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Satellite remote sensing of near-surface water composition in terrestrial and coastal
regions is challenging largely due to uncertainties linked to a lack of representative
continental aerosols in the atmospheric correction (AC) framework. A comprehensive
family of absorbing aerosols is proposed by analyzing global AERONET measurements
using the Partition AroundMedoids (PAM) classifier. The input to the classifier is composed
of Version 3, Level 2.0 daily average aerosol properties [i.e., single scattering albedo at λ =
0.44 μm, (SSA(0.44)) and the Angstrom exponents for extinction and absorption
AEe(0.44–0.87) and AEa(0.44–0.87), respectively from observations from June 1993 to
September 2019. The PAM classification based on low daily aerosol optical depth
(AOD(0.44) ≤ 0.4) suggested 27 distinct aerosol clusters encompassing five major
absorbing aerosol types (Dust (DU), Marine (MAR), Mixed (MIX), Urban/Industrial (U/I),
and Biomass Burning (BB)). Seasonal patterns of dominant PAM-derived clusters at three
AERONET sites (GSFC, Kanpur, and Banizoumbou) strongly influenced by U/I, DU, and
BB types, respectively, showed a satisfactory agreement with variations of aerosol
mixtures reported in the literature. These PAM-derived models augment the National
Aeronautics and Space Administration’s (NASA’s) aerosol models (A2010) applied in its
operational AC. To demonstrate the validity and complementary nature of our models, a
coupled ocean-atmosphere radiative transfer code is employed to create a simulated
dataset for developing two experimental machine-learning AC processors. These two
processors differ only in their aerosol models used in training: 1) a processor trained with
the A2010 aerosol models (ACI) and 2) a processor trained with both PAM and A2010
aerosol models (ACII). These processors are applied to Landsat-8 Operational Land
Imager (OLI) matchups (N = 173) from selected AERONET sites equipped with ocean color
radiometers (AERONET-OC). Our assessments showed improvements of up to 30% in
retrieving remote sensing reflectance (Rrs) in the blue bands. In general, our empirically
derived PAM aerosol models complement A2010 models (designed for regions strongly
influenced by marine conditions) over continental and coastal waters where absorbing
aerosols are present (e.g., urban environments, areas impacted by dust, or wildfire events).
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With the expected geographic expansion of in situ aquatic validation networks (e.g.,
AERONET-OC), the advantages of our models will be accentuated, particularly in the
ultraviolet and short blue bands.

Keywords: absorbing aerosols, aquatic remote sensing, water quality, atmospheric correction, lakes, rivers, coastal
waters

INTRODUCTION

The application of moderate-to-high resolution imagery from
satellite platforms (e.g., Landsat-8 and Sentinel-2) for studying
inland water bodies (e.g., lakes, reservoirs, rivers) and nearshore
coastal ecosystems has become more prevalent over the past
decade (Alikas et al., 2015; Barnes et al., 2015; Gernez et al., 2017;
Snyder et al., 2017; Maciel et al., 2019; Page et al., 2019;
Balasubramanian et al., 2020; Hakimdavar et al., 2020; Cao
and Tzortziou, 2021). This increased usage has driven the
aquatic remote sensing community to formulate and
implement suitable processing techniques and algorithms to
generate reliable in-water products for a host of scientific and
monitoring exercises (Franz et al., 2015; Watanabe et al., 2015;
Saulquin et al., 2016; Slonecker et al., 2016; De Keukelaere et al.,
2018; Steinmetz and Ramon, 2018; Poddar et al., 2019;
Vanhellemont, 2019; Balasubramanian et al., 2020; Manuel
et al., 2020; Fan et al., 2021).

One of the main sources of uncertainties in Landsat-8/
Sentinel-2 data processing is the atmospheric correction (AC)
(IOCCG, 2019; Pahlevan et al., 2021a) for which inaccurate
representation of aerosol radiative properties is one major
weakness, particularly when absorbing aerosols are present
(IOCCG, 2010; Pahlevan et al., 2017a; Frouin et al., 2019).
This is explained by the contribution of coupled aerosol
scattering and absorption and their high spatial and temporal
variability (Prospero et al., 1983). Given a particular location and
time, realistic aerosol mixtures are critical for executing a robust
AC on aquatic satellite scenes to retrieve high-quality spectral
remote sensing reflectance (Rrs) products (Mobley, 1999), from
which bio-geophysical products are derived. In particular,
reducing uncertainties in remotely sensed biogeochemical
variables (e.g., chlorophyll-a concentration; Chla (Pahlevan
et al., 2021a)) bears significant implications on improving
hydrological/hydrodynamic models (Thewes et al., 2020;
Pahlevan et al., 2012), large-scale studies (Ho et al., 2019;
Adrian et al., 2009), and water-related monitoring practices
(IOCCG, 2018). Current estimates of uncertainties in satellite-
derived Rrs products range approximately from 15 to > 60%
depending on the spectral band and AC processor (Figure 7 in
Pahlevan et al. (2021a)). These uncertainties, commonly larger in
the blue bands especially when assessing Rrs over inland waters,
preclude reliable retrievals of biogeochemical properties and
inherent optical properties that are pivotal to quantifying
desired higher-level products, such as particle composition and
phytoplankton properties. Recent studies have also demonstrated
the utility of the ultraviolet (UV) bands for phytoplankton
characterizations and biomass estimations off the coasts of
California (Kahru et al., 2021), a spectral region where effects

of absorbing aerosols are most confounding (IOCCG, 2010). The
overarching purpose of this contribution is to reduce one major
uncertainty component, among others [e.g., skyglint (Gilerson
et al., 2018)], in the AC framework and enhance the quality of
retrieved Rrs products, particularly in the blue bands (Gordon
et al., 1997; IOCCG, 2010), over inland and coastal waters.

To date, there is no real-time integration of independent
aerosol datasets into AC frameworks. This limitation is due to
the lack of concurrent in situmeasurements of aerosol properties
and/or poor spatial and temporal representation of atmospheric
models. Indeed, the data coverage by terrestrial observation
networks (e.g., the Aerosol Robotic Network; AERONET) is
generally sparse despite a significant increase in the number of
sampling sites worldwide during the last two decades. Likewise,
simulated aerosol distributions (e.g., The Modern-Era
Retrospective analysis for Research and Applications; MERRA-
2) (Gelaro et al., 2017) are unable to resolve the composition of
aerosol mixtures at scales comparable to those used by moderate-
resolution spaceborne imagers (footprint ~ 30 m), such as the
Operational Land Imager (OLI) aboard Landsat-8. Due to these
caveats, NASA’s approach to the characterization of aerosol
properties for each satellite observation is currently carried out
based on discrete aerosol categories selected dynamically (e.g., as
a function of relative humidity (RH), Ahmad et al., 2010,
hereafter A2010) using observed near- and shortwave-infrared
reflectances (hereafter NIR and SWIR, respectively). Other
relevant AC processors apply different techniques or aerosol
models to account for the aerosol contribution (Pahlevan
et al., 2021a), yet, we primarily focus on NASA’s AC
procedure adopted by the U.S. Geological Survey for Landsat-
8 data processing (Franz et al., 2015; Pahlevan et al., 2017b).

The A2010model developments are guided experimentally via
observations at selected AERONET sites and are categorized
according to relative humidity (RH) (Ahmad et al., 2010). The
interplay between RH and aerosol optical properties has long
been recognized inmarine environments (Shettle and Fenn, 1979;
Gerber, 1985). However, these relationships may not apply to
inland and nearshore coastal waters having a weak marine
influence due to the major impact of land processes (e.g.,
evapotranspiration (Raoufi and Beighley, 2017)) on RH.
Unlike empirical models, theoretical A2010 models use a suite
of AERONET measurements collected across several small open-
ocean islands and three stations along the Chesapeake Bay region
to constrain the aerosol properties in marine environments suited
for heritage ocean-color observations (open water and coastal,
respectively). Further, A2010 models have two main
characteristics: 1) they have been developed by assuming two
size distribution modes (i.e., fine and coarse) having an extreme
range of contributions in terms of number density, and 2) they
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only simulate weakly absorbing aerosols by using spherical and
relatively small-sized particles (i.e., dust is not included). As an
example, SSA and asymmetric properties of A2010 models
corresponding to RH = 80% are shown in Figure 1. For
NASA’s standard AC (Mobley et al., 2016), the selection of
these aerosol models is constrained by RH sourced from
assimilated ancillary data. A recent study has reported large
uncertainties in RH over continental regions (Mélin et al.,
2022), likely leading to incorrect selection of aerosol models
and subsequent effects on derived Rrs over inland and
nearshore coastal waters.

In general, the use of empirical aerosol models (i.e., entirely
derived from in situ measurements) for AC has been customary
in terrestrial remote sensing studies (Vermote et al., 1997;
Dubovik et al., 2002a; Roger et al., 2022). These models are
usually calibrated with data obtained from well-known aerosol
sources (e.g., biomass burning) (Sayer et al., 2014). Although
several statistical techniques have been proposed for deriving
global aerosol classes from airborne and land-based (e.g.,
AERONET) measurements (Omar et al., 2005; Giles et al.,
2012; Russell et al., 2014), none of these investigations have
been applied to the study of aquatic ecosystems. In essence, no
comparisons between empirical and theoretical aerosol models
have been made to evaluate the advantage and disadvantages of
each model for representing aerosol mixtures over aquatic
environments having a weak (e.g., estuaries) or strong (e.g.,
lake) continental influence.

Our objective is to develop and validate globally applicable
empirical aerosol mixtures that can be applied to continental
waters, complement A2010 models, and improve AC methods
over inland and nearshore coastal waters. Our empirical models
are constructed according to AERONET measurements
associated with relatively low aerosol optical depth (AOD
(0.44) ≤ 0.4), the range where AC is oftentimes carried out in
practice. The methodology for this contribution is organized in
four subsections 1) the classification of aerosols based on
clustering of aerosol properties as derived from global
AERONET measurements, 2) the validation of aerosol types
derived from the proposed clustering technique (i.e., Partition
Around Medoids; PAM), 3) the comparisons between PAM- and

A2010-based aerosol models for microphysical properties, and 4)
the demonstration of the validity and efficacy of PAM models in
the context of AC.

The first subsection involves the dimensionality reduction of
aerosol parameters and describes the criteria for selecting the
maximum number of clusters. The identification of aerosol
sources based on literature, the definition of PAM clusters in
terms of aerosol types, and the presentation of the classification
performance are explained in the second subsection. The
verification of realistic representations of aerosol types was
centered around two techniques (the dominant clusters and
the Multidimensional Euclidean Distance; MED). The third
subsection highlights similarities and differences between PAM
and A2010 models and the benefits and caveats of using them in
continental- and marine-dominated aerosol environments.
Lastly, we describe experimental machine-learning (ML) AC
processors to showcase the advantages of integrating PAM
aerosol models for retrieving Rrs from OLI and validating
them against matchups from selected AERONET sites
equipped with ocean-color radiometers (i.e., AERONET-OC).

DATASETS AND METHODS

AERONET Measurements
Optical and microphysical aerosol properties for the total
atmospheric column were obtained from daily Version 3,
Level 2.0 inversion AERONET products between June 1993
and September 2019. The geographic distribution of
measurements is shown in Figure 2. Our original database has
74,627 records from 806 monitoring locations. The quality
control of Version 3, Level 2.0 products includes an automatic
cloud screening and instrument anomaly detection (e.g.,
obstruction of field-of-view) (Smirnov et al., 2000; Giles et al.,
2019). The inversion of aerosol properties relies on fitting
radiance measurements (i.e., direct Sun and angular
distribution of diffuse contributions) to radiance estimates
derived from a radiative transfer model (Dubovik and King,
2000). Consistently, all Sun and sky radiance measurements
made by AERONET since 1993 have been performed with

FIGURE 1 | Single Scattering Albedo (SSA) and asymmetry parameter (g) for selected A2010 (RH = 80%). The models are sorted according to size fractions with
increasing coarse modes from A1 through A9.
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FIGURE 2 | The global network of AERONET sites. The sites with > 50 daily records are labeled with numbers (see Supplementary Appenedix Table A2 for
specific site names). The green and magenta circles denote the sites whose observations were utilized in clustering. The sites without SSA/AEa inversions are marked
with red circles. The data for developing PAM models were collected between October-1993 and September-2019.

TABLE 1 | List of acronyms.

Abbreviation Definition Units

AEa Ångtrom exponent for absorption Dimensionless
AEe Ångtrom exponent for extinction Dimensionless
AOD Aerosol Optical Depth Dimensionless
Cn Number concentration Particles μm−3

CS Relative cluster size %
CSG Cluster structure goodness %
Cv Volume concentration μm3 μm−2

FCv
fine Fine-mode contribution to Cv %

g Asymmetry parameter Dimensionless
Kext Extinction coefficient m−1

MEDmin Minimum multidimensional Euclidean distance Dimensionless
NDF Number density fraction Dimensionless
ni Imaginary part of refractive index Dimensionless
nr Real part of refractive index Dimensionless
Pa Phase scattering function sr−1

PAM Partition Around Medoids NA
PDF Probability Distribution Function Dimensionless
PSD Particle Size Distribution dV/dlnr or dN/dlnr
θs Scattering angle Degrees
r2 Coefficient of determination Dimensionless
RAA Relative Azimuth Angle Degrees
Rrs Remote sensing reflectance sr−1

ρt Top of atmosphere reflectance Dimensionless
RH Relative Humidity %
rn Arithmetic average of the radius in number density space μm
σv Broadness of PSD in number density space ln(μm)
SSA Single Scattering Albedo Dimensionless
σϖ Broadness of PSD in volume space Dimensionless
SZA Solar Zenith Angle Degrees
VZA View Zenith Angle Degrees
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CIMEL sun-photometers (Holben et al., 1998). The spectral
configuration of these instruments is based on the ultraviolet
(UV) (λ = 0.34 and 0.38 µm), visible (λ = 0.44, 0.5, 0.675 µm), as
well as NIR and SWIR (λ = 0.87, 1.02 and 1.64 µm) channels that
had been slightly modified in some monitoring sites (Barreto
et al., 2016). The daily arithmetic average of aerosol optical
inversions is reported at four wavelengths (λ = 0.44,
0.675,0.87, and 1.02 µm). It comprises microphysical (e.g., real
(nr) and imaginary (ni) part of refractive index, respectively) and
optical (e.g., SSA) properties (Table 1).

For the spectral range of 0.44–0.87 μm and AOD(0.44) values
between 0.4 and 1, the average uncertainty for AOD, SSA, the
asymmetry parameter (g), nr and ni, at λ = 0.44 µm is ±0.02,
±0.03, ±4%, ±0.04, and ±30–50%, respectively (Dubovik et al.,
2002b; Johnson et al., 2009; Giles et al., 2012). Uncertainties in
SSA, nr, and ni values increase for AOD(0.44) < 0.4, leading to
maximum uncertainties of ±0.09, ±0.05, and ±100%, respectively
(Dubovik et al., 2002a; Dubovik et al., 2002b). Note that errors on
SSA retrievals, as inferred from their standard deviations, vary
spectrally and with respect to aerosol types (e.g., ±0.055 and
±0.11 at λ = 1.02 µm and for dust and urban/industrial aerosol
sources, respectively) (Sinyuk et al., 2020). For the visible-NIR
region, the maximum uncertainty associated with the extinction
and absorption Ångtrom exponents (AEe and AEa, respectively)
is approximately ±9% (Wagner and Silva, 2008; Giles et al., 2012).
Uncertainties in microphysical properties rv, σv and Cv (i.e., the
logarithmic volume median radius, the standard deviation, and
the particle volume concentration, respectively) are less
influenced by AOD and may vary between ±10% and ±35%
for an intermediate size range (i.e., particle radius, r = 0.1–7 μm)
and up to 100% near the edges of the size distributions (Dubovik
et al., 2000). These uncertainties on retrieving aerosol size
properties also depend on the aerosol type (Giles et al., 2012).

Selection of Clustering Variables
The number and type (i.e., optical vs. microphysical) of aerosol
properties used for discriminating different aerosol mixtures
based on AERONET measurements vary across various studies
due, in part, to differences in the number of records and their
temporal/spatial characteristics. Here, the selection of aerosol
properties was according to five criteria: 1) minimum cross-
covariation between variables, 2) aerosol properties linked to
PSD, particle shape and absorption characteristics (e.g., AEe, g,
and SSA, respectively), 3) optical parameters having spectral
information (e.g., AEe, AEa), 4) aerosol attributes with
relatively small uncertainties (i.e., < 30%), and 5) number of
parameters leading to the maximum number of clusters (Kmax)
(see section 2.3). Three aerosol properties met these criteria:
SSA(0.44), AEe, and AEa (Supplementary Appendix Table A1).
Indeed, preliminary results suggested minimum covariation
between the variables above, as inferred from the coefficient of
determination (r2 < 0.25). For instance, SSA(0.87) was excluded
from the analysis since preliminary results indicated a lower
number of clusters when this property was included. Spurious
AEa estimates were removed as they represented < 0.5% of the
total records used for clustering. An important assumption in our
clustering is that aerosol properties excluded as input in the PAM

classification are also unique for each cluster they are associated
with because the considered aerosol properties are substantially
correlated with those excluded. The AERONET dataset was
stratified in different ranges of AOD as suggested in several
studies (Levy et al., 2007; Kahn et al., 2016). The main
application of our aerosol classification is to identify aerosol
models applicable to AC over inland and coastal waters.
Naturally, the AC and subsequent inversions of in-water
optical properties are relatively confidently conducted if the
aerosol loading were relatively low (i.e., AOD(0.44) ≤0.4).
Thus, only aerosol measurements obtained under this
atmospheric turbidity were used for the PAM classification,
reducing the number of AERONET samples by 87%, leading
to a total of 9,352 samples. This data reduction did not
compromise the number of computed clusters, nor the general
spatial coverage and seasonal variability of aerosol properties
summarized in the original dataset (i.e., with all the AOD values
included). Although accurate SSA and AEa estimates can only be
achieved for both AOD(0.44)≥ 0.4 and large zenith angles (i.e., >
50°), we adopted daily averages of relatively low AODs that
contain instances of AERONET Level 2.0 records with AODs
exceeding the threshold. By using this AERONET Level 2.0
subset, we assume that the absorption-related properties can
be applied to the lower AOD data for the entire day. This
assumption was validated by comparing changes in mean
SSA(0.44) values as a function of mean AOD(0.44) for
different aerosol loading intervals. For example, at the GSFC
site, the coefficient of determination was close to zero suggesting
no relationships for daily mean comparisons of SSA-AOD and
AEa-AOD obtained for low (≤0.4) and intermediate (i.e., ≤ 1)
daily mean AOD values (see Supplementary Appendix
Figure A1).

Note that high atmospheric turbidity (AOD(0.44) ≥ 1)
represented 15% of the AERONET dataset assembled in this
study. The above pre-sorted database (N = 9,352) containing SSA
and AEa inversions was split into two batches (i.e., 75% training
and 25% validation data chosen based on odd/even indices (Omar
et al., 2005)). Lastly, these data subsets were stratified according to
AOD(0.44) thresholds (i.e., only records with AOD(0.44) ≤0.4
were preserved) before applying the PAM clustering technique
(see Section 2.3 and Section 2.4).

Clustering Algorithm
The classification of aerosol properties has been investigated
using unsupervised and supervised algorithms with different
skills and limitations (Omar et al., 2005; Giles et al., 2012;
Russell et al., 2014; Hamill et al., 2016). Here, discrete aerosol
classes were estimated using an unsupervised classification based
on PAM (Kaufman and Rousseeuw, 1990) (Figure 3).

This top-down clustering algorithm minimizes the distance of
each point i with respect to the nearest centroid or “medoid” and
requires a first guess in terms of Kmax (the maximum number of
clusters). Unlike the k-means algorithm (MacQueen, 1967), the
“medoid” is a data point, and PAM can be used with non-
Euclidean distances and non-spherical clusters. The
Mahalanobis Distance (MD) was chosen for the PAM analysis
since it is not sensitive to outliers and weak cross-correlations
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between variables. MD measures the dissimilarity between two
vectors (u and v) with covariance S (Varmuza and Filzmoser,
2016):

MD(u, v) �
���������������
(u − v)TS−1(u − v)

√
(1)

where superscript T denotes the matrix transpose, and u,v vectors
are composed of pre-selected aerosol properties. Kmax was
estimated using the Silhouette index (Sil) (Rousseeuw, 1987)
after initializing PAM with 30 potential clusters (i.e., initial
guess). This initial guess corresponds to an intermediate
number of aerosol mixtures with respect to the range reported
in the literature (i.e., 4 to 74 aerosol models) (Omar et al., 2005;
Giles et al., 2012; Russell et al., 2014; Li et al., 2015; Hamill et al.,
2016)). Sil is defined as:

Silk(m) � (b(m) − a(m))
max{a(m), b(m)} (2)

where b(m) and a(m) are the minimum dissimilarities
(“distance”) from sample m to samples not belonging to the
cluster k. The Silhouette magnitude varies between −1 and 1 and
measures how similar an object is relative to its own cluster with
values near +1 (cohesion) compared to other groups with values
near –1 (separation). The criterion here for estimating the final
Kmax used in each clustering process was a Sil greater or equal to
0.51 (i.e., a threshold above which the clustering structure is at
least “reasonable’) (Kaufman and Rousseeuw, 1990). The
remaining Sil-based clustering structure definitions are “no
substantial”, “weak”, and “strong” (i.e.,−1 to 0.25, 0.26–0.5,
and >71, respectively). Preliminary results suggest
insignificance of two small-sized clusters (N < 30) that were
excluded from the analysis due to extremely low (high) SSA (AEa)
values likely related to the relatively high uncertainties of these

parameters. Thus, a group of records was considered a cluster
only if that potential cluster has at least 50 daily records with
Sil ≥ 0.51.

The relative cluster size (CS) was defined as the number of
records belonging to cluster k divided by the number of records of
all clusters encompassing 9,352 observations. Lastly, the cluster
structure goodness (CSG) was defined as the number of records of
cluster k with Sil ≥ 0.51 divided by the total number of records in
cluster k. CSG is independent of the number of measurements
and indicative of how “compact” (i.e., homogeneous in terms of
aerosol properties) each cluster is. No CSG thresholds were used
for defining the maximum number of clusters as estimated
from PAM.

Evaluation of Clusters
Ground-truthing of aerosol models derived from clustering of
AERONET measurements is commonly based on known aerosol
sources (e.g., areas with continuous industrial activity) (Omar
et al., 2005) or in situ airborne experiments (e.g., Aerosol
Characterization Experiment-Asia) (Kim et al., 2007). An
aerosol source may only be dominant within a month or
season in some areas rather than during an entire year (e.g.,
dust in spring at Kanpur, India) (Giles et al., 2012). In general,
aerosol sources are linked to five primitive aerosol types: 1. dust,
2. mixed, 3. urban/industrial, 4. biomass burning, and 5. marine,
hereafter DU, MIX, U/I, BB, and MAR, respectively (Omar et al.,
2005).

The first step in evaluating the clustering results was the
association of each common AERONET site (i.e., used by
PAM and cited in the literature) with one primitive aerosol
type that was dominant throughout the year (Omar et al.,
2005; Giles et al., 2012; Russell et al., 2014) (Supplementary
Appendix Table A2). The second step was to label each cluster in

FIGURE 3 | PAM classification of aerosols.
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terms of “most likely” aerosol type by analyzing the frequency and
presence of sites described in step 1 in each cluster. Thus, more
than one cluster can be aggregated within the same aerosol type
resulting in “aerosol sub-types”. The third step was the prediction
of the aerosol type in each reference site as estimated from PAM
and comparison with the initial label assigned in step 1. To
accomplish this last task, the PAM results were validated with
respect to different geographic locations and periods of the year
(annual and seasonal analysis, respectively).

The annual analysis encompassed the evaluation of two
metrics: 1) dominant annual clusters, and 2) minimum
Multidimensional Euclidean Distance (MEDmin).
Comparisons for MAR aerosols were not performed due to
the lack of data given the relatively low AOD of marine
environments and known difficulties for obtaining accurate
SSA and AEa inversions. A dominant cluster and associated
aerosol type at the AERONET site j were defined as the most
frequent cluster if the minimum number of records was greater
than two and no co-dominance was present (i.e., at least two
aerosol types have the same frequency). The MEDmin metrics
were applied to an independent AERONET dataset created in
section 2.2 computed at the monthly scale based on dominant
clusters derived from PAM. The MEDmin calculations were
focused on four AERONET sites (Solar Village, XiangHe,
Mexico City, and Mongu) where a consensus among studies
regarding the annual dominance or co-dominance of aerosol
sources (DU, MIX, U/I, and BB, respectively) were found
(Omar et al., 2005; Giles et al., 2012; Russell et al., 2014;
Hamill et al., 2016) (Supplementary Appendix Table A2).
The MED is equivalent to the norm of the difference between u
and v vectors:

MEDmin � min{ �������������������������������������(u1,m − v1,m)2 + (u2,m − v2,m)2 + (u3,m − v3,m)2√ }
(3)

where u and v represent mean aerosol properties for dominant
PAM-derived cluster and independent dataset, respectively, for
monthm, subscripts 1, 2, and 3 indicate the arithmetic average of
SSA(0.44), AEe, and AEa, respectively. This arithmetic average is
multi-annual for PAM-derived classes and monthly for the
validation dataset. The aerosol type associated with the PAM-
derived cluster with the minimumMED was selected for each site
and month. The classification performance of PAM for aerosol
types was quantified as unity (Number of mismatches/(Number
of matches + mismatches). For the same aerosol type, matches for
dominant annual clusters were computed based on several
previous study sites. Conversely, matches for MEDmin were
examined with respect to a single reference location but using
multiple monthly estimates. Also, reference aerosol sources for
the MEDmin technique were based on PAM-derived types.

Seasonal validations were examined at three AERONET sites
(i.e., GSFC, Kanpur and Banizoumbou, Figure 3, Supplementary
Appendix Table A1) where the aerosol composition during
different periods of the year has been investigated in detail
(Omar et al., 2005; Levy et al., 2007; Giles et al., 2012; Russell
et al., 2014). The analysis consisted of characterizing changes in

PAM-derived aerosol types among seasons and comparing the
patterns described in published studies.

Empirical vs. Theoretical Models
The optical inversion implemented by AERONET for retrieving
aerosol optical properties differs from that applied in A2010. The
AERONET radiative transfer model has additional assumptions
regarding surface reflectance and multiple scattering effects
(García et al., 2008; Giles et al., 2012; Sinyuk et al., 2020).
Thus, the optical properties of PAM-derived and A2010
aerosol models may not be compared unless Mie simulations
are performed for calculating the optical properties of PAM and
A2010 models. The simulations for “adjusted” A2010 models
should be done using mean volume density concentration
fractions derived from each PAM cluster. To simplify the
calculations, a first attempt to investigate the similarities and
differences between PAM and RH-based A2010 models was
made using the refractive index (nr and ni) and two
microphysical properties defined in the number density space
(the mean radius and width of PSD, rn and σn, respectively,
Table 1). Since AERONET inversions are carried out with PSDs
in volume space, a transformation was performed to compute
PSD-related parameters in number density units as in A2010.
Further, unlike A2010, the refractive index in PAM-derived
models is not resolved as a function of PSD modes. Thus, nr
and ni values for fine and coarse modes of A2010 models were
merged by using the number density function (NDF) of every RH
case study (i.e., 30, 50, 70, 75, 80, 85, 90, and 95%) as a weighting
factor:

〈nx〉 � nfinex NDFfine + ncoarsex NDFcoarse (4)
where <> indicates the NDF-weighted parameter, and x
represents nr or ni. As a result of the above formulation, the
PAM and RH-based aerosol mixtures can be directly compared
and assessed for their complementary nature and/or differences.

Atmospheric Correction Case Study
For a practical assessment of the efficacy of the PAM models in
the context of AC, we integrated our models into an experimental
AC framework. Adapting the state-of-the-art processors
(Pahlevan et al., 2021a) was unachievable due to a number of
reasons, including, their theoretical limitations for handling
absorbing aerosols (e.g., they cannot be detected using the NIR
band ratio (Chomko and Gordon, 1998)) and the difficulty in
their formulation and implementation (e.g., re-generating
Rayleigh look-up-tables, single-scattering to multiple-scattering
conversion). Inevitably, we developed two machine learning
(ML) processors to convert top-of-atmosphere reflectance (ρt)
to Rrs for Landsat-8/OLI data and then evaluated the quality of
retrievals over selected AERONET-OC sites. To train the ML
models, a coupled ocean-atmosphere, vector radiative transfer
(RT) code adapted to ingest in situ (OLI-like) Rrs was employed
(Zhai et al., 2009). For this demonstration, OLI imagery was
considered because of its utility across global inland and
nearshore coastal waters and its limited viewing zenith angles
(VZA < 7.5o), reducing the required number of RT simulations.
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The input to the RT code consisted of in situ Rrs (N = 215)
together with a reasonable range of solar zenith angles (SZA)
(20–60° with increments of 10°) and aerosol optical depths at
550 nm (0.03–0.23 with steps of 0.04). The two ML processors
differed only in terms of the aerosol models used. One processor
(hereafter ACI) applied simulation results (paired sets of Rrs and
ρt) generated by incorporating A2010 aerosol models into the RT
code. The other processor (hereafter ACII) was developed using
RT simulations supplied with both A2010 and PAM models.
Comparing the performances of ACI and ACII elucidates the
effectiveness of PAM models when used in conjunction with
A2010 models. Table 5 provides the information on the aerosol
size distribution (effective radius and variance) and refractive
index at 0.44 and 0.87 µm for each of the 27 aerosol models,
which can be used to obtain the refractive index at an arbitrary
wavelength through linear interpolation. This information is used
by the Lorenz–Mie theory to calculate SSA and phase matrix,
which is then fed to the radiative transfer model for multiple
scattering calculations. AOD is a product of aerosol column
number density and extinction cross-section, which is used as
an independent input to the RT model. The A2010 models were
incorporated into the model in a similar fashion.

To further constrain the number of simulations, only a subset
of A2010 models representing fine-mode, weakly-to-non
absorbing models (indexed 1 through 7) modulated by a few
RH cases (50, 70, and 80%) were applied (we assumed an absence
of oceanic aerosols). This choice of A2010 models was
determined from Landsat-8/OLI matchups processed via the
SeaWiFS Data Analysis System (SeaDAS). The final
combination of aerosols for ACI yielded 21 (= 7 × 3) different
aerosol models and 48 (=27 + 21) for ACII. The rest of the input
parameters, including atmospheric gaseous concentrations (NO2

and O3 at 0.17 and 290 Dobson, respectively), water vapor
amount (3 g cm−2), wind speed (3 m s−1), and surface pressure
(1,017 mb), were assumed constant.

Our ML model is a class of neural networks referred to as
Mixture Density Networks (MDNs) (Bishop, 1994), which learn
conditional probabilities for input (ρt) and output (Rrs) variables
and are capable of modeling multimodal distributions in the
target space. Due to these characteristics, MDNs proved adept at
tackling the non-unique nature of the inverse problem common
to remote sensing science and applications, including the aquatic
remote sensing field (Smith et al., 2021). This inherent trait
separates our experimental AC processors from previously
designed ML models for AC (Brajard et al., 2006; Schroeder
et al., 2007; Fan et al., 2021). Valid Level 2 AERONET-OC
radiometric products (Rrs) matching cloud-free OLI
observations [selected according to SeaDAS exclusion criteria
(Werdell and Bailey, 2005)] were utilized for assessing the
performance of ACI and ACII. An adequate number of
matchup datasets (N = 173) was extracted mainly from coastal
sites, such as LISCO (N = 7), Lake Erie (N = 8), MVCO (N = 24),
Venise (N = 94), and Wave CIS (N = 40) representative of blue
and/or green waters. Following a preliminary evaluation of the
shapes and magnitudes of these AERONET-OC Rrs products, a
small subset (N = 215) of an in situ Rrs database
(Balasubramanian et al., 2020; Pahlevan et al., 2020; Smith

et al., 2021) resampled with OLI’s relative spectral response
functions (Supplementary Appendix Figure A2) was
identified and incorporated as input to the RT code. It is
recalled that the development of these two processors is
merely intended for this demonstration, and they are not
expected to operate across global aquatic ecosystems.

More specific information that corresponds to the
development of MDNs is enlisted in Table 2. The input and
output features were log-transformed and scaled with mean and
standard deviations. Like previous studies (Smith et al., 2021;
O’Shea et al., 2021), the final model prediction is the median of 10
ensembles (i.e., MDN iterations). For the matchup assessments,
median ρt computed from 3 x 3-element windows centered
around AERONET-OC sites were chosen to represent OLI
observations. OLI ρt spectra were further normalized by the
Earth-Sun distance squared to eliminate the associated
dependency on this variability. Clouds, cloud shadows, and
hazy matchups were identified and excluded using SeaDAS
criteria (e.g., ρt(2201)> 0.018) (Pahlevan et al., 2017b). Note
that, in this exercise, no spectral band adjustments were carried
out, due to the comparative nature of the analysis (ACI vs. ACII).

For performance evaluations, we applied the metrics below

X � log10(Q̂/Q)
MdSA � 100 × (10Y1 − 1) [%]whereY1 � Median

∣∣∣∣X∣∣∣∣ (5)
MSA � 100 × (10Y2 − 1)[%]where Y2 � Mean

∣∣∣∣X∣∣∣∣ (6)

RMSLE �
�����∑N

1 X
2

N

√
(7)

where Q̂ and Q correspond to satellite-derived Rrs and in situ Rrs,
respectively, N is the number of AERONET-OC matchups,
MdSA stands for median symmetric accuracy, MSA is mean
symmetric accuracy, and RMLE represents root-mean-squared
logarithmic error (Morley et al., 2018). These metrics are robust
and capture different aspects of model performances (Pahlevan
et al., 2021a).

RESULTS

Clusters and Associated Aerosol Properties
The unsupervised classification of aerosols based on PAM
resulted in 27 clusters (Table 3). This number of aerosol
mixtures is relative as it may vary for higher or lower
Silhouette thresholds (e.g., 1 and 200 mixtures, respectively).
However, an intermediate Sil index (≥0.51) was adopted to
reduce the processing time without compromising the number
of potential aerosol classes reported in the literature (Omar et al.,
2005; Giles et al., 2012; Russell et al., 2014; Hamill et al., 2016).
Each PAM cluster represents an aerosol model mixture with
specific microphysical and radiative properties. Also, each cluster
is composed of multiple AERONET sites and measurements
obtained during different periods of the year. To interpret
regional and temporal changes in the aerosol compositions,
the PAM models were assigned to five broad aerosol types
based on AERONET sites widely cited as aerosol sources
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(Omar et al., 2005; Giles et al., 2012; Russell et al., 2014). This
aerosol classification was also critical for validating and
predicting the monthly and annual composition of
dominant aerosols, as described in section 3.2. A few
representative AERONET sites assigned to different clusters
are illustrated in Figure 4.

Here, one aerosol type can be grouped into more than one
PAM-based cluster, thus, PAMmodels can be defined for aerosol
sub-types that characterize a new mixed type. The PAM models
in Table 3 are categorized according to the mean values of fine
mode Cv fraction [i.e., FCv

fine = Cv
fine/(Cv

fine + Cv
coarse)] per

aerosol type. Therefore, aerosol sub-types 1 through 9 correspond
to DU (Cv fraction as percentage = 10.2–25%), 10 to MAR (43%),
11–15 to MIX (27.4–59.4%), 16–21 to U/I (34.6–67.5%) and

22–27 to BB (48–65.9%). The CS values among sub-types were
highly variable (1.2–6.1%), but the average value per type was
comparable between the basic five aerosol sources used here
(~3%). The CSG values varied mainly between 8 and 30%. All
PAMmodels had a designated “regional” distribution (i.e., not all
continents had measurements); however, the BB aerosol type
tended to be represented by a “global” distribution
(i.e., AERONET records in all continents but sub-Arctic
locations).

In general, most AERONET measurements applied in the
PAM classification (95%) were concentrated in the Northern
Hemisphere and corresponded to spring-summer months
(63.3%) (Table 4). Despite this latitudinal asymmetry, BB,
MAR, MIX, and U/I aerosol types tended to be more

TABLE 2 | Properties of MDNs used for developing our experimental AC processors.

Network hyperparameters

Training Iterations 5,000
Number of Gaussians 5
Neurons per hidden layer 30
Hidden layers 5
Learning rate 0.001
Epsilon 0.001

Input features
ρt (443), ρt (482), ρt (561), ρt (655), ρt (865), VZA, SZA, RAA, θs, RH

Output features
Rrs (443), Rrs (482), Rrs (561), Rrs (655)

TABLE 3 | PAM-derived aerosol models. G: global, R: regional, Eur: Europe, Amer: America, Aust: Australia, Afr: Africa, Nclus: number of records per cluster, CS: Cluster Size,
CSG: Cluster Structure Goodness.

Type Sub-type Domain Continent CS(%) CSG(%) Nclus

DU 1 R Eur, Amer, Afr, Asia, Aust 3.6 30 247
DU 2 R Eur, Amer, Afr, Asia, Aust 3.8 14 260
DU 3 R Eur, Amer, Afr, Asia, Aust 3.4 24 229
DU 4 R Eur, Amer,Afr,Asia 4.7 8 319
DU 5 R Eur, Afr, Asia 2.2 10 151
DU 6 R Eur, Amer, Afr, Asia, Aust 3.3 11 224
DU 7 R Eur, Amer, Afr, Asia, Aust 1.2 27 81
DU 8 R Afr, Asia 4.1 20 279
DU 9 R Eur, Amer,Afr,Asia, Aust 5.5 29 375
MAR 10 R Eur, Amer,Afr,Asia, Aust 4.4 19 301
MIX 11 G Eur, Amer, Afr, Asia 4.5 18 306
MIX 12 G Eur, Amer, Afr, Asia, Aust 3.0 29 206
MIX 13 R Eur, Afr, Asia 2.0 9 139
MIX 14 R Eur, Amer, Afr, Asia 4.6 24 310
MIX 15 R Eur, Amer, Afr, Asia, Aust 3.5 21 238
U/I 16 G Eur, Amer, Afr, Asia 3.6 21 243
U/I 17 R Eur, Amer, Afr,Asia, Aust 3.4 11 233
U/I 18 R Eur, Amer, Afr, Asia, Aust 1.5 29 101
U/I 19 R Eur, Amer, Afr, Asia 3.6 30 242
U/I 20 R Eur, Amer,Afr,Asia 4.1 27 279
U/I 21 R Eur, Amer, Afr, Asia 3.8 12 259
BB 22 G Eur, Amer, Afr, Asia 4.0 18 272
BB 23 G Eur, Amer, Afr, Asia 2.5 16 173
BB 24 G Eur, Amer, Afr, Asia 4.1 16 279
BB 25 G Eur, Amer, Afr, Asia 4.3 20 290
BB 26 R Eur, Amer, Afr, Asia 6.1 18 417
BB 27 G Eur, Amer, Asia 4.5 10 303
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prevalent over sites south of the equator. This spatial pattern was
reversed for DU, possibly due to both the lack of significant dust
sources (e.g., compared to Saharan and Gobi Deserts) and the
location of AERONET sites near dust regions in the Southern
Hemisphere.

In general, DU models were dominant in all months,
representing 32% of aerosol records with the highest
contribution during spring (43.1%). The AERONET
measurements with biomass burning classification were the
second most dominant aerosol type during an annual cycle
with the highest contributions during summer (31.2%),
followed closely by the fall period (28.3%) (Table 4). Marine-
dominated aerosols only account for less than 6% in all seasons,
possibly due to the limited availability of inverted AERONET
aerosol properties for AOD(0.44) < 0.4 across most of these
locations. The highest seasonal contribution associated with the
MIX aerosol type was 22.3% and occurred during winter. Also,
the influence of MIX aerosols decreased during warmer months
and was characterized by a weak inter-seasonal variability. Like
BB, the U/I aerosol type had the highest seasonal contribution of
(22.8%) during summer followed by the fall period (20.4%).

Table 5 summarizes the mean values of SSA(0.44), AEe and
AEa for each aerosol class derived from PAM and themean values
of other relevant aerosol properties (e.g., g, rn, and nr) correlated
with our input classification parameters. These values are within
the expected range for aerosol types described in the literature
(Dubovik et al., 2002a; Giles et al., 2012; Russell et al., 2014; Roger
et al., 2022). The standard deviation of each aerosol property is
not shown as the intra-cluster variability can be inferred from
CSG values computed in Table 3. In general, the magnitude of
AEe decreased (increased) at lower (higher) aerosol sub-type
numbers (e.g., 0.27 to 0.70 for DU sub-types 1–9) (e.g., 1.46 to
1.88 for BB sub-types 22–27) due to smaller (larger) contributions
of fine aerosol particles. Mean values of AEa for DU ranged from
1.5 to 2.5, with values closer to 1 typically associated with the
remaining aerosol types. On average, fine and coarse mode
particles had the smallest radius for DU sub-types (0.04 and
0.69 μm, respectively). In general, σnfine (σncoarse) decreased
(increased) in aerosol types with higher FCvfine values (e.g.,
σnfine up to 0.63 and 0.45 in DU and BB, respectively). The
real (imaginary) part of the refractive index for DU-like models
was commonly high (low) with respect to the other aerosol types
(e.g., maximum nr(0.44) and minimum ni(0.44) for DU sub-types
were 1.498 and 0.001, respectively). The variability for nr (ni) in

FIGURE 4 | Examples of PAM-derived aerosol types in AERONET sites.
Sub-types 1–10. Examples of PAM-derived aerosol types in AERONET sites.
Sub-types 11–21. Examples of PAM-derived aerosol types in AERONET sites.
Sub-types 22–27.

TABLE 4 | Seasonal aerosol-type distributions. Values represent the total
percentage (i.e., Northern and Southern Hemispheres) for each aerosol
category. Each column sums up to 100%.

Winter Spring Summer Fall

DU 35.1 43.1 26.6 28.3
MAR 5.5 5.4 3.4 5.3
MIX 22.3 18.2 16.0 17.7
U/I 17.6 16.4 22.8 20.4
BB 19.5 16.9 31.2 28.3
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the blue or NIR spectral range was relatively small (large) with
values < 5% and >90%, respectively. As expected, the asymmetry
parameter tended to decrease as FCv

fine increases (e.g., the mean
g(0.44) for DU and BB types was 0.750 and 0.688, respectively).

The differences between PAM-derived aerosol types are also
present when angular and spectral changes of aerosol properties
are considered. To emphasize these variations, selected models
represented in the four aerosol types are depicted in Figure 5. In
general, DU-MIX (BB-U/I) sub-types had the lowest (highest)
backscattering contributions as inferred from their normalized
phase (Pa) functions (i.e., θs = 90° to 160°) (Figure 5B) with the
MARmodels having intermediate values. Note that several curves
may be depicted with the same color when the main aerosol type
is composed of more than one PAM model (i.e., sub-type).

In the forward-scattering direction (i.e., θs = 5 to 25°)
(Figure 5A), there was not a clear differentiation between
DU-MIX and BB-U/I sub-types. Likewise, aerosols mainly
composed of sea salt were characterized by a normalized
phase function falling in the middle of the envelope composed
of all aerosol models. The spectral behavior of SSA was a good
indicator to discriminate aerosols with different compositions as
three general patterns are observed: P1. aerosols with SSA
increasing with λ (e.g., DU), P2. aerosols with SSA decreasing
with λ (e.g., BB andMAR), and P3. aerosols presenting P1 and P2
(e.g., U/I and MIX) (Figure 5C). Spectral curves of g are depicted
in Figure 5D and suggest a direct relationship between the
spectral slope and FCvfine. More specifically, the spectral slope
of g between 0.44 and 1.02 µm were high (low) for fine-mode

(coarse-mode) dominated aerosol assemblages (i.e., BB-U/I and
DU sub-types, respectively). Likewise, aerosols with a substantial
contribution of fine and coarse particles (i.e., MIX and MAR)
presented intermediate values of g spectral slopes. The
complementary components of the PAM models are readily
inferred by comparing these spectra with the A2010 models
shown in Figure 1.

Model Comparisons With Literature
The calculation of dominant clusters over AERONET sites
reported in the literature for different aerosol types was used
to evaluate the PAM performance for identifying aerosol
reference sources. This verification was based on annually
dominant aerosol categories. Thus, AERONET records
corresponding to different periods of the year were merged for
each annual estimate. This comparison technique had varying
degrees of success as the proportion of correct matches for DU,
BB, U/I, MIX, and MAR were highly variable (i.e., 67, 33, 32, 15,
and 10% success rate, respectively). In general, AERONET sites
with correct matches for DU (e.g., Banizoumbou, Cape Verde,
Ouagadougou) were previously proposed by more than one study
(see Supplementary Appendix Table A3). The sites with
accurate classification of BB aerosols (e.g., Mongu, Bonanza
Creek, Cuiaba) correspond with aerosol sub-type clusters 23 to
25. The PAM-based classification of the GSFC site suggested
aerosols mainly originated from urban/industrial activities, which
agreed with reference aerosol sources cited (Supplementary
Appendix Table A3). Most sites with correct matches in U/I

TABLE 5 | Summary of aerosol properties per cluster. Each value corresponds to the arithmetic mean. Units of properties are described in Table 1. Sub-types 1–9 are DU,
10 is MAR, 11–15 are MIX, 16–21 are U/I, and 22–27 are BB.

Sub-type SSA(0.44) AEe AEa FCv
fine rn

fine σn
fine rn

coarse σn
coarse nr(0.44) ni(0.44) nr(0.87) ni(0.87) SSA(0.87) g(0.44) g(0.87)

1 0.93 0.273 2.572 0.11 0.04 0.63 0.73 0.58 1.465 0.003 1.470 0.001 0.98 0.773 0.742
2 0.86 0.600 1.640 0.17 0.06 0.52 0.72 0.64 1.488 0.009 1.525 0.005 0.93 0.744 0.715
3 0.93 0.593 2.186 0.17 0.06 0.52 0.70 0.62 1.465 0.004 1.463 0.002 0.97 0.737 0.712
4 0.88 0.343 1.990 0.11 0.05 0.60 0.75 0.6 1.481 0.006 1.502 0.003 0.96 0.774 0.735
5 0.82 0.707 1.421 0.19 0.06 0.51 0.70 0.65 1.498 0.016 1.532 0.008 0.89 0.743 0.711
6 0.90 0.963 1.452 0.25 0.08 0.47 0.69 0.66 1.496 0.008 1.510 0.006 0.92 0.718 0.681
7 0.97 0.370 1.637 0.12 0.06 0.58 0.73 0.58 1.468 0.001 1.478 0.001 0.98 0.754 0.731
8 0.91 0.687 1.772 0.19 0.07 0.49 0.70 0.63 1.471 0.005 1.503 0.003 0.95 0.732 0.706
9 0.90 0.270 2.463 0.10 0.04 0.63 0.75 0.59 1.473 0.004 1.482 0.002 0.97 0.779 0.741
10 0.93 1.289 1.141 0.43 0.10 0.46 0.76 0.65 1.466 0.007 1.468 0.007 0.91 0.712 0.638
11 0.96 1.384 0.975 0.51 0.10 0.46 0.77 0.65 1.450 0.005 1.447 0.006 0.93 0.715 0.628
12 0.85 1.326 1.337 0.42 0.08 0.47 0.78 0.67 1.493 0.023 1.514 0.017 0.82 0.693 0.620
13 0.97 0.859 1.237 0.27 0.08 0.49 0.71 0.63 1.447 0.002 1.459 0.002 0.97 0.730 0.694
14 0.97 1.615 0.980 0.59 0.10 0.43 0.78 0.66 1.441 0.004 1.439 0.005 0.94 0.709 0.584
15 0.94 1.031 1.389 0.32 0.09 0.47 0.70 0.65 1.462 0.005 1.468 0.004 0.94 0.721 0.674
16 0.88 1.184 1.250 0.35 0.08 0.47 0.75 0.67 1.502 0.014 1.517 0.012 0.87 0.703 0.649
17 0.98 1.238 0.967 0.44 0.10 0.46 0.76 0.63 1.446 0.002 1.446 0.002 0.97 0.726 0.653
18 0.80 1.395 1.339 0.45 0.08 0.47 0.81 0.67 1.496 0.033 1.520 0.026 0.76 0.680 0.604
19 0.99 1.821 1.126 0.68 0.11 0.41 0.86 0.64 1.417 0.002 1.425 0.002 0.97 0.705 0.544
20 0.99 1.289 1.062 0.58 0.10 0.45 0.83 0.63 1.421 0.002 1.429 0.002 0.98 0.719 0.603
21 0.95 1.924 1.077 0.65 0.10 0.40 0.85 0.66 1.471 0.007 1.453 0.008 0.90 0.686 0.525
22 0.93 1.819 1.094 0.61 0.10 0.41 0.84 0.66 1.481 0.011 1.463 0.012 0.86 0.683 0.540
23 0.86 1.731 1.294 0.58 0.09 0.42 0.83 0.68 1.502 0.025 1.513 0.022 0.78 0.659 0.532
24 0.90 1.651 1.192 0.55 0.09 0.43 0.82 0.67 1.473 0.015 1.470 0.015 0.83 0.681 0.569
25 0.92 1.456 1.119 0.48 0.09 0.45 0.76 0.66 1.471 0.011 1.467 0.011 0.88 0.703 0.614
26 0.94 1.631 0.996 0.57 0.10 0.43 0.82 0.65 1.457 0.008 1.445 0.008 0.90 0.704 0.583
27 0.97 1.879 1.114 0.66 0.11 0.40 0.87 0.65 1.445 0.004 1.435 0.004 0.94 0.699 0.538
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coincided with locations studied by Omar et al. (2005) in
Supplementary Appendix Table A3 (e.g., Venise, UCLA,
Mexico City) and corresponded to sub-types 20 and 21. The
identification of MIX-dominated sites based on PAM was not
satisfactory as PAM predictions were only correct in two
reference AERONET locations (Kanpur and Howland).

The AERONET sites labeled as DU by the PAM classifier
coincided geographically with deserts (Supplementary
Appendix Table A4 and Figure 4) (e.g., Mojave, Sonoran). To
date, no AERONET sites exist in the Gobi Desert. However, its
influence was manifested in western China. Predominance of
dust along with observations made in Florida and the Caribbean
Sea during summer was likely related to trans-Atlantic transport
of dust originated in Sahara and Sub-Sahara (Sahel) deserts of
Western Africa. As expected, PAM-based marine aerosols were
associated with lower altitudes with respect to the sea level
(96–325 m) as nearshore coastal areas are commonly
characterized by lower elevations. MAR locations were
concentrated along the coast of California, the Mediterranean
Sea, and the Persian Gulf. MAR was rarely determined at island
sites due to their typically low AOD values and the associated
limitation for retrieving absorption-related aerosol properties
(e.g., SSA). Aerosol sources within the BB aerosol type

(Figure 4) included sites typically influenced by wildfires (e.g.,
Bonanza Creek, Alta Floresta) or man-originated fires (e.g.,
Barcelona, Moscow and Skukuza). No BB models were present
in Sudan or west Africa due to the lack of measurements,
relatively high AOD, and/or major influence of dust. In Asia,
BB sites were identified in Iran (e.g., IASBS), Russia (e.g.,
Yakutsk), Thailand, Burma, and Indonesia. Lastly, in Australia,
BB aerosols were likely originated from wildfires of woodlands
and forests (e.g., Lake Argyle and Lucinda).

AERONET sites for MIX were ubiquitous, and their location
generally overlapped with the location of other aerosol types
such as DU (e.g., Cairo_EMA), MAR (e.g., Arica), BB (e.g.,
Bonanza Creek), and U/I (e.g., UCLA). The AERONET sites
classified as U/I corresponded with the largest cities around the
world (e.g., Sao Paulo, Dragon Osaka Center, Mexico City).
Also, PAM models labeled as U/I were present in highly
populated areas in the U.S., Africa, Europe, and Asia (e.g.,
Fresno, Toulouse, Dalanzadgad, Supplementary Appendix
Table A3).

In this study, an alternative evaluation of PAM’s ability for
classifying aerosol types in different geographic locations was
based on MED comparisons. Independent AERONET
measurements were used (i.e., remaining 25% of records not

FIGURE 5 | Spectral variation of aerosol properties for selected PAM-derived clusters and associated types. Arithmetic average of normalized phase function at
scattering angle θs = 0°) for forward panel (A) and backscattering angles [panel (B)], SSA [panel (C), and g [panel (D)]. Curves with the same color symbol represent
different aerosol models of the same type (Table 5). The numbers next to aerosol types represent PAM-derived subtypes (Table 5).
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included in PAM analysis), and dominant clusters were
determined at the monthly scale for only four sites
(i.e., Solar Village, XiangHe, Mexico City, and Mongu).
Unfortunately, no MEDmin calculations were possible for
the MAR type due to the scarcity of measurements. In
general, the identification of aerosol types based on MEDmin

was very satisfactory for DU and BB case studies (section 2.4)
(i.e., Solar Village and Mongu, respectively). Indeed, the
annual mean of aerosol properties in PAM-derived DU-and
BB-related clusters allowed successful discrimination (i.e., 75
and 80% of months, respectively) of aerosol assemblages in
pre-selected reference sites. In Solar Village, DU-related sub-
types 4 and 9 were correctly predicted between January and
August, however, the MEDmin estimates between September
and December were poor due in part to a more diverse
composition of aerosols (e.g., co-dominance of U/I and
MIX) (Figure 6). The co-dominance among different DU
sub-types was also observed between January and March. In
Mongu, the dominant aerosol composition between June and
October was BB. The co-dominance of polluted continental
aerosols (i.e., U/I) during fall-winter (Omar et al., 2005) could
not be corroborated in this study due to the lack of
measurements (section 2.4). In XiangHe, there was no
correspondence between PAM and MEDmin classifications
of aerosol types as PAM-derived sub-types only matched in
9% of comparisons due to a strong co-dominance of aerosol

types different from MIX. However, MEDmin was more
sensitive as 67% of monthly data were labeled as MIX. The
validation results were also unclear in Mexico City, where
PAM clusters suggested a co-dominance between U/I and BB
and during different periods of the year. Also, MEDmin failed to
correctly identify the dominant aerosol composition as 90% of
monthly comparisons were associated with BB (e.g., sub-types
23 and 24). In this case, BB could be a dominant sub-type
during periods of moderate AOD (~0.4) for which the
AERONET retrieval is obtained. In contrast, our PAM
clustering is based on lower AOD values. As a result, the
validation procedure is dependent on the assumption
that the estimation of the aerosol type is conserved at
lower AOD.

Monthly variability of dominant clusters and their mean
aerosol properties are depicted in Figure 7 for three AERONET
locations (GSFC, U.S. East coast; Kanpur, Northern India; and
Banizoumbou, West Africa). Most observations at GSFC were
made in spring-summer and showed a dominance of PAM
clusters linked to U/I and BB during spring-summer and fall,
respectively (Figure 7A). Winter months commonly exhibited a
more heterogeneous composition of aerosols with co-
dominance of one or more types (e.g., missing bars in
Figure 7A). The transition from spring-summer to fall was
associated with higher SSA(0.44) and lower AEe and FCv

fine

values (Figure 7B). Also, the variability of AEa for both
dominant clusters was around 1. Months with missing mean
aerosol properties coincided with periods of the year where co-
dominance of aerosol sub-types occurred. The variation of
aerosol composition at Kanpur was characterized by MIX
and DU aerosol types during winter and spring-fall,
respectively (i.e., PAM clusters 15 and 2,5,8, respectively)
(Figure 7C). Unlike GSFC, the number of AERONET
observations was smaller and concentrated in the spring
months. Changes in aerosol properties of dominant clusters
coincided with an increase of AEa and SSA(0.44) from spring to
fall months(Figure 7D). Banizoumbou was characterized by
DU-related aerosol sub-types (e.g., 1,2,4 and 9) during all
seasons (Figure 7E). Likewise, DU-BB co-dominance was
mainly present between July and January. October was
associated with relatively high SSA(0.44) (~0.92), AEe (0.84)
and FCv

fine (0.128) values (Figure 7F). Maximum mean values
of AEa (2.7) were calculated in June when AEe (0.1) and FCv

fine

(0.08) were relatively low.

Atmospheric Correction
The performance of ACI and ACII for each AERONET-OC site is
illustrated in Table 6. The performance metrics, and their ratios,
suggest up to 30% improvements in estimating Rrs(443) and
Rrs(482), corroborating the added value of PAM models. The
differences in the performance of the two processors appear
insignificant in the 561 and 655 nm bands, an observation
consistent with the expected impact of absorbing aerosols
(Nobileau and Antoine, 2005). The highest performance gain
in Rrs(443) is reported for the LISCO and Lake Erie sites. The
LISCO site (~40 km northeast of New York City) is a region likely
influenced by the U/I aerosols.

FIGURE 6 | Validation of aerosol models using MED in Solar Village.
Predicted aerosol sub-types (A), MEDmin prediction performance (B). The
mismatch between aerosol types is an agreement of 0. No blue circles when
co-dominance is present.
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To further illustrate the improved spectral patterns in retrieved
Rrs, six selected spectra from our matchup dataset are illustrated in
Figure 8. The spectra reconstructed fromACII (dotted lines) better
agree with the AERONET-OC spectra in the blue bands, indicating
enhancements in Rrs estimates with respect to those obtained from
ACI.While the largest source of mismatch (e.g., biases) in retrieved
Rrs (from both ACI and ACII) can be remedied by modifying
MDNs, the PAMmodels are shown to properly mend the shape of
the spectra, providing a better fit to in situ measured spectra. The
measured AOD(440) and retrieved SSA(440) (Level 1.5 and 2.0)
are also annotated to inform the atmospheric conditions at the
time of satellite overpass.

DISCUSSION

Clustering Approaches
This study’s categorical analysis of aerosols was based on PAM,
an unsupervised classification technique. There is no consensus
in the literature regarding the preferential use of unsupervised
over supervised methods for obtaining different aerosol classes.
The main advantage of using a supervised algorithm is that
clustering results are not abstract (i.e., aerosol classes have
already been assigned to an aerosol type). Conversely,
categories computed from unsupervised clustering must be

FIGURE 7 | Site-specific monthly variability of PAM-derived aerosols. GSFC (A, B), Kanpur (C, D), Banizoumbou (E, F), dominant aerosol sub-type ids (left panels,
solid circles), types (bold legend) and their mean properties (right panels), co-dominance of clusters (left panels, empty circles), Nclus

max is the number of records for the
dominant cluster.

Frontiers in Remote Sensing | www.frontiersin.org May 2022 | Volume 3 | Article 86081614

Montes et al. Aerosol Models for Atmospheric Correction

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


interpreted a posteriori using reference information (i.e., aerosol
sources). Here, themaximumnumber of clusters was defined based
on the Silhouette index, a metric successfully applied in several
studies for discriminating aerosols (Omar et al., 2013; Äijälä et al.,
2017; Szkop and Pietruczuk, 2019). Omar et al. (2005) computed a
Kmax = 6 using an iterative criterion based on minimum cluster
size. Unlike our findings, the Omar et al. (2005) estimates for Kmax

were probably in the low range as their number of samples and sites
was much smaller. To derive Kmax, Giles et al. (2012) utilized
multiple filters (e.g., 2-D scatterplots, size thresholds). They
suggested up to 8 aerosol categories that might be
underestimated due to our study’s analysis of a larger number
of AERONET sites. Russell et al. (2014) proposed a Kmax of seven
that was established based on pre-defined aerosol sources, the
Mahalanobis distance probabilities, and thresholds on aerosol
properties. The smaller number of clusters in Russell et al.
(2014) with respect to our study may be related to the spatially
constrained analysis of AERONET sites and the strong correlation
between some aerosol properties used for clustering. Overall, the
finer clustering scheme adopted in this study was driven by the
limited relevant information content in ρt, a physical constraint
over natural waters where πRrs/ρt is generally < 10% (IOCCG,
2010). This challenge requires highly accurate quantification of
aerosol contribution for robust retrievals of Rrs.

Aerosol Types and Associated Properties
The spatial and temporal global distribution of aerosol types
followed different patterns related to large-scale atmospheric

circulation (e.g., DU) or local conditions (e.g., U/I, BB, and
MAR) (section 3.2). The prevalence of dust in the northern
hemisphere has been linked to the air mass advection from
deserts (e.g., Gobi and Taklamakan in north-central Asia,
Saharan in Western Africa) (Tanré et al., 2003; Eck et al.,
2005; Giles et al., 2011). The largest contribution of BB-related
aerosols occurs during summer in northern high latitude
locations, which tends to shift near and south of the equator
in the northern hemisphere fall (Eck et al., 2003; Eck et al., 2009;
Eck et al., 2013; Tilstone et al., 2020). Another finding was amajor
fraction of U/I during summer, perhaps due to humid, stagnant,
and hot conditions allowing for secondary aerosol formation and
hygroscopic growth due to humidification such as cloud
processing (Eck et al., 2012; Eck et al., 2014).

PAM-derived aerosol properties in Table 5 showed unusually
high AEe values for cluster 10 (MAR). Although AEe values up to
2.2 have been rarely measured (e.g., Lanai, Bermuda and
Kaashidhoo (Smirnov et al., 2003a)), AEe values for maritime
environments are typically below 1 when the aerosol optical
depth at 500 nm is less than 0.15 (Smirnov et al., 2003a). The
anomalous high mean value of AEe in our marine-dominated
aerosol cluster is probably attributable to a relatively high
contribution of fine-mode particles with a land origin (e.g.,
smoke) at Tremiti, Italy, and Chao-Jou, Taiwan. This
hypothesis is supported by the relatively smaller FCv

fine

(~0.15) of maritime aerosols (Smirnov et al., 2003a; Sayer
et al., 2012a). Mean values of rv and σv for aerosol mode
fractions reported in (Sayer et al., 2012a) did not explain the
differences with our results as their fine and coarse particle
distributions were characterized by a smaller radius (rn =

TABLE 6 | Per-site matchup statistics (Eq. 5–7) for the performance of our experimental AC processors (ACI and ACII). The number of matchups is provided in the last
column.

ACI ACII Metric Ratio N

Band
(nm)

MdSA
(%)

MSA
(%)

RMSLE MdSA
(%)

MSA
(%)

RMSLE

LISCO 443 32.6 28.5 0.12 30.8 22.8 0.10 1.06 1.25 1.20 7
482 13.8 13.7 0.07 11.7 12.8 0.06 1.18 1.07 1.25
560 21.8 27.0 0.11 18.4 23.0 0.10 1.18 1.17 1.14
655 30.1 33.2 0.13 26.9 26.4 0.11 1.12 1.26 1.20

Lake Erie 443 27.8 34.1 0.14 21.4 29.9 0.13 1.30 1.14 1.09 8
482 27.0 29.8 0.12 21.7 28.2 0.12 1.25 1.06 1.02
560 20.8 19.5 0.1 20.0 19.5 0.1 1.0 1.0 1.0
655 58.2 52.4 0.21 58.1 53.5 0.21 1.0 0.98 0.97

MVCO 443 24.0 27.3 0.1 19.0 25.3 0.1 1.3 1.1 1.0 24
482 22.1 25.7 0.12 19.3 24.1 0.12 1.14 1.07 1.05
560 20.0 26.9 0.1 20.0 27.7 0.1 1.0 1.0 1.0
655 32.0 31.0 0.14 28.5 31.2 0.14 1.12 0.99 0.99

Venise 443 16.6 17.6 0.1 15.2 15.9 0.1 1.1 1.1 1.1 94
482 15.8 16.7 0.08 15.3 15.5 0.07 1.03 1.07 1.08
560 12.2 14.7 0.1 11.7 15.4 0.1 1.0 1.0 1.0
655 20.1 25.7 0.13 21.3 27.3 0.13 0.95 0.94 0.97

Wave CIS 443 17.9 19.7 0.1 18.1 20.1 0.1 0.98 1.08 1.0 40
482 12.6 17.9 0.11 10.8 17.9 0.10 1.16 1.00 1.05
560 18.9 22.7 0.1 18.4 21.5 0.1 1.0 1.1 1.0
655 27.7 29.7 0.14 29.0 29.6 0.14 0.96 1.00 1.02
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0.088 and 0.566 µm) and larger width (0.49 and 0.69) with respect
to those associated to cluster 10.

The magnitude of AEe in cluster 14 was beyond the upper
range of MIX aerosol assemblages, likely due to a greater
contribution of particles derived from BB and U/I. In
general, AEa values for MIX, U/I, MAR, and BB were low
due to the increased dominance of black carbon particles.
However, clusters 20 (U/I) and 25 (BB) had high AEa values
indicating the possibility of brown carbon particles. Mean AEa
values slightly less than one can be expected due to the
uncertainty in calculating AEa from AERONET
measurements (Giles et al., 2012).

Spatial Comparisons
The spatial analysis of PAM-derived clusters revealed that
aerosols of a continental origin mainly influence most
AERONET sites (Figure 4). The marine aerosol type only
represents ~ 4% of the entire database. This finding agrees
with Omar et al. (2005), who suggested a minor marine
contribution (i.e., 5%) based on nine years of measurements.
Also, our results regarding BB contributions (26%) are
comparable to those calculated by Omar et al. (2005) (26.6%).

Despite these similarities, our clustering results suggest that 1.
natural sources (i.e., dust +marine) account for a more significant
percentage of data due mainly to the underestimation of “dust”
sites in Omar et al. (2005) (15%), 2. our U/I aerosol type
contribution was 2-fold smaller, and 3. the contribution of the
“mixed” aerosol type derived from PAM was more significant.
Unlike our distribution of AERONET sites, the monitoring
locations of Omar et al. (2005) did not include observations in
Australia that were less dense in Asia, explaining the greater
importance of “dust-type” particles in our study. The PAM
classification generally only agreed with AERONET reference
sites annually dominated by dust. Misclassification of DU was
mainly due to the co-dominance of aerosol types during the same

month. This inconsistency was mainly associated with aerosol
classes suggested by Omar et al. (2005). Also, inconsistencies in
discriminating aerosols were attributed to dataset variations (e.g.,
sampling periods, aerosol load) at some AERONET sites chosen
as reference aerosol sources (see Supplementary Appendix
Table A3).

In our study, the Ilorin and Beijing sites corresponded to DU
and U/I types (Supplementary Appendix Table A3), a result that
apparently contradicts (Eck et al., 2010), who suggested a
composition dominated by MIX. However, most AERONET
records used in (Eck et al., 2010) were characterized by
AOD(0.44) > 0.4 [see Figure 2 in Eck et al. (2010)] and
different climatologies (e.g., only ten years for Ilorin). The
accuracy of PAM for discriminating AERONET sites
characterized by dominant aerosol types was also investigated
in this study based on MEDmin, suggesting a satisfactory
performance for detecting sites with a predominance of DU
and BB types. Based on the k-means algorithm, Omar et al.
(2005) also found that most comparisons associated with DU and
BB were matched correctly. Unlike the annual dominant
clustering approach used here, MEDmin had a better skill to
separate MIX-dominated sites, however, this advantage was not
observed for the U/I case study as aerosols were classified as BB.
This interference was also detected by Omar et al. (2005) for three
AERONET locations (Skukuza, IMS Metu Erdeml, and
Dalanzadgad) and was attributed to smoke aging.

Temporal Comparisons
Monthly changes on aerosol types at GSFC, Kanpur, and
Banizoumbou were consistent with the aerosol type
contributions computed in this study and local seasonal
patterns of aerosol composition reported in the literature
(Figure 7). The augmentation of smoke-related particles at
GSFC during fall, dust events in Kanpur in spring, and
seasonal alternate of DU-BB types in Banizoumbou are major

FIGURE 8 | OLI-retrieved Rrs shown for selected matchups. The spectra recovered through ACII (dotted) are more consistent with in situ (solid) than those
estimated via ACI (dashed). The reported AOD(440) and SSA(440) (Level 1.5 and 2.0) are annotated for each instance. Note the differences in the ranges of y-axes.
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shifts in aerosol composition that agree with global temporal
patterns computed here (see Table 4). Omar et al. (2005)
concluded that aerosols at GSFC are the polluted continental
type with a higher contribution during summer as detected here.
However, Omar et al. (2005) pointed out that GSFC also
experiences periods of significant clean continental aerosol
(i.e., rural or MIX) from November to February, a finding not
supported by our classification that could be partly explained by
differences between datasets. Giles et al. (2011) showed that
aerosols at Kanpur have a complex composition with
absorption and spectral characteristics that resemble a MIX
aerosol type. Also, Giles et al. (2011) detected the
predominant influence of dust events during the spring
months. The year-round aerosol composition at Banizoumbou
was strongly influenced by dust originating from the Saharan
desert, as pointed out by Omar et al. (2005). Likewise, our models
support a switch in dominant aerosol composition occurring
between July-January (BB) and February-June (DU) (Rajot et al.,
2008).

Advantages and Disadvantages of Heritage
Models
PAM and A2010 models present major differences in terms of
aerosol properties (e.g., see Figures 1, 5). The range of rn values
for the fine mode revealed that aerosol mixtures derived from the
clustering of AERONET measurements could have smaller
median diameters with respect to those suggested by A2010
models (Supplementary Appendix Table A5). Indeed, the
smallest rn

fine values for the A2010 aerosol mixtures
(0.085 μm) were up to 2-fold larger than the minimum
median radius computed for PAM clusters. PAM-based
models have a smaller variability of rn

coarse and intermediate
sizes (e.g., the radius was never above 1) with respect to A2010
models. Unlike the radius, the width of PSD was more variable for
fine and coarse fractions of PAM models as σn of A2010 models
was constant for each size-distribution mode (σnfine = 0.437,
σncoarse = 0.672). σnfine (σncoarse) for A2010 coincided with the
lower (upper) end of PAM-derived σnfine (σncoarse) values. The nr
for A2010 models was more variable (1.379–1.528 and
1.371–1.518 for λ = 0.44 and 0.87 μm, respectively) with
respect to values associated with PAM clusters (1.417–1.502
and 1.425–1.1532). Despite this variation, the A2010 models
cannot capture the maximum values computed by PAM at λ =
0.87 μm. Unlike nr, ni values for A2010 models were less variable
and relatively small (e.g., 0.0022–0.010 and 0.00218–0.0099 for λ =
0.44 and 0.87 μm, respectively) with respect to those characterized
by PAM clusters (0.00132–0.052 and 0.00054–0.056). In terms of
aerosol types, two crucial questions arise:

1. What are operational aerosol models derived from A2010 not
represented in nature (i.e., in situ information)?

2. How do microphysical properties of PAM-derived type MAR
compare to those of RH-based models?

Regarding the first question, the following findings summarize
what aerosol characteristics are “missing” in A2010 models:

1. The median radius for the fine mode pointed out that ten DU,
three MIX, and two U/I sub-types (i.e., clusters 1–10,13–15
and 18) are not part of A2010 models,

2. σnfine for the A2010 models only mimics the PAM cluster 19
with U/I type,

3. The range of rn
coarse values for A2010 can be constrained to a

reduced number of theoretical models (2 model x 10 RH = 20
models) matching the PAM-derived range,

4. σncoarse for the A2010 models only resembles the PAM cluster
20 with U/I type,

5. The range of nr(0.44) values for A2010 can be constrained to
27 models matching the PAM-derived range,

6. Relatively high nr(0.87) values in PAM sub-types 2,6,14 and 20
are not reflected in A2010,

7. Relatively low and high ni(0.44) values (<0.002 and >0.01,
respectively) in PAM models (eight U/I, four MIX, and three
DU sub-types) are not presented in the A2010 models, and

8. Relatively low and high ni(0.87) values (<0.0022 and > 0.099,
respectively) in PAMmodels (tenDU, six U/I, fourMIX and four
BB sub-types) are not included in any A2010 model.

Regarding the second question, the following can be
generalized (Supplementary Appendix Table A5):

1. The range of rn, σn, and nr values used to compute A2010
models is narrower with respect to that characterizing PAM-
derived MAR type.

2. The imaginary part of the refractive index is commonly
underestimated by the A2010 aerosol models, and this
difference is more remarkable at λ = 0.44 μm.

3. The arithmetic averages of rn
fine, rn

coarse, nr, and ni for the
PAM-derived MARmodel represent A2010 models associated
with an intermediate RH (i.e., RH = 75–80%).

4. The average width of fine mode (coarse) PSD was larger
(smaller) for PAM-derived aerosol mixture.

Although the more realistic representation of σn and ni by
PAMmodels, A2010 mixtures can be applied in a “dynamic”way,
given the functionalities between RH and aerosol properties.
Thus, the A2010 models may provide a finer temporal
“tuning” as a function of humidity in coastal areas with
marine-dominated aerosols. Also, RH-dependencies are still
considered viable in marine-dominated locations not
coinciding with AERONET sites.

Atmospheric Correction
The classification of aerosols in this study aimed to support an
enhanced representation of aerosol conditions for improved
global aquatic remote sensing science and applications. This
enhancement ultimately relies upon two important aspects: an
operational implementation of aerosol models and a realistic
representation of “natural” aerosol mixtures. NASA’s
operational AC method (Gordon and Wang, 1994), which
identifies aerosol types according to a NIR (or NIR-SWIR)
band-ratio, is generally ineffective when PAM-like aerosol
models are incorporated in the aerosol look-up-table
(Gordon, 1997). It is therefore imperative to devise
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optimization techniques (e.g., polynomial fitting, ML) to
leverage a wide array of aerosol types (Gordon et al., 1997;
Chomko and Gordon, 1998). Compared to the performance of
other ML processors validated in the literature (Fan et al., 2021;
Pahlevan et al., 2021a; Brockmann et al., 2016), our
preliminary results (Table 6 and Figure 8) suggest that
MDNs, once trained extensively, can offer a significant
boost in the quality of retrieved Rrs. In this study, we
demonstrated that when PAM models are incorporated into
MDNs training (i.e., the model learns the spectral behavior of
absorbing aerosols in relation to ρt), the performance
improvements are noticeable for λ< 500 nm, particularly in
areas likely influenced by absorbing aerosols. These
performance gains (<30%) will have implications for the
retrieval of Chla and IOPs, such as phytoplankton
absorption spectra (aph) that are pivotal to the
characterization of phytoplankton properties (Bricaud and
Stramski, 1990; Hoepffner and Sathyendranath, 1991;
IOCCG, 2014; Uitz et al., 2015; Xi et al., 2015; Wang et al.,
2016) across challenging freshwaters and nearshore coastal
regions. Using paired in situ Rrs and aph, (Pahlevan et al.,
2021b) showed that high-performing retrieval algorithms lead
to ~ 20% uncertainties in aph(λ< 500 nm). To achieve this level
of uncertainty, satellite-derived Rrs are expected to contain
minimal uncertainties (likely < 10% (Pahlevan et al., 2021a));
hence, any reduction in uncertainties in Rrs opens
opportunities for robust assessments of phytoplankton
communities from space. The PAM models will also allow
for an increase in the number of useable (or valid) pixels
currently excluded due to high aerosol loading that leads to
frequent invalid Rrs retrievals in the blue (IOCCG, 2010).
Enabling such capability, however, requires the development
of a viable processor that operates well under optically thick
aerosol conditions. We nevertheless note that improved
treatment of aerosol contribution to is only one key
component of reducing the total uncertainty budget. Proper
handling of skylight reflection (Gilerson et al., 2018) and
characterization of adjacency effects (Sanders et al., 2001)
are other major contributors that deserve further research.
A lack of knowledge surrounding the vertical distribution of
aerosols and uncertainties in ancillary data are among other
weak links in AC frameworks (Frouin et al., 2019; Mélin et al.,
2022).

We recall that future satellite instruments (Werdell et al.,
2019; Ustin and Middleton, 2021), which are anticipated to
offer measurements within the short blue bands and UV
region, will benefit even more from the PAM models once
combined with the A2010 models. Adding commercial
satellite images to the publicly available datasets
(Vanhellemont and Ruddick, 2018) will expand research
and application opportunities, underscoring the need for
more comprehensive aerosol models. Our models will be
especially beneficial to emerging scientific applications, such
as mapping and monitoring water quality indicators in urban
environments (Miao et al., 2020) or in other regions typically
influenced by dust (Dube et al., 2015) or wildfire events (Blake
et al., 2020; Kramer et al., 2020). With the global rise of

temperature and extended periods of drought, these events
are becoming widespread, demanding AC processors capable
of tackling changing aerosol compositions and contents.
Consequently, subsequent efforts may focus on designing
novel methodology for effectively incorporating the PAM-
like models in existing/future AC processors.

CONCLUSION

The primary motivation of the present study was to advance
NASA’s existing aerosol models (A2010) for remote sensing
applications in inland and nearshore coastal environments. An
accurate representation of aerosol conditions is fundamental
to obtaining reliable Rrs products critical for approximating
water constituents’ concentration, composition, and optical
properties. Following the compilation of daily historic
AERONET data (1993–2019), an unsupervised clustering
technique, the Partition around Medoids (PAM), was
applied to SSA(0.44), AEe, and AEa to determine unique
aerosol models that differ from those of A2010. The
comparison of aerosol microphysical properties derived
from PAM and A2010 models demonstrated the added
value of our empirically derived aerosol mixtures. A
summary of our main findings include:

1. The validation of PAM-derived aerosol types agreed well with
those reported at GSFC and Kanpur, two intensely studied
AERONET sites where aerosol mixtures are typically
influenced by dust and biomass burning smoke.

2. Identifying MIX and U/I types based on PAM sub-types was not
always consistent with the sites suggested in the literature and the
independent data analyzed here. This apparent disagreement is
mainly attributed to our data selection criterion (AOD(0.44) ≤
0.4), the lack of data in previously reported databases, and
contrasting aerosol typification reported by several studies for
same reference sites (e.g., Shirahama).

3. Improving aerosol representation over A2010 models is
essential in areas where the aerosol composition is
predominantly DU, U/I, and BB.

4. A practical assessment of the utility of PAM models in the
context of atmospheric correction verified enhanced retrievals
in Landsat-8/OLI’s blue bands. The performance gain is most
anticipated across regions influenced by absorbing aerosols
and within the UV and blue spectral bands.

We assert that integrating PAM models in existing and/or
future AC processors will reduce uncertainties in
downstream products over lakes, rivers, reservoirs, and
nearshore environments from the past (Landsat-5), current
(Landsat-9), and future (e.g., Landsat Next) satellite
instruments. The PAM models are particularly expected to
advance the quality and useability of satellite products for
studying and monitoring waterbodies near aerosol sources
(e.g., coastal cities, urban waters, Sub-Saharan African lakes,
South American and Western North American water
resources).
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