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Snow is a crucial element in the Earth’s system, but snow depth and mass are very
challenging to be measured globally. Here, we provide the theoretical foundation for
deriving snow depth directly from space-borne lidar (ICESat-2) snow multiple scattering
measurements for the first time. First, based on the Monte Carlo lidar radiative transfer
simulations of ICESat-2 measurements of 532-nm laser light propagation in snow, we find
that the lidar backscattering path length follows Gamma distribution. Next, we derive three
simple analytical equations to compute snow depth from the average, second-, and third-
order moments of the distribution. As a preliminary application, these relations are then
used to retrieve snow depth over the Antarctic ice sheet and the Arctic sea ice using the
ICESat-2 lidar multiple scattering measurements. The robustness of this snow depth
technique is demonstrated by the agreement of snow depth computed from the three
derived relations using both modeled data and ICESat-2 observations.

Keywords: snow depth, lidar, average path length, path length distribution, multiple scattering, ICESat-2

INTRODUCTION

Snowpack is one of the most important wintertime land-surface characteristics (Zeng et al., 2018),
and it is one of the hardest features that can be accurately observed and quantified on a global scale
(Robinson et al., 1993). Seasonal snow and glaciers provide water resources for over one billion
people worldwide, and it is also important for weather, climate, and ecosystem functioning through a
variety of different mechanisms (e.g., Vavrus 2007; Lawrence and Slater 2010; Betts et al., 2014;
Broxton et al., 2017; Musselman et al., 2017). While satellite passive remote sensing has successfully
measured the snow cover extent (Frei et al., 2012), its measurements of snow water equivalent (SWE)
and snow depth are much more challenging (e.g., Dawson et al., 2018). For these reasons, the recent
Earth Science Decadal Survey (National Academies of Sciences, 2018) recommended snow mass and
depth among the seven targeted observables for the NASA Earth System Explorer satellite mission
competitions.

While lidar altimetry has been used in airborne measurements of snow depth as the difference
between the measured snow top and snow-free ground heights (Deems et al., 2013; Painter et al,,
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2016), its applicability in space-borne measurements is more
challenging due to stringent ground track requirements. For snow
over sea ice, while space-borne lidar measurements (e.g., ICESat-
2; Markus et al., 2017) can provide the snow top height above sea
water, the broad consensus is that space-borne radar
measurements are needed for the retrieval of the actual snow
depth over sea ice. For these reasons, most of the explorations of
space-borne measurements of SWE and snow depth have focused
on radar measurements (and its combination with other
measurements) (e.g., Lemmetyinen et al, 2018; Oveisgharan
et al.,, 2020; Derksen et al., 2021; Lievens et al., 2022).

The scientific and technological question is as follows: can
space-borne lidar measure snow depth (and SWE) over land and
over sea ice? If yes, the latter measurement in combination of the
measurement of snow top over sea ice would also enable the
global estimate of sea ice thickness, which is of substantial
importance in the Earth system and national defense (e.g.,
Laxon et al., 2003; Kwok 2018).

The purpose of this study is to combine radiative transfer
theory with Monte Carlo simulations to derive analytical relations
of snow depth and optical properties directly from the space-
borne lidar measurements of vertical backscatter profiles of snow.
This would provide the theoretical foundation for space-borne
lidar measurements of snow depth for the first time. We will
address the robustness of our method by assessing the agreement
among three derived relations and the convergence of the
relations using a different approach. As a preliminary
application, these relations are then used to retrieve snow
depth over the Antarctic ice sheet and Arctic sea ice from
ICESat-2 lidar measurements. The retrieval of SWE and
comparison of SWE and snow depth with observations will be
reported in separate articles.

RADIATIVE TRANSFER SIMULATIONS OF
ICESAT-2 LIDAR MEASUREMENTS

In this section, we will introduce the simple relationships among
the average path length, snow depth, and diffuse scattering
coefficient.

Inspired by biological studies of the spatial distributions of ant
colonies (Theraulaz et al., 2002), an intriguing theory of photon
diffusion suggests that for uniform illumination, the averaged
traveling path length of photon diffusion, <L>, between the entry
and exit of a diffusive, non-absorbing medium is equal to 4 V/S,
with V and S being volume and surface area of any 3-dimensional
diffusion medium, respectively (Blanco and Fournier, 2003). Such
a relationship also applies to a hypothetical 2-dimensional
random walk process as well if we replace V and S by the area
and the circumference, respectively. It is also suggested that the
mean free path (inverse of the diffuse scattering coefficient) is
related to the higher-order moment of the path length
distribution (Blanco and Fournier, 2006). The theory was
proven true for diffusive radiative transfer with uniform light
incidence from the entire boundary of the scattering medium.
The question is as follows: Will this simple theory also be true
when the snow is illuminated by a laser while observation is made
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by measuring the near-nadir viewing backscatter of snow using a
receiver with its footprint on the ground thousands of times larger
than the mean free path to cover most multiple scattering events?

At 532nm, pure snow is a weakly absorbing, diffusive
scattering medium. Photons bounce inside the snow many
times before exiting the snow. Thus, the high vertical
resolution measurements from the ICESat-2 mission (Markus
et al., 2017) provide a great opportunity to quantify the path
distributions of photons traveling inside snow. Path length
distributions can provide important physical information
about snow because the average path length (first moment of
the path length distribution) and low-order moments of the path
length distribution can be linked to snow depth and mean free
path of scattering. This study intends to address the following
questions: 1) Does the relationship between snow depth (H,
which equals half of 4 V/S when the surface area is far greater
than H?) and the average path length <L> hold for pencil beam
point source lidar measurements as it does for uniform incidence?
2) What are the relationships among the higher moments (<L*>,
<L?>) of the path length distribution, snow depth, and diffuse
scattering mean free path f (1/scattering coefficient kq)?

Here, we try to answer the aforementioned equations through
radiative transfer simulations and introduce an algorithm to
derive snow depth directly from space lidar measurements of
the scattering path length distributions. For the first time, snow
depths are estimated directly from lidar measurements of vertical
backscatter profiles of snow. These snow depth estimates are
different from the existing laser altimetry measurements (Deems
et al., 2013), such as the two-survey methods, from which snow
depths are estimated from the difference of snow top heights
measured by lidar and the known height of the land surfaces
below the snow.

Monte Carlo Simulations

The backscatter path length is the distance a photon has traveled
inside the snow. It starts when a photon enters the snow and ends
when the same photon exits the snow in the backward direction.
In this subsection, we use Monte Carlo simulations to evaluate the
validity of <L> = 2H, <L*>/kyq = H?, <L*>/ky® = H® (where kqg is
the diffuse scattering coefficient) and briefly introduce the snow
depth retrieval algorithms.

Specifically, we will develop 1) a simple Monte Carlo
simulation model to calculate the backscatter path length
distribution p(L); 2) evaluate the relationship between average
path length <L> (= J:L p(L)dL) and snow depth, and 3) evaluate
the relationship among second and third moments of the path
length distribution < L?> = [ "L*p(L)dL, <L’> = ["L*p(L)dL,
mean free path f (f = 1/kq), and snow depth H.

The Monte Carlo simulation code we developed for this study
is based on a semi-analytic Monte Carlo method that is similar to
the lidar radiative transfer model developed for CALIPSO cloud
measurements (Hu et al., 2001). Polarization is removed from the
model to reduce computational time. The Monte Carlo code uses
random walk processes to mimic photon pulses (hereafter
referred to as photons for short) propagating in a turbid
medium. The characteristics of photons include location
(x,y,z) and direction of propagation (u = cos 8, ¢), where 6 and
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¢ are the zenith and azimuth angles of the direction, respectively,
and a variable L denoting its travel distance. The Monte Carlo
code repeats the following steps for each photon until it exits the
snow layer in the backward direction and enters the receiver field-
of-view:

1) Finding the distance D, the photon will travel before it
interacts with a snow particle; D = f+*log({), where ( is a
random number with uniform distribution between 0 and 1;
Estimating the new location of scattering interaction (x,y,z)
from the old location and traveling direction and adding D to
the photon traveling length Ly;

Estimating the probability of the photon scattered directly to
the lidar receiver and adding that probability to the
backscatter path length distribution while registering the
altitude as L' = Ly + z;

Calculating the new traveling direction (4 = cos 8, ¢) of the
photon that will follow the statistics of the scattering phase
function through random number generation and coordinate
transformation.

2

~

3

~

4

~

We can choose between two types of surfaces below the snow:
a) a sea-ice type of surface with specular reflectance following
Fresnel’s theory; b) land surfaces with Lambertian reflectance.
Each Monte Carlo calculation will take about 10 million photons
to generate the backscatter path length distribution p(L). We can
also calculate the attenuated backscatter profile §(z) of lidar
measurements by adding absorption to the path length
distribution:(z) = p(L = 2z)exp(—k,L)dL, where k, is the
absorption coefficient of snow.

Figure 1 shows the simulated absorption-free snow
backscatter profiles for 1) isotropic scattering (blue line)
and for a diffuse scattering coefficient kg =k, = % =
200m™Y; 2) anisotropic scattering with a
Henyey-Greenstein phase function (g = 0.7, green line)
(Henyey and Greenstein, 1941), and with a diffuse
scattering coefficient of ke = (1 — g)k; :% = 200m™ % 3)
anisotropic scattering with a Henyey-Greenstein phase
function (g = 0.88, red line) and diffuse scattering
coefﬁcient of 200 m™!. Here, k, is the scattering coefficient,

P(®) is single-scattering phase function, ® is the scattering
angle between incident hght and scattered light, and g is the
asymmetry factor, g= I P(®)cos®@dcos®. The lidar
backscatter profiles from the aforementloned three different
types of scattering phase functions align very well, which
suggests that backscatter path length distributions are
insensitive to the details of the single-scattering phase
functions as long as the diffuse scattering coefficients k4 =
(1 — g)*k, are the same. This is in agreement with the general
invariance property of diffusive random walks, supporting that
the general theory applies to ICESat-2.

For snow, the mean free path of diffuse scattering is normally
on the order of subcentimeter (Kokhanovsky and Zege, 2004).
Thus, the diffuse scattering coefficient kg is of the order of a few
hundreds per meter. For snow depth H greater than 10 cm, the
diffuse scattering optical depth is far greater than 4 (k;H > 4).

Deriving Snow Depth from ICESat-2

Altitude (m)
o

12+
14+
16

g=0.7
18} ——g=0 |]
18 Theory
-20 - - ‘

104 102 10°

Attenuated Backscatter (Sr"I m'1)

FIGURE 1 | Monte Carlo simulation results of the lidar backscatter profile

for isotropic (blue line) and anisotropic scattering with Henyey-Greenstein
phase function (green: g = 0.7; red: g = 0.88) for snow depth 1 m and the
same effective scattering coefficient ksg = (1-g)ks.

We can fit the lidar backscatter path length distribution using a
simple T distribution (magenta line in Figure 1),

-1
s 0 (s
L exp

-

=T(Lap)= ﬁ—L"‘ 'exp(-BL). (1)

T (a)
[2H (%2 - 1))

ks

)] ¢

&

p(L) =

—
S

Here, a = (kS%H -
less than 1.
Monte Carlo simulations suggest that for snow with a variety
of optical properties such as single-scattering phase functions and
scattering coefficients, the average path length of the path length
distribution is twice that of snow depth H (Figure 2A)

<L> =a/f=2H, 2)

~!. Both aand B are far

DB =

and the second moment of the path length distribution, <L*>, is
(Figure 2B),

B

Thus, scattering optical depth of the snow can be estimated from
the higher moments of the path length distribution:

=kyH = <L2 =4 :f;z It is also possible to estimate the
dlffuse scattermg coefficient kg, or equivalently the transport
mean free path f/(1-g) = 1/ky, using the first and second

moments <L> and <L*> of the path length distribution.

<L’> = =k H°. (3)

<L*> <I*> 1-g <L*>
T, =kyH = =4 , =ky=8——— (4
¢ H? <L>? f ¢ <L>3 “)
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FIGURE 2 | (A): Monte Carlo simulation results of the relationship between snow depth H and average backscatter path length <L> for various scattering phase
functions and snow depths; (B): Monte Carlo simulation results of the relationship between H and [ < L? > /kq]""3, or [< L? > *f]"; (C): the relationship between H and
[<L3>/Kk2]"® or [<L®>*f?]"®. Here, < L?> and <L®> are the second and third moments of the path length distribution, respectively; kq is the effective scattering
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The Monte Carlo simulation also suggests that the third-order
moment of the path length distribution is a simple function of
diffuse scattering coefficient and snow depth (Figure 2C),

ala+1)(a+2)
= T
Thus, snow depth can be derived from all three lower order
moments, respectively, In addition, we also found that <IN > =
kN"TH?N"1 for all positive integers N that is greater than 1.

Monte Carlo simulations using various combinations of
snow depth H and diffusive scattering coefficient kyy suggest
that the multiple scatter signals measured by a space-based
lidar, such as ICESat-2, always follow I'-distribution p(L) =
I'(L,a,p), which is the distribution of maximum entropy
I:p(L)ln[p(L)]dL under the constraints of fixed <L> and
fixed < In(L)>: <L> =%=2H, and <In(L)>=< Y cyIV >

N

<L’> ~kLH. (5)

B
= f (esa) = Aoipel — BBl — (@) -y (B). Here, y(x) is the
so-called digamma function.

A Different Theoretical Explanation of <L>
=2H

To better understand the analytical results in Section 2.1, here, we
use a different theoretical explanation of the average path length <L>

and snow depth H relationship <L> = 2H using the weak absorption
limit simulations from both Monte Carlo and DISORT (DIScrete
Ordinate Radiative Transfer) (Stamnes et al., 1988) calculations, a
general and versatile plane-parallel radiative transfer program.

When the absorption coefficient (k,) approaches zero, the total
absorption of the snow layer, A, will reduce the integrated
backscatter of a non-absorbing medium by <L>*k,,

R(ka)

A(ku—)o)zl—m

- [p@(1-e*N)dL= [pWLdL = <L>k,
0 0

(6)

where R (ka = 0) is the reflectance for a non-absorbing medium.

Both the Monte Carlo simulations (Figure 3A) and DISORT
(DIScrete Ordinate Radiative Transfer) calculations (Figure 3B)
suggest that

R(ka)

A(ku—>0)=l——R(ka:0)

= 2% (1 — w)T = 2%k, *H. (7)
Here, w is single-scattering albedo and t is total optical depth of
snow. 1- w is the fraction of absorption and (1-w)*t is the
absorption optical depth, which equals k,*H. From Egs, 6,7,
we can conclude that <L >k, = 2#k,*H. Thus, <L> = 2H.
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FIGURE 3 | Monte Carlo simulations (A) and DISORT (B) suggest that when the absorption coefficient approaches zero, snow absorption A (k, — 0) equals 2*(1-
)T = 2'k,"H. As A (ks — 0) also equals <L> k,. Thus, <L> = 2H.

An lterative Procedure to Derive Show

Depth from ICESat-2 Measurements

With the theoretical development in Section 2.1 and Section 2.2,
we will use the following iterative procedure to derive snow depth
and snow albedo, snow grain size, absorption coefficient, and the
diffuse scattering coefficient estimates:

0.07 m™) is made;

[

I:P(L)dL’

4) Snow depth H from path
derived: H = £ = I:Lp(L)dL;

derived: a =
1) The ICESat-2 attenuated backscatter profile of snow, p(z), is

improved with a correction of instrument transient response:

de-convolution of the ICESat-2 snow backscatter profile using
<I?

2) An initial guess of the snow absorption coefficient k, (e.g., k, =

3) The absorption-free, snow backscattering path length
distribution, p(L), is estimated by removing the impact of
absorption from the ICESat-2 attenuated backscatter profile of
snow: p (L = 2z) = B(L)exp (k,L); and snow albedo a is

length  distribution

the instrument transient response (Lu at al., 2021);

5) The diffuse scattering coefficient kg =

(<L—>/>2)318 deriVed,

A ATLO03_20200918140259_13010811_005_01.h5 Photon Ratio X 107
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=—Method 1
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Snow depths (m)
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FIGURE 4 | (A): ICESat-2 snow backscatter signal (Antarctica); (B): snow depth derived from the snow multiple scatter signal (blue: mean path length method:
H=<L>/2; green: <L.?> and diffuse scattering coefficient method: H = (<L?>/keq)"®; Black: <L®> and diffuse scattering coefficient method: H = (<L®>/kes?)"°.
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FIGURE 5 | (A): ICESat-2 snow backscatter signal (Arctic, north of Chukchi Sea); (B): snow depth (blue, green, and black), AMSR-2 snow depth (purple) and

freeboard data (red).

6) Snow particle grain size R and diffuse flux attenuation
coefficient, k; are derived using the empirical
relationship between snow albedo a and absorption
coefficient k, (Bohren and Barkstrom, 1974; Warren,
1982): R=1(497 ka =0.65(k,/R)"*. The diffuse flux

k, \843
attenuation coefficient k; is a function of diffuse
scattering coefficient kea and absorption

coefficient: k; = 3k, (ksg + k,) = \3kaksas

7) A new absorption coefficient, k,, is derived using the diffuse
scattering coefficient kg, of step 5 and diffuse flux attenuation
coefficient kg of step 6: k,' = 3(1(5:5(,,) = (3’;212;

8) Ifabs (k,'-k,) > 0.001, k, is replaced by k," and procedures 3-7

are repeated until k," = k,.

Preliminary Data Analysis Results Using

ICESat-2 Measurements

To derive the backscatter path length distribution from the
nighttime measurements of ICESat-2 photon heights (ATLO03,
version 5, Neumann et al.,, 2019), we need to correct for lidar
receiver transient response and absorption by snow. Lidar
receiver optic components and laser pulse shape can affect the
ICESat-2 snow backscatter profile measurements. The results
here are from the strong beam measurements of ICESat-2. To

derive snow backscatter path length distribution, the lidar
backscatter profile is corrected through a deconvolution using
the lidar receiver transient response derived from ICESat-2
measurements of flat, hard targets (Lu et al,, 2021).

After de-convolution, the attenuated lidar backscatter profile
B(z = L/2), scaled by the snow layer—integrated attenuated
backscatter, equals path length distribution p(L) reduced by
absorption,

oo

pL =22 = B(2) [ [Bard (®)
0

p(L) is insensitive to radiometric calibration and atmospheric
attenuation. We are testing a couple of algorithms for estimating
the absorption coefficient (k,) from the lidar measurements. For
introduction, we first assume the 532-nm absorption coefficient
around 0.07 m™' as a first guess for relatively weakly
contaminated snow in the Arctic in springtime (Warren et al,
2006). Thus, snow backscatter path length distribution can be
derived from the deconvoluted ICESat-2 snow measurements,

oo

()= ﬁ(z - g)ek“]“ / Jﬂ(z)dz. )

0
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FIGURE 6 | (A): Albedo distribution (red line) and snow grain size (radius, blue line) derived from the backscatter path length distribution. (B): snow albedo (red line)
and diffuse flux attenuation coefficient kq (blue line) estimated from the 532-nm lidar backscatter measurements. kg = \/3ka (ksq + Ka).

oo oo

<I'> = J(22)"[3(z)eZk“Zdz/jﬁ(z)dz(n =1,2,3,...). (10

0 0

Figure 4A shows the ICESat-2 snow measurements near the
South Pole after correcting for the detector transient response
with deconvolution. Snow depths over Antarctica derived from
the three methods, <L>/2, (<L*>/key)"?, and (<L*>/k%)"°
(Figure 4B) agree reasonably well.

Figure 5A is similar to Figure 4A, but from ICESat-2
measurements of snow above first-year sea-ice in the Arctic.
The snow depths derived from the multiple scattering photon
path length distribution [Figure 5B. Method 1: <L>/2; Method 2
(<L?>/keq)"?; Method 3: [<L*>*k?]"">;) also show reasonable
agreement of ICESat-2 freeboard measurements (altitude
difference between sea water and snow top). The freeboard is
defined as the total height of the snow cover and sea ice above the
ocean. If proven, this technique will enable accurate lidar
measurements of both freeboard and snow depth, and thus
estimates of sea-ice depth directly without having to rely on
radars to provide altitude of the snow/sea-ice interface. The
purple data points of Figure 5 are snow depths from
collocated AMSR-2 snow depth data product (Rostosky et al.,

2018). The spatial resolution of the AMSR-2 snow depth data
product is 25 km.

Snow grain size (blue line in Figure 6A), diffuse flux
attenuation coefficient ky (blue line in Figure 6B), and snow
albedo (red lines in Figure 6) are estimated from the multiple
scattering signal of the Arctic ICESat-2 flight as in Figure 5 and
theoretical radiative transfer, as discussed in the previous section.
The estimated diffuse flux attenuation coefficients are consistent
with diffuse attenuation obtained from in situ measurements
(e.g., Schwerdtfeger and Weller, 1977).

For snow thicker than 1 m, model simulations suggest that
multiple scattering path lengths can last a hundred meters or
more. Due to limited satellite downlink bandwidth and the finite
number of detected photons, ICESat-2 does not send down all the
snow multiple scattering signals. As a result, the long tail parts of
the multiple scattering path lengths are truncated, and the
amount of photons reaching the deeper part of the snow is
under-estimated. We are assessing its impact on snow depth
retrievals and testing different extrapolation methods using
simulated data.

This technique retrieves the depths of snow layers comprising
diffusively scattering snow particulates with large scattering
coefficients and small single-scattering co-albedos (absorption
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coefficient/scattering coefficient) (Réisinen et al, 2015) at the
532-nm laser wavelength. More studies are needed to examine the
sensitivity of the technique to lower layers of multiyear snow with
reduced scattering coefficients due to melting, infiltration of
rainwater, and retention of snowmelt (Boone and Etchevers,
2001). More theoretical studies and field measurements
concerning ice sheets are needed to examine if the snow depth
we derived here is the depths of first-year snow only.

SUMMARY

Previous studies (Blanco and Fournier, 2003, 2006) suggested that
when shining light uniformly from all angles into the entire
surface of a given 3D diffusive scattering medium, the average
path length between a photon entering and exiting the medium is
equal to <L> = 4V/S. Here, V is the volume and S is the surface
area of the medium. Inspired by these elegant results, we have
addressed the relevant question for the snow depth estimate from
ICESat-2 lidar measurements: Is it possible that the theory is also
true when we illuminate snow from a space-based laser at a
wavelength with relatively weak absorption and with receiver
footprint diameter hundreds of times larger than the mean free
path?

To answer this question, a Monte Carlo lidar radiative transfer
model is developed for simulating ICESat-2 measurements of
laser light propagation in snow. For normal incidence, the model
results confirmed the theory predicting that 1) the average snow
backscattering path length <L> = 4V/S derived from the ICESat-2
measurements equaled two times the snow depth H; 2) the diffuse
scattering mean free path (1/k,q) times the second moment of the
path length distribution; <L*> equals the third power of snow
depth (H?); (3) <L>> = ke 2H®. In addition, we also found that
<LN> =kNTH?N! for all positive integers N, when N is
greater than 1. The simple relationships between snow depths
and lower-order moments of the scattering path length
distributions are valid for scattering media with different
single-scattering properties such as scattering phase functions
and scattering cross sections.

The path length distribution follows a simple I' (L, a, )

distribution function and T'(L,qa, ) = %L""lexp(—ﬁL), where

a= ["S%H -1]*t andff = [2H(k‘%H —1)]7 . For a fixed snow depth
(H) and diffuse scattering coefficient (ky4), both <L> and <In(L)>
are fixed as well. The multiple scattering photon path length

REFERENCES

Betts, A. K., Desjardins, R., Worth, D., Wang, S., and Li, J. (2014). Coupling of
winter Climate Transitions to Snow and Clouds over the Prairies. J. Geophys.
Res. Atmos. 119, 1118-1139. doi:10.1002/2013jd021168

Blanco, S., and Fournier, R. (2003). An Invariance Property of Diffusive
Random Walks. Europhys. Lett. 61 (2), 168-173. doi:10.1209/epl/i2003-
00208-x

Blanco, S., and Fournier, R. (2006). Short-path Statistics and the Diffusion
Approximation. Phys. Rev. Lett. 97 (23), 230604. doi:10.1103/physrevlett.97.
230604

Deriving Snow Depth from ICESat-2

distribution p(L) maximizes entropy J’é p(L)In[p(L)]dL for
fixed <L> and <In(L)>.
For snow depth greater than a few centimeters, k’jH

a= M1~ Ao« land f= 2H(ME - 1) =

> 1; thus,
The

_2
Kb
long tail of the I' (L, o, ) distribution approaches feiksjj, where ¢
is a constant, which is useful in assessing the consistency of the
deeper part of the lidar profiles.

Initial ICESat-2 data analysis suggests that snow depth can be
derived from the average diffuse scattering path length derived
from the ICESat-2 lidar measurements. More studies in retrieval
algorithm improvements and validations are needed to mature
the new retrieval concept. For example, we are working on
improving solar background removal algorithms to reduce
uncertainties in daytime snow depth retrievals. We are also
working on robust along-track averaging algorithms to reduce
snow depth retrieval uncertainties associated with snow surface
roughness and various sampling errors.

This snow depth retrieval technique may open a new path for
future remote sensing of snow globally.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

YH initiated the theoretical concept and conducted Monte Carlo
modeling studies. XL provided ICESAT-2 data analysis under TN
and NK guidance. XZ is the science advisor of the research. SS and
KS provided DISORT modeling analysis. CW and all co-authors
contributed various ideas during discussions.

ACKNOWLEDGMENTS

The authors wish to thank the NASA ICESat-2 program, NASA
Remote Sensing Theory program, and NASA ESTO’s IIP
program for supporting this research. The ICESat-2 ATLO03
data used in this study are available at the National Snow and
Ice Data Center: https://nsidc.org/data/ATL03/versions/5.

Bohren, C. F., and Barkstrom, B. R. (1974). Theory of the Optical Properties of
Snow. J. Geophys. Res. 79 (30), 4527-4535. d0i:10.1029/jc079i030p04527
Boone, A., and Etchevers, P. (2001). An Intercomparison of Three Snow Schemes
of Varying Complexity Coupled to the Same Land Surface Model: Local-Scale
Evaluation at an Alpine Site. J. Hydrometeor 2 (4), 374-394. doi:10.1175/1525-
7541(2001)002<0374:aiotss>2.0.co;2

Broxton, P. D., Zeng, X., and Dawson, N. (2017). The Impact of a Low Bias in Snow
Water Equivalent Initialization on CFS Seasonal Forecasts. J. Clim. 30,
8657-8671. doi:10.1175/jcli-d-17-0072.1

Dawson, N., Broxton, P., and Zeng, X. (2018). Evaluation of Remotely Sensed Snow
Water Equivalent and Snow Cover Extent over the Contiguous United States.
J. Hydrometeor. 19, 1777-1791. doi:10.1175/jhm-d-18-0007.1

Frontiers in Remote Sensing | www.frontiersin.org

April 2022 | Volume 3 | Article 855159


https://nsidc.org/data/ATL03/versions/5
https://doi.org/10.1002/2013jd021168
https://doi.org/10.1209/epl/i2003-00208-x
https://doi.org/10.1209/epl/i2003-00208-x
https://doi.org/10.1103/physrevlett.97.230604
https://doi.org/10.1103/physrevlett.97.230604
https://doi.org/10.1029/jc079i030p04527
https://doi.org/10.1175/1525-7541(2001)002<0374:aiotss>2.0.co;2
https://doi.org/10.1175/1525-7541(2001)002<0374:aiotss>2.0.co;2
https://doi.org/10.1175/jcli-d-17-0072.1
https://doi.org/10.1175/jhm-d-18-0007.1
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles

Hu et al.

Deems, J. S., Painter, T. H., and Finnegan, D. C. (2013). Lidar Measurement of
Snow Depth: A Review. J. Glaciol. 59 (215), 467-479. doi:10.3189/
2013J0G12J154

Derksen, C. H., Belair, S., Garnaud, C., Vionnet, V., Fortin, V., Lemmetyinen, J.,
et al. (2021). Development of the Terrestrial Snow Mass Mission. IEEE Int.
Geosci. Remote Sensing Symp. IGARSS, 614-617. doi:10.1109/IGARSS47720.
2021.9553496

Frei, A., Tedesco, M., Lee, S., Foster, J., Hall, D. K, Kelly, R, et al. (2012). A Review
of Global Satellite-Derived Snow Products. Adv. Space Res. 50 (8), 1007-1029.
doi:10.1016/j.asr.2011.12.021

Henyey, L. C., and Greenstein, J. L. (1941). Diffuse Radiation in the Galaxy. ApJ 93,
70-83. doi:10.1086/144246

Hu, Y. X,, Winker, D., Yang, P, Baum, B., Poole, L., and Vann, L. (2001).
Identification of Cloud Phase from PICASSO-CENA Lidar Depolarization:
A Multiple Scattering Sensitivity Study. J. quantitative Spectrosc. radiative
transfer 70 (4-6), 569-579. doi:10.1016/s0022-4073(01)00030-9

Kokhanovsky, A. A., and Zege, E. P. (2004). Scattering Optics of Snow. Appl. Opt.
43, 1589-1602. doi:10.1364/20.43.001589

Kwok, R. (2018). Arctic Sea Ice Thickness, Volume, and Multiyear Ice Coverage:
Losses and Coupled Variability (1958-2018). Environ. Res. Lett. 13, 105005.
doi:10.1088/1748-9326/aae3ec

Lawrence, D. M., and Slater, A. G. (2010). The Contribution of Snow Condition
Trends to Future Ground Climate. Clim. Dyn. 34, 969-981. doi:10.1007/
500382-009-0537-4

Laxon, S., Peacock, N., and Smith, D. (2003). High Interannual Variability of Sea
Ice Thickness in the Arctic Region. Nature 425, 947-950. doi:10.1038/
nature02050

Lemmetyinen, J., Derksen, C., Rott, H., Macelloni, G., King, J., Schneebeli, M., et al.
(2018). Retrieval of Effective Correlation Length and Snow Water Equivalent
from Radar and Passive Microwave Measurements. Remote Sensing 10, 170.
doi:10.3390/rs10020170

Lievens, H., Brangers, L., Marshall, H.-P., Jonas, T., Olefs, M., and De Lannoy, G.
(2022). Sentinel-1 Snow Depth Retrieval at Sub-kilometer Resolution over the
European Alps. Cryosphere Discussik 16, 159-177. doi:10.5194/tc-16-159-2022

Lu, X,, Hu, Y., Yang, Y., Vaughan, M., Palm, S., Trepte, C., et al. (2021).
Enabling Value Added Scientific Applications of ICESat-2 Data with
Effective Removal of Afterpulses. Earth Space Sci. 8 (6),
€2021EA001729. doi:10.1029/2021EA001729

Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., et al.
(2017). The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science
Requirements, Concept, and Implementation. Remote sensing Environ. 190,
260-273. doi:10.1016/j.rse.2016.12.029

Musselman, K. N., Clark, M. P, Liu, C, Ikeda, K., and Rasmussen, R. (2017).
Slower Snowmelt in a Warmer World. Nat. Clim Change 7, 214-219. doi:10.
1038/nclimate3225

National Academies of Sciences (2018). Engineering, and Medicine, Thriving
on Our Changing Planet: A Decadal Strategy for Earth Observation from
Space. Washington, DC: The National Academies Press. doi:10.17226/
24938

Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner, A. C,,
et al. (2019). The Ice, Cloud, and Land Elevation Satellite - 2 mission: A Global
Geolocated Photon Product Derived from the Advanced Topographic Laser
Altimeter System. Remote Sensing Environ. 233, 111325. doi:10.1016/j.rse.2019.
111325

Oveisgharan, S., Esteban-Fernandez, D., Waliser, D., Friedl, R., Nghiem, S., and
Zeng, X. (2020). Evaluating the Preconditions of Two Remote Sensing SWE
Retrieval Algorithms over the US. Remote Sensing 12, 2021. doi:10.3390/
rs12122021

Deriving Snow Depth from ICESat-2

Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S.,
Gehrke, F,, et al. (2016). The Airborne Snow Observatory: Fusion of Scanning
Lidar, Imaging Spectrometer, and Physically-Based Modeling for Mapping
Snow Water Equivalent and Snow Albedo. Remote Sensing Environ. 184,
139-152. doi:10.1016/j.rse.2016.06.018

Réisdnen, P., Kokhanovsky, A., Guyot, G., Jourdan, O., and Nousiainen, T. (2015).
Parameterization of Single-Scattering Properties of Snow. The Cryosphere 9 (3),
1277-1301. doi:10.5194/tc-9-1277-2015

Robinson, D. A., Dewey, K. F.,, and Heim, R. R, Jr. (1993). Global Snow Cover
Monitoring: An Update. Bull. Amer. Meteorol. Soc. 74, 1689-1696. doi:10.1175/
1520-0477(1993)074<1689:gscmau>2.0.co;2

Rostosky, P., Spreen, G., Farrell, S. L., Frost, T., Heygster, G., and Melsheimer, C.
(2018). Snow Depth Retrieval on Arctic Sea Ice from Passive Microwave
Radiometers-Improvements and Extensions to Multiyear Ice Using Lower
Frequencies. J. Geophys. Res. Oceans 123 (10), 7120-7138. doi:10.1029/
2018JC014028

Schwerdtfeger, P., and Weller, G. E. (1977). “Radiative Heat Transfer Processes in
Snow and Ice,” in Meteorological Studies at Plateau Station, Antarctica. Editors
P. C. Dalrymple, A. J. Riordan, A. Riordan, A. J. Riordan, G. Weller, and
H. H. Letta.

Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K. (1988). Numerically
Stable Algorithm for Discrete-Ordinate-Method Radiative Transfer in Multiple
Scattering and Emitting Layered media. Appl. Opt. 27 (12), 2502-2509. doi:10.
1364/a0.27.002502

Theraulaz, G., Bonabeau, E., Nicolis, S. C., Solé, R. V., Fourcassié, V., Blanco, S.,
et al. (2002). Spatial Patterns in Ant Colonies. Proc. Natl. Acad. Sci. U.S.A. 99
(15), 9645-9649. doi:10.1073/pnas.152302199

Vavrus, S. (2007). The Role of Terrestrial Snow Cover in the Climate System. Clim.
Dyn. 29, 73-88. doi:10.1007/s00382-007-0226-0

Warren, S. G., Brandt, R. E., and Grenfell, T. C. (2006). Visible and Near-
Ultraviolet Absorption Spectrum of Ice from Transmission of Solar
Radiation into Snow. Appl. Opt. 45 (21), 5320-5334. doi:10.1364/a0.45.005320

Warren, S. G. (1982). Optical Properties of Snow. Rev. Geophys. 20 (1), 67-89.
doi:10.1029/rg020i001p00067

Zeng, X., Broxton, P., and Dawson, N. (2018). Snowpack Change from 1982-2016
over Conterminous United States. Geophys. Res. Lett. 15, 12940-12947. doi:10.
1029/2018GL079621

Conflict of Interest: Authors CW and JL were employed by Ball Aerospace Corp.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Hu, Lu, Zeng, Stamnes, Neuman, Kurtz, Zhai, Gao, Sun, Xu, Liu,
Omar, Baize, Rogers, Mitchell, Stamnes, Huang, Chen, Weimer, Lee and Fair. This is
an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Remote Sensing | www.frontiersin.org

April 2022 | Volume 3 | Article 855159


https://doi.org/10.3189/2013JoG12J154
https://doi.org/10.3189/2013JoG12J154
https://doi.org/10.1109/IGARSS47720.2021.9553496
https://doi.org/10.1109/IGARSS47720.2021.9553496
https://doi.org/10.1016/j.asr.2011.12.021
https://doi.org/10.1086/144246
https://doi.org/10.1016/s0022-4073(01)00030-9
https://doi.org/10.1364/ao.43.001589
https://doi.org/10.1088/1748-9326/aae3ec
https://doi.org/10.1007/s00382-009-0537-4
https://doi.org/10.1007/s00382-009-0537-4
https://doi.org/10.1038/nature02050
https://doi.org/10.1038/nature02050
https://doi.org/10.3390/rs10020170
https://doi.org/10.5194/tc-16-159-2022
https://doi.org/10.1029/2021EA001729
https://doi.org/10.1016/j.rse.2016.12.029
https://doi.org/10.1038/nclimate3225
https://doi.org/10.1038/nclimate3225
https://doi.org/10.17226/24938
https://doi.org/10.17226/24938
https://doi.org/10.1016/j.rse.2019.111325
https://doi.org/10.1016/j.rse.2019.111325
https://doi.org/10.3390/rs12122021
https://doi.org/10.3390/rs12122021
https://doi.org/10.1016/j.rse.2016.06.018
https://doi.org/10.5194/tc-9-1277-2015
https://doi.org/10.1175/1520-0477(1993)074<1689:gscmau>2.0.co;2
https://doi.org/10.1175/1520-0477(1993)074<1689:gscmau>2.0.co;2
https://doi.org/10.1029/2018JC014028
https://doi.org/10.1029/2018JC014028
https://doi.org/10.1364/ao.27.002502
https://doi.org/10.1364/ao.27.002502
https://doi.org/10.1073/pnas.152302199
https://doi.org/10.1007/s00382-007-0226-0
https://doi.org/10.1364/ao.45.005320
https://doi.org/10.1029/rg020i001p00067
https://doi.org/10.1029/2018GL079621
https://doi.org/10.1029/2018GL079621
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles

	Deriving Snow Depth From ICESat-2 Lidar Multiple Scattering Measurements
	Introduction
	Radiative Transfer Simulations of ICESat-2 Lidar Measurements
	Monte Carlo Simulations
	A Different Theoretical Explanation of <LCODE(0xff686b0) = 2H
	An Iterative Procedure to Derive Snow Depth from ICESat-2 Measurements
	Preliminary Data Analysis Results Using ICESat-2 Measurements

	Summary
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


