 2006). In a recent study
(Huang et al., 2018), MODIS GPP was compared with in-
situ measurements from seven maize eddy covariance flux sites
in different areas around the world. Their results showed that
the GPP of maize was underestimated by 6–58% across these
sites. This underestimation was primarily due to inaccuracies in
LUE and fAPAR estimates that were used to generate the
MODIS GPP product. Several previous studies reported
similar issues with GPP estimated based on the LUE
approach (Yuan et al., 2014; Zhu et al., 2018). One potential
flaw leading to GPP underestimation in most LUE methods is
the treatment of plant canopy as a monolith and an inability to
capture sudden temporal changes in carbon uptake (Mercado
et al., 2009; Oliphant et al., 2011). There has been some effort to
develop two-leaf methods that differentiate between sunlit and
shaded leaves in GPP estimation. (Guan et al., 2022) was able to
improve on the two-leaf model even further with the addition
of radiation scalars.

In our study, we tested a simplified method for estimating
GPP using VIs estimated from the high resolution PlanetScope
satellite along with in-situ LAI, PAR, and eddy covariance-based
carbon flux measurements. Our results showed consistent

FIGURE 7 |Measured 2018 gross primary production (GPP) against predicted GPP using the 2017 and 2019 GPP models. Straight lines are regression lines and
the dotted red line is the 1:1 line.
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prediction accuracy of maize GPP with SAVI-based models
compared to other indices. Although several studies have found
reasonable predictions of maize GPP with NDVI and EVI
(Kalfas et al., 2011; Zhang et al., 2015; Wagle et al., 2016),
the performance of these indices was not consistent in our study.
When crops are planted in wider rows, such as the case of maize
in our study, the bare soil between plant rows remains exposed
for a prolonged period during the growing season. As a result,
the soil becomes the dominant factor influencing scene
reflectance in satellite remotely sensed measurements. During
the early growing season, varying soil background brightness
due to moisture conditions as well as spectral interactions
between soil and developing canopy can strongly influence
the magnitude of remotely sensed VIs (Maas and Rajan,
2010). Additionally in croplands, pre-plant tillage, within-
season cultivation practices, and irrigation can bring changes

to soil reflectance (Gowda et al., 2001). Because of the effect of
these transient management events on soil reflectance, remotely
sensed indices that include terms to correct for soil background
conditions are more likely to successfully model GPP of
agricultural systems.

The index SAVI was specifically developed to counteract the
influence of soil background brightness on NDVI (Huete, 1988).
In many agricultural systems studies, SAVI-based models
predicted yield with better accuracy than NDVI (Guo et al.,
2019; Nagy et al., 2021). In our study, regardless of the year,
SAVI-based models estimated carbon uptake with RMSE less
than 1 g Cm−2 day−1. This was lower than the RMSE reported in
a global study that compared modeled GPP against in-situ GPP
obtained from 133 eddy covariance flux towers (2.08 g Cm−2

day−1). While EVI and WDVI also include soil-related factors
for correcting variable background reflectance, these indices
performed poorly compared to SAVI (RMSE between 1–17 g
Cm−2 day−1). Both EVI and WDVI have been shown to perform
more optimally when vegetation is dense, possibly reducing its
efficacy in correlating with GPP in the early stages of crop
growth of corn (Qi et al., 1994; Zhou et al., 2014). Dark-colored
soils and periods with very low LAI are dominant in rainfed
croplands, suggesting that SAVI likely has much utility for GPP
estimation in the rainfed crop-growing regions. While NDVI
remains one of the most popular indices, here it was the least
effective in predicting GPP. Unlike the other three indices,
NDVI does not include a soil-related factor and thus is likely
impacted by the bare soil between rows, especially in the early
growing season.

An advantage of the model (VI × LAI × PAR) that was
tested in this study is that it can be calculated using easily
obtainable data, especially when compared to both direct
measurements of GPP and the original LUE-based GPP
models. While we used manually collected LAI in our study,
LAI can be successfully estimated using remote sensing data
(Gitelson et al., 2003; Liu et al., 2012). More recently, remote
sensing based on unmanned aerial systems is also becoming
popular in estimating the LAI of crops (Shafian et al., 2018).
The use of light detection and ranging (LiDAR) sensors to
characterize the plant canopy and LAI estimation has also been
successful (Richardson et al., 2009; Tang et al., 2014).
Additionally, a ceptometer can also be used to measure LAI,
which is far less invasive and time-consuming compared to
destructive sampling.

The second variable that we used in our model is PAR, which
we obtained using a quantum sensor at our eddy covariance flux
tower site. Quantum sensors for measuring PAR are inexpensive
and reasonably simple to install and operate. Although most flux
tower sites around the world have quantum sensors, those sensors
are not generally available in local weather stations. However, the
majority of local weather stations have sensors for measuring
irradiance (incoming solar radiation). The proportion of
irradiance that is available for photosynthesis is fairly
consistent, allowing for estimation of PAR from irradiance. At
our site, approximately 45–50% of incoming solar radiation was
PAR, with some variability due to solar angle and atmospheric
conditions. This irradiance-based estimation of PAR has a

TABLE 2 | Summary of the statistical analysis (RMSE, d-index, and results of t-test) of
the performance of gross primary production (GPP) models comparing predicted
versus eddy covariance-based in-situ GPP (gC m−2 day−1). The t-test compared the
slope of the regression line to 1.0, with p values less than 0.05 indicating a slope
significantly different from 1.0. Vegetation indices used for developing GPP
prediction models include normalized difference vegetation index (NDVI), soil
adjusted vegetation index (SAVI), two-band enhanced vegetation index (EVI2), and
weighted difference vegetation index (WDVI).

Vegetation index RMSE (gC m−2 day−1) D-index t-test for slope

2017 in-situ GPP prediction using 2018 model

NDVI 10.02 0.96 p < 0.01
SAVI 0.878 0.99 p = 0.93
WDVI 13.59 0.93 p < 0.001
EVI2 12.61 0.94 p < 0.001

2017 in-situ GPP prediction using 2019 model

NDVI 8.11 0.96 p < 0.05
SAVI 0.05 0.99 p = 0.59
WDVI 15.72 0.92 p < 0.001
EVI2 16.85 0.91 p < 0.001

2018 in-situ GPP prediction using 2017 model

NDVI 8.17 0.96 p < 0.01
SAVI 0.85 0.99 p < 0.93
WDVI 9.67 0.93 p < 0.001
EVI2 9.12 0.94 p < 0.001

2018 in-situ GPP prediction using 2017 model

NDVI 26.30 0.85 p < 0.001
SAVI 0.94 0.98 p = 0.26
WDVI 1.39 0.98 p = 0.17
EVI2 2.88 0.98 p = 0.09

2019 in-situ GPP prediction using 2017 model

NDVI 6.44 0.96 p < 0.05
SAVI 0.19 0.98 p = 0.60
WDVI 8.64 0.91 p < 0.001
EVI2 8.90 0.90 p < 0.001

2019 in-situ GPP prediction using 2018 model

NDVI 1.29 0.98 p = 0.41
SAVI 0.74 0.98 p = 0.54
WDVI 1.07 0.98 p = 0.39
EVI2 2.18 0.98 p = 0.13
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maximum error of about 10% (Meek et al., 1984). Additionally,
many weather databases that are available online have historical
weather data which include total irradiance data (Richardson
et al., 2009; Bonifacio et al., 2015).

The success of the modeling effort in this study using the
SAVI-based method to predict maize GPP also highlights the
potential in using high-resolution satellite remote sensing to
estimate GPP at field scales. The improved resolution of
PlanetScope multispectral data (3 m) compared to the more
commonly used MODIS GPP product (1 km) improves the
accuracy of applications of remote sensing data by reducing
the error caused by mixed pixels. The high spatial resolution
of PlanetScope also creates the opportunity to estimate GPP from
smaller agricultural fields where the site area is too small to be

reliably measured by many of the more commonly available
satellites such as MODIS, Landsat, or Sentinel.

One possible route of model improvement and further the
study would be to incorporate additional factors that affect
crop growth and development or to apply other modeling
methods. For example, a large-scale GPP modeling study using
a similar method indicated that adding scalars for temperature
and water stress could improve the model performance and
was particularly effective in modeling cropland GPP (Zheng
et al., 2018). This was an expected outcome as variations of
plant water content can impact reflectance patterns across all
wavelengths (Asrar et al., 1984). Another potential use of the
incorporation of scalars is to model all fluxes (NEE, Reco, and
GPP) using satellite data to provide a more complete picture

FIGURE 8 |Measured 2019 gross primary production (GPP) against predicted GPP using the 2017 and 2018 GPP models. Straight lines are regression lines and
the dotted red line is the 1:1 line.

FIGURE 9 |Weekly averages of eddy covariance tower-based gross primary production (GPP) plotted against predicted GPP using SAVI-based GPP models for
2017 (A), 2018 (B), and 2019 (C).
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(Mahadevan et al., 2008). However, these methods should be
applied with caution, because short-term changes in soil
moisture and plant water stress can cause abrupt changes in
GPP within a short duration, which can be accurately captured
by eddy covariance measurements but can impose a challenge
for satellite-based image-based methods operated at a much
lower spatial and temporal resolution than eddy covariance
methods (Gitelson et al., 2012). Another method of improving
GPP estimates in a study like this would be to incorporate
cloud correction mechanisms to extract VIs from images with
cloud cover (Chen et al., 2004; Chu et al., 2021) allowing for
more images to be used in the development and validation of
models.

CONCLUSION

In this study, we showed that GPP prediction models developed
using SAVI estimated from remote sensing imagery and in-
situ PAR, LAI, and eddy covariance-based carbon flux
measurements predicted gross carbon uptake of dryland
maize with reasonable accuracy compared to other
remotely sensed indices. Superior performance of SAVI in
our study indicated that, in dryland row cropping systems, an
index that reduces the effect of soil background conditions
might capture the crop growth and development with higher
accuracy compared to indices that are vulnerable to soil
background changes. The high spatial resolution of
PlanetScope satellite data creates opportunities to estimate
GPP of smaller agricultural fields that are too small to be
reliably measured by other commonly available satellite data
with high spatial resolution. Future work is needed to test the
accuracy of remotely sensed LAI and PAR estimated using
regional weather data in the GPP models that we proposed in
our study. This will contribute to wide-scale applications of
this model in estimating GPP of dryland croplands especially
those that are small-scale fields using a relatively simpler
approach.
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