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Multibeam echosounder water column data provides a three-dimensional image of
features between the water surface and the seafloor. Although this swath of acoustic
data can be collected over a wide range of angles, most of the data, at least beyond the
range to the first seafloor return, is contaminated by noise created by receiver array
sidelobe interference. As a result, the water column data beyond the minimum slant range
commonly is excluded from analysis. This paper demonstrates a method to consistently
filter and extract targets comprising a gas seep feature across the multibeam swath,
including targets within the areas dominated by receiver array sidelobe interference. For
each sample range, data are filtered based on the mean plus a certain number (k) of
standard deviations of the sample values along that range. The filtering is coupled with a
morphological classification to retain only targets of interest while excluding background
data and noise. Data were collected over a shallow water artificial gas seep using two
different flow rates and at three different vessel speeds. Using the proposed method, 119
of 124 test seeps were identified correctly. Seep targets were identified at all angles across
the water column fan up to beam pointing angles of 55°, with 19 of 23 seeps being correctly
identified at angles greater than 50°. This method demonstrates that features can be
extracted and geolocated in the sidelobe noise when the interference is appropriately
filtered. These results will improve the areal extent of multibeam surveys and increase the
utility of acoustic data in capturing information on water column targets directly above the
seafloor.
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1 INTRODUCTION

Acoustic systems are effective instruments for detecting targets in the water column such as fish,
zooplankton, and bubbles (Simmonds and MacLennan, 2005). Free-flowing gas bubbles are an ideal
water column target due to the high-density contrast between gas bubbles and the surrounding water
(Clay and Medwin, 1977). Acoustic methods have been used for the detection of gas seeps since the
1960s (McCartney and Bary, 1965) and the value of detecting underwater gas seeps remains
important for a variety of reasons including locating, characterizing, and quantifying natural gas
seeps (Richardson and Davis, 1998; Sahling et al., 2014; Weber et al., 2014), assessing potential
contributions of greenhouse gases into the atmosphere (Bussmann and Suess, 1998; Greinert et al.,
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2010; Scandella et al., 2016), and monitoring potential leakage
associated with subsea storage of carbon dioxide (CO2)
(Blackford et al., 2014).

Multibeam echosounders (MBES) are a standard acoustic tool
for conducting geophysical surveys in the marine environment.
Though originally designed to map seafloor topography in high
resolution, modern systems also record the strength of the
acoustic returns, or backscatter intensity, from both the
seafloor and the water column (Mayer et al., 2002), providing
a potentially time- and cost-effective way to collect data on
physical and biological targets on and above the seafloor such
as gas seeps, anthropogenic objects, fish, or vegetation (Clarke,
2006; McGonigle et al., 2011; Schneider von Deimling and
Papenberg, 2012; Colbo et al., 2014; Innangi et al., 2016;
Dunlop et al., 2018).

Backscatter intensities from water column data (WCD) have
traditionally been considered a “supplementary” data product of
the MBES, and because of this many systems have not been
optimized regarding WCD quality. Many MBES transducer
systems employ a Mills Cross technique for beamforming
whereby the receiver array is arranged orthogonal to the
transmitter array allowing for the formation of narrow
directional beams (Urick, 1983) (Figure 1A). While this
configuration gives an advantage to high-resolution seafloor
detections, it can result in unacceptable amounts of
interference within the WCD record, either masking real
targets or creating artificial results. The most persistent of
these patterns are generally referred to as “sidelobe
interference” or “sidelobe artifact” and were first described in
depth by de Moustier and Kleinrock (1986) for the original Sea
Beam multibeam system. This interference is the result of the
beam patterns from both the transmitter and receiver arrays
where most of the energy is concentrated within the main lobe,
but some is also present in surrounding “sidelobes,” causing
characteristic interference pattern noise within the WCD in
both the transmitter and receiver directions (Clarke, 2006).
For the receiver array (across-track) direction, the noise
pattern within WCD generally results from the interaction of
the receiver array sidelobes with the strong specular seafloor
echoes, usually at nadir for a typical sonar orientation pointing
straight down on a flat seafloor (Figure 1D). This manifests
within the WCD record as an upwards-facing semi-circular
pattern of higher amplitude signals that impacts all samples
beyond the range of the first seafloor detection known as the
minimum slant range (MSR, Figure 1B). In the transmitter array
(along-track) direction, the sidelobe interference manifests as a
downwards-facing hyperbolic arc with an apex above the true
target location (Clarke, 2006; Marques, 2012).

Multibeam systems have been used in many studies for the
detection of shallow and deep-water gas seeps (e.g., Dupré et al.,
2014; Sahling et al., 2014; Skarke et al., 2014; Weber et al., 2014;
Michaud et al., 2016; Philip et al., 2016). Methods for automated
gas seep detections have been attempted (Urban et al., 2016; Zhao
et al., 2017; Zhao et al., 2020; Weber, 2021), but these detections
are rarely identified inside the receiver array sidelobe noise within
the water column data. For near-benthic MBES water column
feature extraction many studies exclude all data from beyond the
MSR (e.g., McGonigle et al., 2011; Nakamura et al., 2015; Zhao
et al., 2017) or only use the nadir beams (Kruss et al., 2015),
severely limiting the volume of data available for WCD analysis.

FIGURE 1 | (A) 3-D depiction of a Mills Cross multibeam system with a
transmitter array mounted perpendicular to the receiver array below the ship.
Multiple pings make up the sampling insonified volume, and each ping is
further broken down into beams and samples. (B) Demonstrates the
terminology for the minimum slant range (MSR) and the areas of data
encompassed above minimum slant range (MSRA) and below minimum slant
range (MSRB). MSRA, dominated by blue shows the “clean” area of the WCD
that is generally not impacted by sidelobe interference. MSRB dominated by
green demonstrates the data impacted by sidelobe interference due to the
strong nadir seafloor return in all beams and samples beyond the MSR. (C)
Shows examples of various types of noise within theWCD. Bottom detections
are indicated by the black dotted line. The yellow samples surrounding the
bottom detections are the spreading echoes of the seafloor return. (D)
Demonstrates the beam pointing angles. Nadir is 90° from the transducer
parallel to the surface and pointing directly down to the seafloor. The swath
width of a single side (port/starboard) of the data is shown as 65°. A real water
column feature is shown which is a gas seep fully enclosed within MSRB. The
beam pointing angle to the base of the seep target in this case is 51°. Colors
within each WCD ping represent raw amplitudes.
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Various studies have attempted to identify targets fromwithin the
sidelobe interference or propose methods for post-processing
sidelobe suppression. As the receiver array sidelobe interference
from the seafloor generally impacts WCD at common time/range
samples, the most promising methods involve de-noising
techniques based on sample range. de Moustier (2013)
proposed a Constant False Alarm Rate (CFAR) method to
normalize the signals along each time slice and only retain
samples that fall within the 75th quartile. Wang et al. (2020)
also proposed a CFAR-based algorithm (Double Selectivity Index
(DSI)-CFAR), which uses a sliding window to determine an
adaptive threshold for identifying seafloor and water column
targets. Weber (2021) proposed a CFAR detector coupled with a
morphology-based classifier to isolate gas seep targets. Wilson
et al. (2015) developed amodel of how noise from themain lobe is
recorded on other beams at the same range and subtracted it from
those sample ranges to mute the sidelobe noise, although they do
not provide specific details of their model or algorithm. Liu et al.
(2019) used a mean and standard deviation approach and a
compression factor to de-noise the water column images and
suppress the across-track sidelobe interference due to targets
within the water column using an adaptive soft threshold.
Schimel et al. (2020) proposed a promising method for
normalizing the WCD across the entire swath, with
applications of using WCD to detect giant kelp. This method
subtracts the average noise level across each sample range and
then reapplies a reference level based on the nadir beams.

Despite the proposal of these promising processing techniques
for sidelobe suppression, the robust and repeatable detection and
extraction of targets within the outer beams (e.g., fully enclosed
within the receiver array sidelobe interference beyond the MSR)
remains a challenge. Identifying the maximum extent of the
usable swath in the water column data is critical for
determining the maximum efficiency of WCD for target
detection of near-benthic targets, such as gas seeps extending
from the seafloor or vegetation (e.g., kelp). This study presents a
fully automated method for filtering WCD, including data
contaminated by receiver array sidelobe interference, to extract
potential WCD targets and then classify those targets into
potential gas bubble seeps in shallow water (<20 m). We
determine the full extent to which gas seeps can be accurately
identified in the MBES swath, particularly beyond the MSR, and
discuss the limits of detection and usefulness of the method in the
routine monitoring of gas seeps.

2 METHODS

2.1 Data Acquisition
A custom-built bubble release system (BRS) was used to release
controlled amounts of CO2 gas into the water column (Scoulding
et al., 2020). A gas cylinder containing 6 kg of compressed CO2

gas was housed in an aluminum frame (140 cm long and 120 cm
tall) at a 15° upward angle to help maintain flow. The gas cylinder
was connected to a dual gauge regulator and a 1/8″ screw valve to
control the flow of CO2 gas through to a PVC bubbler containing
five equidistant 0.53 mm holes. Two relevant flow rates

(determined by Scoulding et al., 2020) were tested, high flow
(2 L min−1) and low flow (0.2 L min−1).

The survey was conducted on the 4th of February 2020 off of
Kingston Beach in southern Tasmania. The BRS was deployed on
a gently sloping sandy seafloor in a water depth of 15 m. MBES
WCD was acquired from CSIRO’s 7.5 m vessel South Cape using
a pole-mounted Kongsberg EM2040C 1.3° (across-track per
beam) x 1.3° (along-track per beam) system. Data were
acquired at 300 kHz in continuous wave, single swath,
equidistant beam spacing mode (256 beams), using a “very
short” pulse length of 25 μs and with 130° swath coverage (65°

port and 65° starboard). WCD were recorded as separate *.wcd
files with a time-varied gain (TVG) on acquisition of 30 log(r) +
20 dB offset, where r is the range in m. Lines were run at
increasing distances from the BRS from both E-W and N-S
directions with approximately 20 lines run per 10° distance
from the BRS (e.g., 20 passes collected at angles 0–9°, 20
passes at 10–19°, up to 60°). Three speeds were tested (1 m/s,
2 m/s and 3 m/s) for each of the two bubble flow rates
(0.2 L min−1 and 2 L min−1) (Figure 2A). A sound velocity cast
was taken using a Valeport Monitor sound velocity profiler before
data acquisition. The profile revealed a slight thermocline at 10 m
depth (Figure 2B). Two additional casts were performed
throughout the survey to confirm stable conditions throughout
the water column.

2.2 Processing Methods
Multibeam water column data are recorded natively (in the
notations used in this paper) as a series of transmitted pulses
(from the transmitter array) which are recorded from the receiver
array in the across track direction and referred to as “pings”
(Figure 1A). Each ping consists of a certain number of formed
“beams” (e.g., 256 for the Kongsberg EM2040C in equidistant
mode) which are further broken down into time “samples”
(Figure 1A), where the signal amplitude of each sample is
recorded as the return echo strength at that range.
Throughout this work, “target” refers to a sample that is
considered to be a real reflector within the water column
(i.e., not considered noise or artifact) and “feature” refers to a
coherent object (e.g., gas seep, fish school) that is made up of
targets.

The sample-beam data can be geometrically processed to
display each ping as a projection in depth/across track
coordinates, as in Figures 1B–D. This is the typical multibeam
“fan” that converts the sample/beam data into real-world XYZ
coordinates. In this across-track view, the sidelobe interference
manifests as a “semi-circle of radius equal to the minimum slant
range (MSR) to the seafloor” (Clarke, 2006) where the sidelobe
noise is due to the impact of strong targets on neighboring beams
in the receiver array, primarily from the strong specular seafloor
return but also due to strong reflectors within the water column.
The strength of this sidelobe noise at any given range is the result
of the strength of the seafloor (or other strong reflector) return
combined with the beam pattern of the receiver array. For this
paper, the data above the MSR which is assumed to not be
impacted by receiver array sidelobe interference due to seafloor
echoes is referred to as MSRA, and the data beyond the MSR
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which is generally confounded by this type of sidelobe
interference is referred to as MSRB (Figure 1B). In addition to
sidelobe interference, MBES WCD can be contaminated with a

variety of other noise sources, such as acoustic interference
(impulse noise), ship noise, weather or turbulence from the
surface causing bubbles to sweep under the transducer.

FIGURE 2 | (A) Survey lines (solid black lines) are shown for combination of high flow (2 L min−1) and low flow rates (0.2 L min−1) (image rows) at three vessel
speeds of 1, 2 and 3 m/s (image columns). The black squares represent the locations of bubble release system. n is the number of survey lines run for each configuration.
The scale bar shows distance in meters. The color scale shows bathymetry depth in meters between 10 and 30. (B) Sound velocity profile from survey area.

FIGURE 3 | Overview of the pre-processing and filtering workflow steps. Images correspond to a single ping with targets comprising a seep feature within the
MSRB region. These show the results of applying the corresponding filtering step(s) in sequence. The color scale represents raw dB values ranging from −64 to 10 dB.
The black line in the top image (A) shows the original bottom detections. The blue line (B–E) is the modelled extent of the seafloor echoes.
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Examples of various types of noise and data characteristics of
WCD are shown in Figure 1C and a comprehensive list of noise
sources and how they appear in WCD can be found in Clarke
(2006). Beam pointing angle, as reported here, is the angle of a
specific beam from nadir (Figure 1D).

The sequence of a series of pings along the ship track can be
combined into a 3D volume (triangular volume in Figure 1A).
The insonified water volume decreases with increasing beam
angle, as described by Urban et al. (2016) and Schimel et al.
(2020). This presents an additional challenge when using the full
extent of the MBES WCD insofar as features near the seafloor in
the outer beams are truncated by the angle of the beam. In Urban
et al. (2016), the insonified water volume is further reduced by
excluding the volume of water beyond the MSR (Figure 3 in
Urban et al., 2016) (i.e., limited to only the data within MSRA

(Figure 1B). However, this study’s goal is to extend the useable
insonified water volume to include data within the full angular
aperture of the swath (MSRA + MSRB). For targets such as gas
seeps that present throughout the water column in shallow water,
this limits the detection potential in the outer beams.

The raw values recorded for water column amplitudes may
vary depending on manufacturer specifications and the
corrections that are applied on acquisition. For the Kongsberg
data used in this study, the amplitude values within the WCD
datagrams (AWC) are recorded in 0.5 dB resolution based on Eq. 1
in Gurshin et al. (2009). The raw Kongsberg EM2040 WCD
amplitudes were processed using custom Matlab scripts
(MATLAB 2019b) built on the open-source CoFFee toolbox
(CoFFee, 2020). In this method, water column targets were
extracted automatically using sequential filtering steps, with
each step further refining the extraction based on known noise
patterns of the WCD to isolate real targets. “Targets” in this
context, refer to individual WCD samples potentially
corresponding to real features within the water column.

2.2.1 Pre-Processing and Filtering Workflow
The pre-processing steps and filtering workflow is summarized in
Figure 3 and includes the following steps.

1. Convert and Pre-Process Water Column Data
Multibeam water column data files (p.wcd) are imported into
Matlab using functions from the CoFFee toolbox (CoFFee, 2020).
The data are then pre-processed to correctly geolocate water
column samples using the method described in Schimel et al.
(2020). Sample range is calculated using the sound velocity
recorded at the transducer within the WCD datagram
(Kongsberg, 2018).

During acquisition, the measured seafloor sample for each
beam is recorded as a “bottom detection” (shown as black dots in
Figure 3A). These bottom detections are smoothed and filtered to
remove errors using the CoFFee smoothing function
CFF_filter_WC_bottom_detect.m with a slope threshold of 10.

2. Remove Seafloor Echoes
The amplitude of the samples within the data beyond the
minimum slant range (MSRB) depends on the seafloor echo’s
strength at the corresponding slant range. To calculate

background water column noise levels in subsequent steps
(including sidelobe noise at impacted ranges), only samples
that are within the water column should be considered, and
thus the seafloor echo itself should not be included as part of
the water column data for subsequent calculations. The
echoes from the seafloor are generally the highest
amplitude samples within the WCD, which can skew the
average taken across all time samples, and therefore must be
removed prior to calculating the statistical thresholds based
on sample range.

While the seafloor for bathymetry is recorded as a single
bottom detection per beam based on the bottom detection
algorithm employed by the system, the echoes of the seafloor
are spread across multiple samples, with the number of
samples impacted increasing as the footprint of the beam
increases with beam angle and depth. The amount of
spreading can be estimated by calculating the spreading
footprint (f) on the seafloor in the across-track direction
based on the beamwidth, beam pointing angle, and the
range to the bottom detection using the equation:

f � r p((tan(θ + 0.5BW)) − (tan(θ − 0.5BW))) (1)
where ϴ is the beam pointing angle (radians) and BW is the
beamwidth (radians). In this case, the beamwidth used is the one
reported by the manufacturer in the system specifications (1.3° for
the EM2040C at 300 kHz). This estimation assumes a flat
seafloor. By adding this footprint value (in m) to the bottom
detection range value for each beam, we can estimate all samples
that may be impacted by the echoes from the seafloor above the
recorded bottom detection and can then use this as a boundary
condition to conservatively remove all the samples below any
possible impact of the seafloor echo (solid blue line in
Figures 3A–E).

3. Adaptive Statistical Thresholds
The threshold filtering is applied on a ping-by-ping basis. Two
thresholds are calculated for each ping, (3a) a threshold calculated
from the mean and standard deviation for each sample range
which removes the noise from the MSRB regions containing
sidelobe interference, and (3b) a threshold based on the
amplitudes within the MSRB region of the entire ping which
removes remaining low amplitude targets from MSRA.

3a. Threshold for Each Sample Range
For each ping the mean (μ) and standard deviation (σ) is
calculated across each sample range. A unique threshold value
for each sample range (ts) is then calculated by:

ts � μ + kσ (2)
where k is a constant multiplier representing the number of
standard deviations (by default k = 2, chosen initially based on the
two-sigma rule and determined as optimum through
experimentation with different values. No assumptions were
made on the distribution of samples). Data are filtered by
retaining only values along each sample range above the
threshold (ts) value for that range. If a sample is greater than
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FIGURE 4 | Example of rawWCD amplitudes plotted with the filtering thresholds for a seep located (A) near nadir and (B)within the outer beams fully within MSRB.

The graphs on the left show a plot of the rawWCD amplitudes (light blue line) for the beam indicated by the vertical black line on the corresponding image on the right. The
orange line is the sample range threshold, with a different threshold value for each sample range. The yellow line is the ping threshold, with a single value for all samples
and beams for that ping. Any part of the blue line that is to the right of both the orange and yellow thresholds at that sample range will be retained by the filtering. Any
data to the left of the thresholds will be rejected. The black arrows indicate the seep, which has amplitudes above (right) of both thresholds. The black dashed lines
indicate the transition between the MSRA and MSRB data. Note the lack of this transition in (A) as the plotted beam falls fully within MSRA. The color scale for the right
images is raw amplitude in dB and corresponds to the X-axis of the plots on the left.
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the threshold value for that sample range it is retained, otherwise,
the sample is removed (Figure 3C).

3b. Threshold for Each Ping
The threshold based on sample range removes most of the noise
within theMSRB region. Due to the lower background noise levels
for data within MSRA, low amplitude “targets” can still be
retained using only the sample-range threshold, creating a bias
of targets detected within MSRA that would be filtered out from
the higher background noise levels of MSRB. An additional
threshold is used to further clean the remaining water column
and to only retain targets that can be detected within both MSRA

and MSRB. An overall ping threshold value is calculated based on
the average amplitude levels within MSRB of the entire ping.
MSRB is determined by extracting samples with ranges greater
than the MSR but less than the bottom footprint calculated using
Eq. 1. Using these samples only, a single additional threshold for
each ping (tp) is calculated by:

tp � μ + 1/2k σ (3)
For the remaining samples from Step 3a, if the sample is

greater than the ping threshold tp it is retained, otherwise the
sample is removed (Figure 3D).

Figure 4 illustrates the two thresholds compared to the
WCD amplitudes along a specific beam over a seep target. The
noise level within MSRB depends on the initial response of the
seafloor echo at each slant range. The goal of calculating the
threshold along each slant range is to determine the amount of
“noise” that is proportional to and thus dependent on the
original seafloor echo, but without including the actual
seafloor value itself. This makes the calculated statistics self-
adjust to the impact of the seafloor signal within the sidelobes
at each range without skewing the values with the data from
the seafloor.

4. Filtering of the Outer Beam Noise
After applying the thresholds from steps 3a and 3b, we can
assume that the remaining noise is primarily due to other
persistent noise characteristics such as high noise in the outer
beams described by Schimel et al. (2020) or sources of noise not
related to sidelobe interference, such as ship-related noise or
acoustic interference (Figure 1C). To remove the outer beam
noise, data from the outer 5° beams are discarded (e.g., beam
pointing angles >60°) (Figure 3E).

5. Neighborhood Filter
As the final filtering step, a neighborhood filter is run on any
remaining targets. This removes impulse noise, bottom
reverberations due to acoustic interference, propeller or vessel
noise by using the non persistent characteristic of those (unlikely
to remain stable for several pings). The neighborhood filter runs
over a sequence of three pings, where for each ping the remaining
targets are compared with targets one ping before and after at the
same sample range. Any target within the central ping without at
least one neighboring target at the same sample range from the
surrounding pings is removed (Figure 3E).

6. Generation of the Point Cloud
The remaining samples are then exported to a text file containing
X (Easting in m), Y (Northing in m), Z (depth in m) coordinates
and relevant associated metadata (beam number, beam pointing
angle, ping number, file number, sample range, nadir bottom
detection range, amplitude) for each sample target. Although the
final data are exported in point format, note that each point
corresponds to the volume of water contained within the sample
resolution and beam width at that sample range.

For this experimental setup, the metal frame of the BRS
extended into the water column by 1 m and could impact the
water column samples near the bottom detections. Therefore, the
filtered data was run through one additional step to remove
samples within 1 m of the seafloor (the height of the lander
frame). It ensured that all detected targets, particularly within the
outer beams, corresponded to gas bubbles only and not an
interaction with the frame. This was performed as a
conservative measure to ensure accurate representation of seep
detection, but it would not need to be applied in a natural
environment where seeps would originate from the seafloor itself.

2.2.1.1 Filtering Variations
Various values of the constant multiplier k were tested to
determine the impact of changing this variable and to
determine the optimal value. Using the optimized value of k
(k = 2), variations to the remaining steps of the method were also
tested to demonstrate their impact on the final results. These tests
included not removing the seafloor echoes before calculating the
sample range statistics (step 2) and not applying the
neighborhood filter (step 5). These alternatives were used to
determine the optimal parameters and sequence of steps for
the method, and to demonstrate the impact of excluding any
of the steps.

2.2.2 Classification Workflow
Following the filtering workflow, the resulting XYZ points
represent a “cleaned” set of targets containing potential
features of interest, such as gas seeps, fish schools, or
vegetation. In this study, we are focusing on detecting gas
seeps and therefore the calssification methods were developed
to isolate and classify targets that correspond to seep features
automatically. This was done using the Matlab Computer Vision
toolbox. It includes the following steps (Figure 5).

(1) The results of the filtered XYZ workflow are converted to a
Matlab point cloud format.

(2) The point cloud is classified into clusters using the Computer
Vision cluster algorithm based on Euclidean distance
(pcsegdist), with a 1.0 m distance threshold.

(3) As gas seeps are expected to form a coherent feature
consisting of many points, any small clusters (<100-point
targets) are removed (seeps detected at 50° at 6 kts consist of
approximately 100–500 points).

(4) The remaining clusters are validated against morphological
criteria by calculating the height/width (H/W) ratio and
distance of the base of the target to the seafloor. Height
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(H, in m) is determined by calculating the difference between
the minimum andmaximumZ values within a cluster. Width
(W, inm) is determined by calculating the difference between
the minimum and maximum X and Y values (Easting and
Northing, in m) and using the largest as W.

(5) Clusters with a H/W ratio greater than 0.8 and those that are
within 5 m of the seafloor are classified as potential seeps. The
H/W ratio was chosen assuming that seep features will be
vertically extended within the water column. However, at
large beam angles, the reduced sampling volume limits the
vertical extent of the observed feature, so a moderate value of
0.8 was chosen to retain potential seeps within the outer
beams. The 5 m criteria was used under the assumption that
seeps will be emanating from the seafloor, so the minimum
detections should originate within 5 m of the seafloor,
otherwise, it may represent a different feature that may
appear similar morphologically but may be higher in the
water column. All other clusters are classified as “non-seep”
features.

(6) Final clusters are exported to an XYZ text file along with
corresponding data values for each sample, such as raw
amplitude (AWC), calculated Svu, beam number, ping
number, across-track distance, beam pointing angle,
sample range, bottom detection range, cluster number,
and whether the cluster was classified as a seep or non-
seep feature.

2.2.3 Noise/Amplitude Levels
Raw AWC values can be converted to an estimate of uncalibrated
volume scattering (Svu, dB re 1 m−1) using the equation from
Gurshin et al. (2009) and Urban et al. (2016), where subscript u
denotes uncalibrated values (Dunlop et al., 2018), as:

Svu � AWC − (X − 20)plog10(r) − 10plog10((cτ)/2) − C (4)
where X is time-varied gain (TVG) function, r is range (m), c is
sound speed (m/s), τ is pulse duration (s) and C is the TVG
offset.

Svu is used to compare relative differences in the strength of the
individual gas seep targets and compare the amplitude of targets
against the background noise levels. For all calculations using Svu,
arithmetic means are computed in the linear domain as
uncalibrated volume backscattering coefficients, svu = 10̂(Svu/
10) and reported back in the logarithmic domain Svu =
10log10(svu).

To compare maximum, minimum and mean Svu levels
detected for each pass over the seep, a slice of data between 12
and 13 m water depth was extracted to compare amplitude
strengths at a consistent depth. This range was chosen to be

far enough above the BRS so that the frame would not have
an impact on the amplitudes at any beam angle, but close
enough to the seafloor to include detections from large
pointing angles that may be limited due to the reduced
sampling volume in the outer beams. Average noise levels
from the Svu amplitudes were calculated for all WCD files, for
both the MRSA and MSRB regions using a series of 75 pings
of “empty” water column data (either before or after the
known gas seep).

3 RESULTS

The results are reported based on the beam pointing angle from
nadir to the base (at the seafloor) of the known seep target
(Figure 1D.) which is chosen to give an indication of the greatest
across-track distance for which the targets can be reliably
identified using a swath width on acquisition of 65° (port and
starboard).

3.1 Detection
By running the filtering steps, the original *.wcd data files are
reduced from a file size of 300 MB (approximately 500 pings
collected over 60 s) to XYZ text files of 1–6 MB. The output file
includes information for each sample target such as raw
amplitude, Svu, beam number, beam pointing angle, sample
range, nadir bottom range, ping number and whether the
sample is within the MSRB. In addition to the XYZ point
cloud, a quality control image is generated, showing the
targets retained by ping after the filtering process. Figure 6
shows examples of these images for a gas seep detected at (a)
nadir and (b) at 51°. In these images, the dark blue points are
targets identified within the MSRA region and orange points
indicate targets identified within MSRB. Even when fully within
MSRB (Figure 6B) the gas seep is visible as the prominent feature
before classification. The reduced vertical extent of the seep at the
higher angle is due to the reduced sampling volume as angle from
nadir increases (i.e., the bubbles rise out of the detection range of
the beams).

3.2 Classification
Individual gas seep features are automatically extracted from the
raw WCD amplitudes in the filtering and classification steps. An
example of one classified point cloud cluster is shown in Figure 7,
where the left image illustrates the raw water column fan in 3-D
and the right image shows the extracted point cloud overlaid in
black. The same survey line is presented as Figure 6B, where the
seep was located fully within theMSRB region with an angle to the
base of the gas seep at 51°.

FIGURE 5 | Overview of classification workflow.
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Examples of gas seeps extracted as 3-D point clouds at various
angles from 0° to 56° are shown in Figure 8. All of these were from
the low flow rate (0.2 L min−1) release with the vessel travelling at
3 m/s. The decreasing vertical detectable extent of the gas seep
with increasing angle is due to the decreasing sampling volume
near the edges of the water column fan. Gas seep clusters were
composed of numbers of point targets between 110 and 45,292,
with an average of 5,842 targets per gas seep feature. Numbers of
targets within the gas seep clusters decreased with increasing
speed and beam angle, due to the increased distance between
pings at higher speeds and the decreased sampling volume at
higher angles.

Each of the resulting gas seep point clouds was checked for
accuracy against the true seep location and original water column
fan images. A total of 124 survey lines with gas seeps with a
verified location of the BRS were analyzed across a range of angles

from 0 to 60°, along with 63 additional survey lines of data either
from line turns or passes where there was no flow from the BRS to
test for false positives or false negatives. Out of these 187 survey
lines, 178 were correctly classified (either as true gas seep or true
negative), indicating ~95% detection success. The total number of
correctly and incorrectly identified seeps binned by base angle is
shown inTable 1. At base angles of greater than 50°, 19 seeps were
correctly identified out of the 23 lines tested. For angles of 40–49°,
20 out of 21 were correctly identified. At angles less than 40°, all
seeps were correctly identified.

For the “control” survey lines with no gas seeps a total of four
false positives were detected. At least one false positive was due to
anomalous loss of data in one half of the swath for a few pings
which allowed vessel noise to bypass the threshold filters. For the
survey lines containing the target gas seep (n = 124) the single gas
seep feature was classified as two separate clusters five times. In

FIGURE 6 | 2-D quality control figures generated from filtering workflow. (A) shows a survey line with the gas seep located near nadir (4°), and (B) shows a survey
line with the gas seep base located at 51°. Base angle is the beam pointing angle to the base of the gas seep at the seafloor. The blue points indicate targets within MSRA,
and the orange points indicate targets within MSRB (fully within sidelobe interference). Black lines indicate bottom detections from the nadir beam. In these images targets
across all beams are overplotted at each ping number to compress the image from 3-D to 2-D.

FIGURE 7 | 3-D image of classified point cloud on original water column fan (single ping); (A) Original WCD image and (B) classified point cloud overlaid on
original data.
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these cases, the targets were divided between theMSRA andMSRB

portions of the data (Figure 8D). This was likely due to the high
noise at the interchange between these regions, which can cause a
gap in the points greater than the 1.0 m clustering threshold.
However, in these cases, the gas seep was identified correctly, with
each section classified as a separate gas seep cluster. Of the five
false negatives (where a gas seep should have been detected) only
one occurred at angles less than 55° (occurring at 44°). Four of the
five false negatives were made at the highest speed tested of 3 m/s.
Only one false negative was identified for the high flow seep,
which had a base angle of 58°.

The constant multiplier, k, represents the number of standard
deviations from the mean from which data are identified as real
targets above the background noise. Throughout the
development of the method many values of k were tested. We
present here two different values (one above and one below 2) to
demonstrate the impact of this value on detection capabilities.

These data are presented inTable 2. By decreasing k from 2 to 1.8,
one additional gas seep at angles greater than 50° was correctly
identified. However, the number of false positive detections
increased significantly due to the lower threshold values
retaining additional potential targets. Increasing k from 2 to
2.2 resulted in more true seeps (14 in total) being missed due
to the more aggressive threshold values. The method presented
using k = 2 was determined to provide the optimal results in terms
of high confidence of detections with low chances of false
positives.

Alterations to the workflow were also tested by removing
certain steps of the filtering process. The filtering steps were run
without first removing the samples from and below the seafloor
echoes (step 2) (Alternative 3, Table 2). This resulted in a
reduction in success rate from 95% to 72.0% with 32 of the
124 seeps no longer detected. Alternative 4 tested the impact of
removing the neighborhood filtering step (step 5). In this case, the
success rate dropped from 95% to 87.9%. Although all the seeps
correctly classified by the original method were the same for this
scenario, and three additional seeps were correctly detected, the
removal of the neighborhood filter resulted in significantly more
false positives as the noise that the filter would have removed was
incorrectly classified as seep related.

Figure 9 shows a comparison of the primary and alternative
methods with the results obtained by each method reported as a
percentage of the correctly identified seeps depending on beam
angle. This is the ratio of the positively identified seeps divided by the
total number of verified gas seeps within the dataset. This does not
include the control survey lines or false positives. The results were

FIGURE 8 | 3-D point clouds of classified seep features from various angles (A) 3°, (B) 13°, (C) 35°, (D) 43°, (E) 50°, and (F) 56°. The two colors in (D) indicate that
two separate seep clusters were identified.

TABLE 1 | Number of correctly and incorrectly identified seeps by base angle.
Base angles are binned by 10° increments.

Base angle Total lines tested Number correct Number incorrect

0–9 20 20 0
10–19 17 17 0
20–29 23 23 0
30–39 20 20 0
40–49 21 20 1
50–59 23 19 4
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binned by angle in 5° increments between 0 and 60° and plotted at
themidpoint of each bin. This figure shows that the primarymethod
has 100% success at identifying the seeps up to 40°, with the
reliability dropping to ~50% only past 55°. The alternate methods
(dashed lines) result in less consistent detections, even at angles <40°.
In particular, the alternativemethod that did not remove the seafloor
echoes prior to calculating the threshold statistics decreases
significantly past the transition to MSRB, indicating that this step
is critical for successfully determining an appropriate threshold for
each sample range.

Figure 10 illustrates the false positive detections for each
processing scenario. It highlights the marked increase in false-
positive detections for reducing k from 2 to 1.8, skipping the
removal of seafloor detection step, or skipping the neighborhood
filtering step. Combined with the correct percentages displayed in
Figure 9, the primarymethod using k = 2 provides optimal results
while minimizing false detections.

Changing the thresholds of the classification workflow only
altered the results slightly. Distance thresholds between 0.5 and

1 m made no difference to the overall results, with the only
difference being that a 0.5 m threshold resulted in more seeps
being split into two separate clusters at the MSRA/MSRB

transition. Increasing the threshold to 2 m also does not
impact the overall detections, but more possibly unrelated
targets are included in the classified seeps. Most gas seeps
within the outer beams (>50°) contained between 100 and 600
points up to speeds of 3 m/s. Changing the point threshold up to
500 points decreased the gas seep detection rates in the outer
beams (17 false negatives, overall success of 90% with no seeps
detected beyond 54°), and 100 was determined to be the optimal
count for retaining the most gas seeps without resulting in too
many small false clusters.

3.3 Noise Level Results
The background noise results (in Svu) for samples within MSRA

and MSRB were averaged for each speed using 75 pings of
“empty” WCD (no gas seep present) for each file to give an
overall indication of background noise levels. Within MSRA the

TABLE 2 | Results of total correct classifications using the primary and alternative processing steps. The total correct are the total number of either true seep detections or
true negatives out of 187 lines tested. Total numbers of correct and incorrect may be more than 187 due to false positives or due to a seep being classified twice due to
being split between the MSRA/MSRB transition. False positives are seeps features that were classified outside of the known seep location. False negatives are cases where
no seeps were detected on a line where the known seep was present. Total percent correct is based on the total number of correct detections divided by the total of correct
and incorrect.

Method Parameters Total correct Total incorrect False positives False negatives Total percent
correct

Primary k = 2 186 9 4 5 95.4
Alternative 1 k = 1.8 180 32 28 4 84.9
Alternative 2 k = 2.2 179 16 2 14 91.8
Alternative 3 k = 2; Step 2 (seafloor removal) skipped 152 59 27 32 72.0
Alternative 4 k = 2, Step 5 (neighborhood filter) skipped 181 25 23 2 87.9

FIGURE 9 | Percentage of seeps correctly identified by beam angle to seep base. The solid black line shows the results of using the primary method (k = 2), and
dashed lines show the results using the alternative methods. Different parameters for each method are indicated by the colour. Percentages were calculated using only
the count of correct seeps identified divided by the total number of lines containing a seep. The vertical orange line represents the typical transition between the MSRA

and MSRB data. Seeps detected at beam angles greater than 37.5° would generally be within the sidelobe interference of the MSRB data.
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background levels were −66.9, −66.2, and −54.5 dB for 1, 2, and
3 m/s, respectively. Within MSRB the background noise levels
were −37.4, −36.9 and −34.2 dB for 1, 2 and 3 m/s, respectively.

Background noise levels increased at higher speeds, likely due to
an increase in vessel induced noise at higher speeds. This is more
notable in the MSRA region, which is expected as the sidelobe
noise dominates most other noise sources in the MSRB region.

Histograms of the Svu and raw sample amplitudes within each
region of the WCD fan are shown in Figure 11. This highlights
the distinct higher background noise levels within the data MSRB.
The Svu of the gas seep-related targets are within the upper limits
of the MSRB background levels, indicating that targets can be
extracted using the filtering methods even close to the
background noise levels.

3.4 Seep Amplitude Results
The maximum, minimum and mean Svu values were determined
for each survey line for a horizontal slice of the extracted gas seep
targets between 12 and 13 m depth. Figure 12A shows the mean
Svu of targets for the high flow and low flow rate gas seeps across
all angles and speeds and whether the samples were detected
within the MSRA or MSRB regions. The mean Svu shows
consistent values across all speeds and angles. There is a slight
increase for the values within the MSRB region, which is due to
some lower amplitude samples being retained as targets within
the MSRA region, so the averaged values become biased at the
lower angles. Figure 12B shows the maximum Svu of the same
target sets as Figure 12A. These data also indicate that beam angle
does not significantly impact amplitude, although there is a slight
decrease above 55°. The average of the maximum samples was
−16.1 dB for the high flow (ranging between −11.8 and −21.2) and
−21.5 dB for the low flow (ranging between −18.0 and −27.8).

FIGURE 10 | Maps displaying false positives for the primary and alternative processing methods. Grids are in Easting (m) and Northings (m) using WGS84 UTM
Zone 55S projection coordinates. False positives are shown by crosses, and correctly identified seeps are solid circles. The two clusters’ locations of correct seeps are
the locations of the high and low flow deployments.

FIGURE 11 | Histograms of WCD samples Svu values by region. Blue
samples are from data in the MRSA region, green samples are from the MSRB

region, red samples are samples impacted by the echo of the seafloor and black
samples are from within a gas seep feature. All except for the seep samples
were from data within a single ping. Seep samples were collated over a series of
pings due to the low number of seep target samples within a single ping.
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These values indicate a ~6–7 dB detected difference between the
high and low flow rates. The average of the minimum samples
was −31.4 dB for the high flow (ranging between −33.1 and −28.4)
and −34.0 dB for the low flow (ranging between −37.2 and −28.3).
These values indicate that the detection limit for these target
using this method is ~3–5 dB above the background sidelobe
noise (samples within MSRB).

The amplitudes of the seep targets that were detected were
generally well above the sidelobe noise and had consistent
amplitudes across all angles, indicating that the chosen target
could be reliably detected. These results show it is possible to
detect seeps at a rate of 0.2 L min−1 out to 55° and speeds up to
3 m/s.

4 DISCUSSION

While processing WCD to the full extent of the swath is a
relatively new field due to the inherent difficulties of sidelobe
interference, there has recently been increased effort to effectively
filter or suppress this interference for various water column
targets (de Moustier, 2013; Liu et al., 2019; Schimel et al.,
2020; Wang et al., 2020). However, no studies have
quantifiably determined the maximum extent to which data
can be utilized in the MSRB region. Through a controlled field

experiment, this study demonstrates that targets with an
amplitude of at least 3–5 dB above the average sidelobe noise
levels can be identified up to beam angles of 55°, significantly
extending the range of WCD suitable for analysis. The method
uses filtering threshold values calculated directly from the data on
a sample range and ping-by-ping basis, minimizing the need for
prior knowledge about the absolute amplitudes of targets.

Extending the available data to the full width of the swath to
detect real targets within 5° of the maximum beam angles
significantly improves the cost-effectiveness of using MBES as
a monitoring tool. Compared to analyses that only consider the
MSRA region, this method increases the area of the multibeam fan
available for analysis by 53%. For shallow gas detection, the ability
to monitor for gas reliably and efficiently is a critical component
of monitoring programs such as for Carbon Capture and Storage
(CCS) (Blackford et al., 2014; Dean et al., 2020). The variation of
parameters presented in the results (Table 2) demonstrates the
effectiveness of the method for correctly classifying gas seeps
(100% confidence out to 44°) while also minimizing the rate of
false-positive classifications (4 false positives out of 187 survey
lines, ~2% false-detection rate). This method is well suited for
Measurement, Monitoring and Verification tasks in inshore
shallow water CCS sites (Blackford et al., 2015; Harkin et al.,
2017), which may have similar environmental characteristics to
the test site in this study.

Automating the filtering and extraction of features reduces the
amount of manual MBES data processing required, reducing the
volume of data (from 300 MB to ~2 kB) while preserving all raw
data values relevant for subsequent processing and analysis. The
results flag only targets significant enough to require further
inspection by an analyst, considerably reducing manual overhead
costs. Commercially available software packages still rely heavily
on visual interpretation and manual editing, resulting in a need
for improved automation and detection algorithms. Due to the
dynamic nature of noise within the WCD, a simple single
amplitude threshold (e.g., filtering workflow Section 2.2.1.3.2)
is insufficient to fully clean noise from real targets. Using
additional thresholds relative to each sample range ensures
that only targets above the relative background noise at each
range are retained without the need for further manual editing.
The method presented here is fully automated and could be
implemented easily within one of the commercially available
platforms.

4.1 Sidelobe Noise
Previous studies have shown that using the average signal
(Schimel et al., 2020) and variance (Liu et al., 2019) of WCD
samples along a common range arc can effectively suppress
sidelobe noise. The method presented by Liu et al. (2019)
reduced the sidelobe interference, but it did not demonstrate
the full extent to which targets can be identified across the entire
multibeam swath. Schimel et al. (2020) provides the most
promising method to date for fully normalizing water column
returns across the swath. The methods presented here build on
this concept by using the variance of each sample range as a
threshold to remove background noise rather than normalize it,
to extract coherent features to the full extent of the multibeam

FIGURE 12 | (A) Mean Svu values plotted by beam pointing angle.
Circles represent data collected at 1 m/s, triangles at 2 m/s and crosses at
3 m/s. High flow refers to 2.0 L min−1 and Low flow refers to 0.2 L min−1.
MSRA are samples above the minimum slant range, and MSRB are
samples that are below (within the area of receiver array sidelobe interference).
(B) Maximum Svu values plotted by beam pointing angle.
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swath. Other methods were also tested, such as using quantiles to
determine the threshold values at each sample range rather than
the mean and variance. The 95th and 97.5 quantiles were tested
(substituted for step 3a), and it was found that the 95th quantile
retained too much noise, while the 97.5 missed a significant
number of real seeps. Therefore, this technique was not pursued
further.

Some multibeam systems, such as the Kongsberg EM710, use
sectors to try to minimize sidelobe interference on acquisition,
which may impact how effective this method is for filtering
sidelobe noise for those systems. However, it may be possible
to modify the algorithm to determine thresholds based on sample
range and sector and apply the thresholds separately to each
sector. Zhao et al. (2017) used a similar method wherein a
threshold was determined by μ+ k σ, which was calculated for
the amplitude values within a whole sector rather than by sample
range. This method effectively removed background noise for
automated detection of gas plumes, but was only applied to data
within MSRA.

Other methods for suppressing sidelobes at the beamforming
stage have been proposed (Lønmo et al., 2020), and some sonar
systems specifically designed to limit sidelobe levels, such as the
Simard ME70, have been developed (Trenkel et al., 2008). Such
methods may lower sidelobe levels to enable additional detections
within the MSRB region. However, many MBES systems still
employ a Mills Cross configuration with sidelobe suppression
limited to Dolph-Chebyshev array shading on beamforming
(Lurton, 2016). Thus, until suitable and affordable
technological solutions can resolve the sidelobe interference
issue, post-processing methods must be developed to
effectively filter the sidelobe signal to take advantage of the
MBES WCD from many of the MBES systems in use today.
The method described here provides an easily implemented
approach to optimizing data analysis within conventional Mills
Cross beam forming scenarios.

4.2 Impact of k
The value of k in this workflow was shown to have an impact on
the results. The optimal value was determined through
experimentation, but comparable conclusions have been
found from similar analyses (Zhao et al., 2017; Liu et al.,
2019). Zhao et al. (2017) determined optimal values of k of
1.2 and 1.5 for different datasets and noted that this value may
depend on depth. Liu et al. (2019) set their constant multiplier
parameter (b) to 1.8, noting that increasing or decreasing this
value resulted in either too many targets being removed or too
many false positives, respectively. Adjustments to k may be
necessary, depending on the depth of the survey area, frequency
of the MBES system, or backscattering strength of the target of
interest. If implemented within commercial software, the ability
to adjust this parameter would improve the flexibility of
optimizing the method for various datasets. As a general
rule, a lower k value may be sufficient for datasets with
overall low noise (e.g., calm survey conditions, low ship
noise) but a higher k may be required for highly
contaminated data. A lower k would result in detecting targets
closer to background noise levels but may result in more false

positives. Knowledge of the data quality and target of interest
should help guide the choice for a suitable value of k.

4.3 Limitations
4.3.1 Acoustic Detectability
Although the method demonstrated works well for this shallow
water example over a flat seafloor, we recognize that there are
several limitations as well as potential improvements required,
particularly when it is applied to a dynamic natural environment.
Employing MBES WCD in general for detecting any target is
limited by the acoustic detectability of the feature of interest.
Acoustic detectability will depend on:

(1) the backscatter strength of the target relative to background
noise levels and

(2) the sampling volume limited by the beam angles.

Although targets within the sidelobe noise are able to be
extracted using the method presented here, targets that have
an amplitude below the sidelobe noise levels still cannot be
detected. As the sidelobe noise is not additive to the strength
of the target, anything below the sidelobe level will saturate the
sample amplitude, resulting in the loss of any true scattering. This
limits the proposed algorithm’s use to targets that are known to be
at least two times (3 dB) higher than the sidelobe level. In the case
of gas seeps, for a given frequency, the strength of the backscatter
return from bubbles varies with the size and density of bubbles
(Greinert and Nützel, 2004; Ainslie and Leighton, 2009), and as
bubbles rise, they may dissolve (McCartney and Bary, 1965),
decreasing their acoustic signature beyond what can be detected
by the MBES system (Nakamura et al., 2015; Philip et al., 2016).

Data acquisition conditions have a significant impact on data
quality, which would ultimately impact the ability to detect seeps.
For example, vessel speed impacts the number of detections over
a target and the noise within the WCD (Chadwick et al., 2014;
Nakamura et al., 2015). An increase in background noise level will
decrease the limits of detection of the targets of interest.

In terms of point (2) above, the sampling volume of the
multibeam fan decreases with increasing beam angle, as
described by Urban et al. (2016) and Schimel et al. (2020).
This presents an additional challenge when using the full
extent of the MBES WCD insofar as the vertical extent of
features in the outer beams are truncated by the angle of the
beam. The reduction of sampling volume with increased beam
angles limits the applications of full-swath MBES WCD analysis
to features likely to fall near to the seafloor within the insonified
range. Using the method presented here, the height of detected
gas seeps will be limited in the outer beams by the reduced
sampling volume, and overall detections will be limited by the
acoustic detectability above the background noise levels within
the MSRB region. With these known limitations, this method is
ideally suited for the detection of strong benthic targets, such as
gas seeps, vegetation, or near-benthic dwelling species of fish. Gas
seeps present an ideal target as they originate from the seafloor
and may be easier to detect close to the seafloor before there is a
chance for dissolution or dispersions of individual bubbles within
the water column.
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4.3.2 Seafloor Impact
A major limitation to this study was the flat, homogenous
seafloor over which the experiment was performed, which may
not be realistic for some natural seep areas. Although the
sidelobe noise pattern is predictable, the strength of the
interference is directly related to the strength of the seafloor
return based on its characteristics. For natural gas seep
environments, the seafloor surrounding the seep is typically
characterized by pockmarks (Cathles et al., 2010) or
‘hardground’ structures (Spain et al., 2022). The pockmarks
generally form a depression in the bathymetry and can have
backscatter intensity values of 3–4 dB higher than the
surrounding seafloor (Tang et al., 2021). This increased
seafloor signal results in higher amplitude sidelobe response
at corresponding ranges. In terms of the method proposed
here, this means a higher background noise level at the slant
ranges corresponding to the seep base or pockmark area will
limit the detection of targets to those above those background
levels. However, since the threshold statistics used are directly
related to the signal strength at a given slant range, a target
sufficiently above the background levels should still be
detected, even if that bottom echo has a higher backscatter
value than surrounding areas (such as a pockmark). It should
be recognized that this method’s ability to extract a target
depends on the target being statistically higher amplitude than
the noise along a common range arc, which will vary for each
range due to the variability of the seafloor response.

A more pressing limitation is that the pattern of noise within
the MSRB is not entirely consistent along each slant range and
varies along each beam based on the beam pattern of the receiver
array. The optimal solution for reducing the noise within MSRB

would be to estimate the influence of this beam pattern directly.
This is not easily implemented without exact knowledge of the
beam pattern of a specific transducer, which depends on
parameters not often shared by manufacturers (element
number, their spacing, their directivity, and antenna shading).
The method presented here provides a computationally simple
approach that adjusts for most of the noise within the MSRB. In
some cases, the influence of the beam pattern may be strong
enough to fall outside the thresholds calculated for the sample
range and thus not be fully filtered by this method. Work is
currently underway to incorporate a better compensation of the
beam pattern influence, which may improve these results.

The model of the seafloor footprint in Section 2.2.1, Step 2 of
the filtering workflow is a novel attempt to model the spatial
extent of the energy from the bottom detection, which can be
crucial for near-benthic applications and for identifying targets
close to the “acoustic dead zone” (Ona and Mitson, 1996). This
model is an estimation based on the 3 dB beamwidth and assumes
a flat seafloor. Although simplified, this model agreed well with
the slightly sloping bathymetry of the field test data. In Figure 3,
the blue line shows that the spreading estimation is slightly above
the seafloor signals within the data. This is due to the equation
being an estimation based on range rather than a calculation of
the true beam insonified width taking into account steering angle,
wavelength, and shading (see equations in Marques, 2012). The
estimation was determined to be conservative (at worst taking

away too many samples rather than too few) and was
computationally efficient.

Seafloor echoes from complex bathymetry such as rocky reefs
and canyons can be contaminated with a significant amount of
transmit array sidelobe interference (Nau et al., 2018), which
could hinder the effectiveness of the Eq. 1 used to remove the
seafloor echoes. In the worst case, if the model did not remove all
true seafloor echoes the mean and standard deviation along a
sample range may be skewed to higher amplitudes and would
over-filter data along that range. Equation 1 could be modified to
include bathymetric slope and construct a more realistic model of
the influence of the seafloor on sample amplitudes around the
bottom detection.

4.3.3 Quantitative Analysis
Quantitative analysis, presented in Svu here, is limited due to the
uncalibrated nature of MBES WCD as well as to the fact that
because of transmitter array sidelobes, water column targets
within neighboring beams can cause “ghost” echoes (Dupré
et al., 2015; Wilson et al., 2015) which can convolute
quantitative estimates based on backscatter strengths. The Svu
values determined across a common depth slice demonstrate the
ability to consistently detect the difference between flow rates
(0.2 L min−1 and 2 L min−1), like what was found for comparable
flow rates during single-beam echosounder experiments
(Scoulding et al., 2020). These data show that Svu is consistent
across all angles and survey vessel speeds, with a slight decrease in
the outer beams. This decrease may be due to the equivalent beam
angle not fully being compensated for within the recorded
amplitude values. These detected differences assume consistent
bubble size and density within each flow rate. Changes in bubble
population sizes or density impact Svu values and could thus
change the ability to detect differences based solely on flow rate.

4.3.4 Additional Limitations
Another limitation of this method is the absence of compensation
for all potential sources of acoustic noise. WCD can be impacted
by transmitter array sidelobe noise and other transient noise that
persists for more than one ping, whichmay not be removed by the
presented method. These additional noise sources could lead to
false-positive detections as they may be flagged as targets.
Additional filters could be implemented to identify and
remove those noise sources.

Removing the outer beams to filter the high noise levels at the
edges of the swath is an overly simplified approach. Alternative
statistical approaches could be implemented to remove the outer
beam noise without excluding all data in those beams.

4.4 Classification
In this study, the classification was tailored to shallow gas seeps,
but this could be modified for any other target of interest, such as
fish schools, vegetation, or wrecks, provided the amplitude of the
target is at least above the MSRB background noise levels and has
a defining morphological characteristic. Gas seeps have a
characteristic shape referred to in the acoustic signature as a
“flare” (Judd et al., 1997), which is generally a narrow feature
extending from the seafloor. Flare shape is influenced by ocean
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currents and the rise velocity of the bubbles, and the stability of
the shape allows for these characteristics to be used as a signature
to distinguish seeps from other biological targets (Judd et al.,
1997; Greinert, 2008; Ostrovsky, 2009; Schneider von Deimling
and Papenberg, 2012). By understanding the characteristics of
different water column targets, we can implement criteria to
guide classification rules. It must be noted, however, that these
assumed characteristics may change due to dynamic
oceanographic conditions (e.g., water currents, thermoclines)
which impact the horizontal path of rising bubbles streams
(McCartney and Bary, 1965; Schneider von Deimling et al.,
2010; Wilson et al., 2015), and therefore may need to be
modified depending on knowledge of the local oceanography.
Additionally, full ray tracing of the water column samples is
traditionally not applied. In locations with distinct thermo- or
pycnoclines, this may impact the relative sample range of targets,
the distribution of noise along a sample range, and the
morphological appearance of cohesive features.

The high resolution of MBES allows repeated samples over a
feature, which can then be used for the clustering algorithm to
identify coherent features and classify them based on morphological
characteristics. Due to the shallowwater, narrow beam footprint and
high ping rate of the system used here, coherent water column
features were made up of many “targets” retained from the filtering
steps, which allowed for a relatively high number (100) to be used for
the clustering algorithms. For deep water features, sonar systems
operating at lower frequencies with lower beam resolution or
depending on differences in vessel speed, the number of targets
that contribute to a feature may be reduced and require different
classification thresholds. Reduced numbers of targets may worsen
detection limits.

5 CONCLUSION

This study used a controlled experimental setup to test the ability
to detect features at the full extent of MBES WCD, including
within regions of the data dominated by receiver array sidelobe
noise. Leveraging the use of a regulated seep feature, we are able to
reproducibly demonstrate the extraction of targets across the
multibeam swath to within 5° of the maximum beam angles.
These results provide a foundation for future testing and
expansion on natural applications. Preliminary testing by the
authors on EM302 and deep water EM2040 natural seeps and
shallow-water kelp habitat shows promising results, with further
testing currently underway. Although the receiver array sidelobe
interference presents a challenge to identify features within the

WCD, we have shown here that targets of interest can still be
reliably extracted at nearly the full extent of the multibeam fan,
including detectable amplitude differences between high and low
flow rates independent of vessel speed or receiver array sidelobe
noise levels.
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