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The colors of the ocean and inland waters span clear blue to turbid brown, and the
corresponding spectral shapes of the water-leaving signal are diverse depending on the
various types and concentrations of phytoplankton, sediment, detritus and colored
dissolved organic matter. Here we present a simple metric developed from a global
dataset spanning blue, green and brown water types to assess the quality of a measured
or derived aquatic spectrum. The Quality Water Index Polynomial (QWIP) is founded on the
Apparent Visible Wavelength (AVW), a one-dimensional geophysical metric of color that is
inherently correlated to spectral shape calculated as a weighted harmonic mean across
visible wavelengths. The QWIP represents a polynomial relationship between the
hyperspectral AVW and a Normalized Difference Index (NDI) using red and green
wavelengths. The QWIP score represents the difference between a spectrum’s AVW
and NDI and the QWIP polynomial. The approach is tested extensively with both raw and
quality controlled field data to identify spectra that fall outside the general trends observed
in aquatic optics. For example, QWIP scores less than or greater than 0.2 would fail an
initial screening and be subject to additional quality control. Common outliers tend to have
spectral features related to: 1) incorrect removal of surface reflected skylight or 2) optically
shallow water. The approach was applied to hyperspectral imagery from the Hyperspectral
Imager for the Coastal Ocean (HICO), as well as to multispectral imagery from the Visual
Infrared Imaging Radiometer Suite (VIIRS) using sensor-specific extrapolations to
approximate AVW. This simple approach can be rapidly implemented in ocean color
processing chains to provide a level of uncertainty about a measured or retrieved spectrum
and flag questionable or unusual spectra for further analysis.

Keywords: remote sensing reflectance, ocean color, hyperspectral remote sensing, hydrologic optics, water quality,
QA/QC - quality assurance/quality control, water-leaving reflectance spectra

Edited by:
Igor Ogashawara,

Leibniz-Institute of Freshwater
Ecology and Inland Fisheries (IGB),

Germany

Reviewed by:
Emmanuel Boss,

University of Maine, United States
Simon Bélanger,

Université du Québec à Rimouski,
Canada

Peter Gege,
German Aerospace Center (DLR),

Germany

*Correspondence:
Heidi M. Dierssen

heidi.dierssen@uconn.edu

Specialty section:
This article was submitted to

Multi- and Hyper-Spectral Imaging,
a section of the journal

Frontiers in Remote Sensing

Received: 04 February 2022
Accepted: 22 March 2022
Published: 27 May 2022

Citation:
Dierssen HM, Vandermeulen RA,

Barnes BB, Castagna A, Knaeps E and
Vanhellemont Q (2022) QWIP: A

Quantitative Metric for Quality Control
of Aquatic Reflectance Spectral Shape

Using the Apparent
Visible Wavelength.

Front. Remote Sens. 3:869611.
doi: 10.3389/frsen.2022.869611

Frontiers in Remote Sensing | www.frontiersin.org May 2022 | Volume 3 | Article 8696111

ORIGINAL RESEARCH
published: 27 May 2022

doi: 10.3389/frsen.2022.869611

http://crossmark.crossref.org/dialog/?doi=10.3389/frsen.2022.869611&domain=pdf&date_stamp=2022-05-27
https://www.frontiersin.org/articles/10.3389/frsen.2022.869611/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.869611/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.869611/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.869611/full
http://creativecommons.org/licenses/by/4.0/
mailto:heidi.dierssen@uconn.edu
https://doi.org/10.3389/frsen.2022.869611
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://doi.org/10.3389/frsen.2022.869611


1 INTRODUCTION

The color of a water body is a complex mixture of light that has
been reflected from the water surface (sky and other floating
substances) and reflected from within the water column (water
color). The aquatic optics community refers to the water color
reflectance as “Water-leaving Radiance Reflectance” (Rw) or more
commonly, but less descriptively, “Remote Sensing Reflectance”
(Rrs). Many methods are available to estimate Rrs both from
instruments within and above the water surface and from aircraft
and satellites orbiting the Earth. Each method to approximate Rrs
involves some level of estimation to either remove the specular
reflectance from the air-water interface from the above water
measurement or to propagate the underwater upwelling signal to
and across the interface, as well as to compensate for instrument
shading and other measurement artifacts (Ruddick et al., 2019;
Zibordi et al., 2019; Lee et al., 2020). To meet the needs of a
growing list of applications for water color imagery (Dierssen
et al., 2021), more automated data analysis is essential to develop
and validate different approaches to assess regional and global
aquatic optical properties and phytoplankton and benthic
biodiversity. Automated systems are being developed to
estimate Rrs from drones, moorings, profilers, and offshore
platforms (summarized in Dierssen et al., 2020). As systems
become more automated going forward and more “big data”
hyperspectral datasets are generated routinely for use by the
broader science community, new metrics are needed to
provide automated quality control of data from different water
types, as well as to assess the quality of satellite-retrievals of Rrs.

1.1 How Can I Assess the Data Quality of a
Water Spectrum?
This simple sounding question is quite complex to answer
objectively because Rrs is a derived parameter and the
uncertainties are quite challenging to quantify for each
method under a wide array of environmental conditions.
Spectra are not only influenced by the optical properties of a
large diversity of dissolved and particulate components and the
potential contribution from the benthos, but also by
measurement artifacts related to the solar and viewing angles,
sky and wave conditions, air−water interface, platform
disturbance, spatial inhomogeneity in the water column, and
distance from land masses (Voss et al., 2017; Bulgarelli and
Zibordi, 2020; Shang et al., 2020). If we screen out field data
to encompass only a set of predefined or “ideal” conditions with
calm seas, clear skies, and constrained solar and viewing angles,
for example, then the measurement uncertainty is decreased
significantly. This can be justified for the generation of fiducial
reference spectra for satellite valiation and calibration, such as
data from the Aeronet-OC program (Zibordi et al., 2009).
However, as noted by a recent intercomparison exercise, there
can still be considerable uncertainty in Rrs even under ideal
conditions and with well-calibrated sensors (Tilstone et al.,
2020). Moreover, such ideal conditions are rarely met in the
field and represent only a fraction of the diverse environmental
conditions encountered in natural ecosystems across latitudes

and seasons. Retrieval models applied to satellite imagery also
contain a much broader set of conditions, in terms of water
column, atmosphere and surface states, as well as observation and
illumination geometries. As retrieval approaches are diversifying,
the community is finding that even non-optimal spectral
information can still be useful for algorithm development and
parameter validation for a variety of applications. For example,
algorithms with narrowband indices or relying on derivatives
may be less influenced by surface reflected sunlight than full
inversion-type algorithms (Dierssen et al., 2021).

Many standard options are available for processing
radiometric data, including flags for low solar zenith angles
and low light conditions and for identifying rain, outlined in
processing software such as HyperInSpace (Aurin, 2022).
Operationally, site-specific criteria and thresholds are often
developed based on careful examination of the data from that
region. For example, spurious ship-based radiometric data were
identified using five different spectral shape metrics tuned for
highly absorbing and weakly scattering conditions characteristic
of the Baltic Sea (Qin et al., 2017). The thresholds in such metrics
are set based on human evaluation and interpretation of the
expected data for a region.

1.2 Does My Water Spectrum Look Like
Other Spectra?
For many aquatic data, there are clear standards that can be used
to assess the quality of data. Such metrics are still being defined in
the aquatic optics community due to the large range in
environmental conditions and the many corrections that must
be considered for any measurement (e.g., most absorption
measurements have an associated scattering correction and
most scattering measurements have an associated absorption
correction). Commonly, intercomparisons between instruments
and methods are the primary means to assess the operational
uncertainties (Tilstone et al., 2020) or through simulation and
closure studies (Zaneveld, 1994; Tzortziou et al., 2006), although
assessing the accuracy of a measurement still remains an
outstanding problem (Ruddick et al., 2019; Zibordi et al.,
2019). In this paper we do not assess the accuracy of Rrs, but
rather develop a method to assess the quality of a water spectrum
using data collected and filtered using community standard
practices.

Experienced researchers tend to have a “gut” sense for what
looks like a reasonable spectrum, but definitive approaches for
assessing spectral shape are limited. Questionable spectral shapes
are readily identifiable when reflectance values in the near-
infrared wavelengths are much higher than anticipated for the
type of water collected or when spectra exhibit an exponentially
increasing tail from blue to ultraviolet, indicating that reflected
diffuse skylight may not be removed fully from the spectrum
(Mobley, 1999; Gould et al., 2001). A recent work by Wei et al.
(2016) provides a means of scoring a spectrum compared to 23
different simulated optical water types at a maximum of nine
wavebands (Wei et al., 2016). This spectral matching approach
provides a score as to how close a spectrum matches one of the
predefined water types. As noted below, this approach may be
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limited to standard simulated conditions and may not represent
all water types encountered across the vast aquascape (Barnes
et al., 2019).

1.3 Are There Other Simple Metrics That
Can be Used to Assess the Quality of a
Water Spectrum?
Here, we present a simple quantitative index approach to conduct
quality control of an Rrs spectrum and thereby determine whether
it appears similar to other ocean color spectra from a wide variety
of blue, green and brown water types. The Quality Water Index
Polynomial (QWIP) is founded on the Apparent Visible
Wavelength (AVW) a one-dimensional geophysical metric of
“color,” calculated as the weighted harmonic mean of the
reflectance spectrum across a range of wavelengths
(Vandermeulen et al., 2020). This metric reduces the
hyperspectral or multispectral (after applying sensor-specific
correction factors) data to a continuous variable representing
the mean “color” in wavelength (expressed in nm). As noted in
Figure 10B of Vandermeulen et al. (2020), a good correlation is
found between AVW and chlorophyll a concentrations using a
global dataset. Building upon this, we developed a relationship
between AVW and standard multi-channel waveband indices to
identify spectra that fall outside the general trends observed in
aquatic optics for optically deep waters. The approach was
developed with a large global dataset representing blue, green,
and brown waters and was further tested extensively with field
and satellite datasets. This simple approach can be rapidly
implemented in ocean color processing chains to provide a
level of uncertainty about the spectrum and flag questionable
or unusual spectra for further analysis.

2 METHODS

The method was developed using a large global dataset of remote
sensing reflectance compiled from different studies (CASCK-P
dataset) and then tested using several different regional field
datasets collected with above-water methodology and on satellite-
retrievals of water-leaving reflectance data.

2.1 Field Datasets
2.1.1 CASCK Dataset (Casey, Castagna, and Knaeps)
The majority of the training dataset was obtained from a recent
global compilation of hyperspectral optical data that includes
profiled and buoy mounted in-water radiometers, as well as ship-
mounted and hand-held above-water methods (Casey et al.,
2020). Because intense green and brown water spectra are
underrepresented in this dataset, we have augmented it with
two additional coastal and inland water datasets. As such, a
dataset comprised primarily of green water spectra with
pronounced red edge reflectance, collected with a hand-held
single spectrometer using the skylight-blocked method in nine
different Belgian lakes and a lagoon, was included (Castagna et al.,
2020). Above-water spectra of brown water from the Scheldt
River Delta were also included (Castagna et al., submitted). An

additional dataset collected with a hand-held single radiometer
system in the river deltas of the Scheldt (Belgium), Gironde
(France), and Río de la Plata (Argentina) with total suspended
matter up to 1,400 g m−3 was also incorporated to represent
extremely turbid conditions (Knaeps et al., 2015). In total, the
CASCK dataset contains 1,029 Rrs spectra, and is provided in the
Suplementary Material. The global distribution of the CASCK
dataset is shown in Figure 1.

2.1.2 PANTHYR Venice and Ostend Datasets
Data from two autonomous hyperspectral PANTHYR
radiometer systems (Vansteenwegen et al., 2019) deployed in
the Adriatic Sea at the Acqua Alta Oceanographic Tower in the
Gulf of Venice, Italy (AAOT, 45.3139°N, 12.5083°E) (n = 1,622)
and in the North Sea at Research Tower 1 near Ostend, Belgium
(RT1, 51.2464°N, 2.9193°E) (n = 4,945) from September to
December 2019 were also included (Vanhellemont, 2020). The
locations of the two towers is shown in Figure 1. These data were
subject to considerable quality control and assessment including
removing spectra collected under sub-optimal conditions as
described in Vanhellemont (2020). A data paper further
describing these data in final format is forthcoming.

2.1.3 WISP-3 Raw Dataset
Above-water data have been collected using the hand-heldWISP-
3 measurements as part of the Belgian coast Lifewatch program
since April 2019 (Mortelmans et al., 2019). For this analysis, no
quality assessment criteria were applied and the dataset included
all training measurements including spectra taken of land, on
deck, and with lens cap on in order to test the QWIP on wide
array of good and bad spectra (n = 869). The instrument has three
hyperspectral radiometers that simultaneously capture the
downwelling plane irradiance, Ed, upwelling water system
(surface + water-leaving) radiance (Lws), and skylight radiance
(Lsky) (Hommersom et al., 2012) The data were processed to
remote sensing reflectance Rrs using a solar-zenith angle
dependent ρ factor to account for spectral sea surface
reflectance of skylight (Zhang et al., 2017). The ρ factor was
calculated for a viewing angle of 40° to water, 135° azimuth from
sun with an Aerosol Optical Thickness at 555 nm of 0.1. For these
data, a wind speed of 5 m s−1 was used and data collected under
solar zenith angles greater than 60°, outside the scope of typical
values, used a ρ comparable to SZA of 60°. Mean visible ρ used
here ranged from 0.032 to 0.036. Residual skylight was removed
with a baseline subtraction following a semi-analytical correction
using two narrow band features in the near-infrared red at 715
and 735 nm following Gould et al. (2001). A spectrally flat
residual baseline correction, B, was estimated from the
measurements of radiance reflectance of skylight (Rsky = Lsky/
Ed) and of the water system including water-leaving and surface
reflected signal (Rws=Lws/Ed) according to:

B � Rws(735) − ρ(735) Rsky(735) − Rws(715) − Rws(735)(aw(735)aw(715) − 1) (1)

This correction assumes that absorption at 715 and 735 nm is
dominated by pure water (aw) and that the combined effects of
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backscattering, bb, and the f/Q bidirectional factor, and residual
skylight are well approximated by a spectrally flat value
(equivalent in magnitude) between 715 and 735 nm. It is
further assumed that the residual skylight signal is well
approximated by B in the visible range. The assumption of
spectrally flat pattern of bb and f/Q is this narrow range is
well justified (cf. Ruddick et al., 2006). The absorption by pure
water at 715 and 735 nm were set at 1.0242 and 2.2780 m−1,
respectively (Röttgers et al., 2016).

2.2 Satellite Datasets
2.2.1 Hyperspectral Imager for the Coastal Ocean
Dataset
We tested the proposed radiometric quality control procedure on
a series of retrieved scenes from the Hyperspectral Imager for the
Coastal Ocean (HICO), in order to examine the algorithm’s
efficacy in the identification of low-quality satellite returns.
HICO Level-1B files were downloaded from the NASA Ocean
Biology Processing Group (https://oceancolor.gsfc.nasa.gov/l2),
and processed using l2gen program packaged as part of the NASA
SeaDAS (Ocean Biology Processing Group, 2022). A heritage
atmospheric correction procedure was used (Gordon and Wang
1994; Bailey et al., 2010), with the additional use of the
ATmospheric REMoval code (ATREM; Gao and Davis, 1997)
built into l2gen, which provides hyperspectral compensation of
the water vapor absorption for the atmospheric correction
process, following Ibrahim et al. (2018). Data were processed
to output a pixel-wise continuous spectra of Rrs from 398 to
702 nm, including all standard SeaDAS Level-2 flags. This
includes the default masking threshold in l2gen that can
exclude the most turbid waters. The AVW (Eq. 2) over the

range of 400–700 nm was subsequently calculated for every pixel
after interpolation of the spectrum to 1 nm resolution using cubic
splines.

2.2.2 Visual Infrared Imaging Radiometer Suite
Matchup Dataset
In an effort to examine the impact of applying automated quality
control criteria on amulti-spectral validation stream, we retrieved
all Rrs validation matchups for the Visual Infrared Imaging
Radiometer Suite (SNPP-VIIRS) from the SeaWiFS Bio-optical
Archive and Storage System (SeaBASS; https://seabass.gsfc.nasa.
gov/search#val), for all SeaBASS and AERONET matchups (n =
2,850). The exclusion criteria followed NASA processing
recommendations (Bailey and Werdell, 2006). An empirical
conversion of the multispectral AVW values to a
hyperspectral-equivalent AVW was applied to the VIIRS
satellite and in situ matchups prior to analysis (Vandermeulen
et al., 2020; Vandermeulen, 2022).

2.3 Water Color Classification
A simple decision tree was implemented to determine whether
the spectral shape of Rrs would be classified as blue-green, green,
or brown in color following from the approach presented in
(Balasubramanian et al., 2020). This simplified classification
(Figure 2) was used to indicate where different types of waters
fall within the QWIP schema.

2.4 Wei Score
Quality of all spectra was assessed according to the Wei et al.
(2016) approach, using the Matlab-based code provided therein.
Specifically, a multispectral subset was extracted for each

FIGURE 1 | Sampling locations from the global hyperspectral training data (CASCK-P) used to develop the polynomial spanned open ocean, coastal, and inland
waters. Adapted from Casey et al. (2020).
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spectrum (at wavelengths (nm): 412, 443, 488, 510, 531, 547, 555,
667, and 678), which was then normalized and compared to each
of 23 reference spectra representing disparate optical water types.
A spectral angle mapper was used to identify the most spectrally
similar reference spectrum. Normalized reflectance data at each
wavelength of the subset were then compared to the
corresponding reference spectrum and associated boundaries.
The final QA score was determined as the number
wavelengths for which the reflectance datum fit within the
reference boundaries, divided by the total number of
wavelengths assessed (nine for this work). Thus QA scores
ranged from 0 (at no wavelength does the target spectrum fit
within boundaries of the identified water type) to 1 (target
spectrum is fully within identified water type boundaries). Wei
et al. (2016) qualitatively discusses “very high scores (>0.9)” and
“very low QA scores (<0.5),” and reports that 90% of the
evaluation spectra had “high QA scores” of >0.8. Based on
this, a Wei score of >0.5 was considered as “Passing” and ≤0.5
was considered “Failing.”

2.5 Statistical Analyses
The equations used in the QWIP calculation include the
Apparent Visible Wavelength (AVW) calculated from 400 to

700 nm at 1 nm intervals and the Normalized Difference Index
(NDI) at two wavelengths as formulated below. Any negative
values of Rrs are included in the calculations. We note that the
QWIP and NDI acronyms are used in the equations below for
clarity, such that:

AVW � ⎛⎝∑n
i�1Rrs(λi)∑n
i�1

Rrs(λi)
λi

⎞⎠ (2)

NDI � (Rrs(λ2) − Rrs(λ1))
(Rrs(λ2) + Rrs(λ1)) (3)

Statistical tests were conducted in Matlab (The Mathworks,
Inc.). Model II regression analysis was used presuming similar
uncertainty magnitudes in the involved variables.

2.6 Quality Water Index Polynomial
Development
The algorithm is first developed using a global dataset covering a
diverse set of (mostly) optically deep water types. A training
dataset was compiled (n = 1,629) that included the CASCK data
(see Supplemental Material) and 300 random points selected

FIGURE 2 | A simple screening approachmodified from Balasubramanian et al. (2020) was used to evaluate the QWIP approach for three water types: Blue-green,
Green, and Brown. The remote sensing spectra shown are from the (CASCK-P) training dataset and are identified with color and shape in Figures 3, 4 based on this
schema.
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from each of the PANTHYR datasets, dubbed here the “CASCK-
P” dataset (see Figure 1). We evaluated the relationships between
AVW (the mean “color” metric, Eq. 2) and other indices to find
trends across the wide range of spectral shapes in the dataset. The
objective was to find a simple metric using common spectral
bands found in a variety of multi-spectral datasets
(i.e., wavebands from the VIIRS sensor wavelengths were
selected here) where the central tendency of data formed a
well-described continuum across the wide range of AVW
values and the amount of deviations from the central tendency
could be easily scored. To better visualize the data trends, the
water color was further differentiated into the categories of blue-
green (blue dots), green (green dots), and brown (red dots)
following from the decision tree (see Figure 2). Blue-green
waters have AVW values ranging from 400 to 510 nm and
green waters have AVW from 510 to 590 nm. The AVW for
brown waters overlaps with the upper end of the green waters,
ranging from 555 to 575 nm.

The QWIP is formally a mathematical model relating an
optical index to the AVW. Different examples of the
relationships between AVW and other indices are provided in
Figure 3 for illustrative purposes. Blue-to-green band ratios, like
those used in chlorophyll algorithms and Vandermeulen et al.
(2020), showed a reasonable overall trend, but resulted in the
values being spread across a log scale with clustering of the green
and red spectra (e.g., Figure 3A). Band difference algorithms
provided lower predictive power, especially for the brown waters
which had much higher differences than the blue and green
waters (Figure 3B). Relationships between AVW and maximum
wavelength in visible wavelengths (data not shown) were effective
for blue and green waters, but proved to have low predictive
power for intense green algal blooms with high red edge values
and turbid brown waters. Brown waters can have variable peak
wavelengths from green to red to near infrared wavelengths (see
Figure 2).

The NDI (Eq. 3) provided a means to highlight the variability
of logarithmically distributed data on a linear scale such that the

distance either above or below the central tendency was scored
with a positive or negative value. Different combinations of NDI
were systematically evaluated using wavebands found on historic
ocean color sensors. For example, the wavebands used in the
standard chlorophyll a concentration algorithm (492 and
560 nm) (O’Reilly et al., 1998) did not have high rank
correlation with the AVW for green and brown waters
(Figure 3C). The best relationship was found using the NDI
calculated with blue/green (λ1 = 492 nm) and red (λ2 = 665 nm)
bands (Figure 4A). A 4th degree polynomial fit between NDI
(492,665) and AVW described the variability across the AVW
range (R2 = 0.974). This QWIP relationship followed the overall
objectives in that the central tendency was clearly outlined across
a wide range of data and distance was easily scored. To
implement, the user would calculate their AVW and NDI
(492,665) for a spectrum following from Eqs. 2, 3 and then
calculate the QWIP Score as the difference between the measured
and the predicted NDI based on the QWIP. Note that the
acronyms NDI, AVW, and QWIP are used in the equations
below for clarity and the five coefficients in Eq. 4 correspond to
five variables p provided below the equation:

QWIP�p1AVW
4 +p2AVW

3 +p3AVW
2 +p4AVW+p5

p� (−8.399885x10−9, 1.715532x10−5,
−1.301670x10−2,4.357838x100,−5.449532x102)

(4)

QWIP score � NDI(492, 665) −QWIP (5)
As shown in Figure 4A, 97.5% of the CASCK-P data used in

the calibration of the QWIP fell within ± 0.1 of the QWIP and
99.4% within ± 0.2 (Figure 4B). Outlier data with QWIP scores
greater than ± 0.2 were subject to additional screening to
determine any evident spectral anomalies. The points with
more negative QWIP scores (Figure 4C) appeared to be related
to some types of optically shallow water where the red
wavelengths were much lower than anticipated for highly
green peaked waters due to water absorption between the
scattering seafloor and the sea surface (e.g., Dierssen et al.,

FIGURE 3 | Examples of different spectral band math approaches compared to Apparent Visible Wavelength (AVW) evaluated with the CASCK-P training dataset
separated by water type: Blue-green (blue circles), Green (green diamonds) and Brown (red squares). Approaches include (A) Band ratios (B) Band differences and (C)
Normalized Difference Indices (NDIs) with different band combinations. These approaches were not selected for use due to overall fit and divergence of data from
different water types.
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2003) suggesting the QWIP score may prove a useful metric for
identifying certain types of optically shallow water. Data with
high positive QWIP scores often had rising tails in the blue end
of the spectrum consistent with data containing residual
surface reflected skylight (Gould et al., 2001) (Figure 4C).
In such cases, the AVWwould be weighted incorrectly towards
the blue end of the spectrum resulting in a positive
QWIP score.

3 RESULTS

The algorithm is evaluated on two different field datasets
collected with above water methodology and two different
satellite datasets (HICO and VIIRS).

3.1 Quality Water Index Polynomial Applied
to Field Datasets
QWIP scores were calculated for two different above water field
datasets for evaluation across a variety of water types with
different instruments.

3.1.1 Quality-Controlled Data
The QWIP approach was tested on a highly calibrated above-
water dataset collected from two different moorings
(PANTHYR) (Vansteenwegen et al., 2019; Vanhellemont,
2020). The Ostend dataset (n = 1,622) contained primarily
water that clustered as the water type 16 from Wei et al.
(2016) with a strongly green-peaked spectral shape with a
fluorescence/red edge characteristic of high phytoplankton. In
contrast, the PANTHYR Aqua Alta dataset (n = 4,945)
contained primarily water that ranged from Wei et al. (2016)
types 6–10 with a high dynamic spectral range, more rounded
blue/green spectral shape and very little fluorescence/red edge
features. The mean QWIP score was 0.0135 with a small
standard deviation of only 0.03 indicating that the data
closely followed the mean tendency of the QWIP polynomial
(Figures 5A,B). Over 98.7% of the data had a QWIP score
within ± 0.1 and 100% within ± 0.2. With a maximum
magnitude of |0.13|.

When compared to the spectral quality score proposed byWei
et al. (2016) (“Wei score”), the Wei score for the blue-green data
of Aqua Alta were all >0.7 with a mean Wei score of 0.99.
However, the Wei score predicted lower values for the more

FIGURE 4 | (A) The QWIP relationship between Apparent Visible Wavelength (AVW) and the Normalized Difference Index (NDI) with the CASCK-P training dataset
showing the final tunedQWIP polynomial (thickmagenta line) with different levels of QWIP scores (±0.1 dottedmagenta and ±0.2 dashedmagenta). Water types include:
Blue-green (blue circles), Green (green diamonds) and Brown (red squares). (B) Histogram of the QWIP scores from (A) are predominantly within ±0.1 for the training
data. (C) The remote sensing reflectance (Rrs) of outliers with negative QWIP scores < −0.2 were associated with optically shallow water features. (D) Outliers with
QWIP scores > 0.2 exhibited higher blue associated with surface reflected skylight and higher overall magnitude spectra.
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green-peaked water types of Ostend with a mean score of 0.93.
Although all spectra passed QWIP, there were 13 spectra deemed
failing with Wei scores <0.5 (Figure 5C) and 84 spectra of lower
quality withWei Scores of 0.5–0.75 (Figure 5D). The relationship
between QWIP and Wei Score was not linear and did not follow
the negative trend predicted by each method (Figure 5E), likely
because of the use of only a select number of predefined water
types using multi-spectral information in the Wei method, but
both methods passed 99.8% of the spectra.

3.1.2 Raw WISP-3 Data
In addition to highly quality controlled data, we assessed how well
the QWIP method would identify outliers in a raw dataset that
included measurements made with the lens cap on as well as non-
water targets (Figure 6) (n = 869). In general, the data across all
water types followed the same patterns from the CASCK-P training
dataset with QWIP scores within ± 0.2 (Figures 6A,B). The high
QWIP scores were related to the outliers of bad data with unusual
spectral shapes or noisy data taken with too little light at dusk
(Figure 6D). False positives did occur with the QWIP approach
where a failing spectrum had a passing QWIP score. The circled
region of Figure 6A, for example, indicated the presence of several
brown water data points that coincidentally fell within the passing
region of the QWIP polynomial. These data had errant spectral

shapes that could be easily screened out with some other quality
control test such as adding an additional screening for the
appropriate range of AVW for a given water type (“blue,”
“green,” “brown”) or the Wei score (see below). Specifically, the
AVW values of the brown water type was much too low in this
instance and could easily be identified with a simple screen of AVW
values less than 540 nm (Figure 6E). From the training data here, the
acceptable ranges in AVW calculated from 400 to 700 nm for
different water types are: blue-green points ranging 440–530 nm,
green ranging from 510 to 580 nm and brown water from 550 to
590 nm (Figure 7).

In addition to major outliers, the QWIP score can be useful for
diagnosing subtle issues with data quality. For example, Rrs of
green outliers with slightly negative scores revealed spectra that
were reasonable overall in spectral shape (Figure 6C), but had
potentially too low values in the blue range shorter than 440 nm.
This is likely due to a high uncertainty in the removal of surface
reflected skylight and potentially too high of a ρ value. Hence, the
QWIP diagnostic can lead to a more nuanced processing of above
water spectra.

We compared the absolute value of the QWIP score with the
spectral quality score proposed by Wei et al. (2016) (“Wei score”)
on the raw WISP data (Figure 8). As tabulated in Table 1, there
was consistency between the two approaches using an absolute

FIGURE 5 | (A) The QWIP scores from highly quality controlled hyperspectral PANTHYR reflectance data from Vanhellemont (2020). (B) QWIP scores were
predominantly within <± 0.1. Water types include: Blue-green (blue circles), Green (green diamonds) and Brown (red squares). Remote sensing reflectance of data with
Wei scores (C) less than 0.5 (D) between 0.5 and 0.75. (E) Comparison of Wei scores (Wei et al., 2016) and the absolute value of QWIP scores for the entire dataset.
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value |QWIP| threshold of >0.2 and a Wei score of <0.5, with 737
data points identified as passing in both techniques and 54 data
points as failing with both techniques (highlighted as the colored
portions of Figure 8). The 12 data points with passing Wei scores
and failing QWIP scores had QWIP scores that were just slightly

above 0.2 and would pass a screen of QWIP threshold of 0.3,
however at the expense of passing spectra in the QWIP score that
had failed the Wei score. The Wei approach did correctly fail the
“false positive” brown water spectra discussed above. However,
there was discrepancy between the two methods in roughly 5% of
the dataset. Similar to the PANTHYR data, the Wei score was
potentially too low for green data with large red edge reflectance
and certain brown water types (Table 1). Such waters can be
challenging to assess given the limited band set, particularly in
orange and red wavelengths, used in theWeimethod. Barnes et al.
(2019) also found that several seemingly high quality spectra had
very low Wei scores.

3.2 Quality Water Index Polynomial Applied
to Satellite Datasets
The QWIP procedure was applied to a hyperspectral HICO image
(H2012236112610), covering the complex waters of the Nile Delta,
and extending north into the clear waters of the Mediterranean Sea
(Figure 9A). Pseudo-true color composites of the HICO imagery
can be found in Supplementary Figure S1 (see
Supplementary_README.pdf). For this demonstration, a binary

FIGURE 6 | (A) The QWIP approachwas used for quality control of a rawWISP dataset. Water types include: Blue-green (blue circles), Green (green diamonds) and
Brown (red squares) following from Figure 2. The red circle highlights false positive data of brown water type that coincidentally fall within the polynomial limits. (B) The
majority of the data had QWIP scores of ±0.2. (C)Remote sensing reflectance (Rrs) of green outliers with slightly negative scores had good spectral shapes but too low in
the blue. (D) High QWIP scores were related to the outliers of bad data with unusual spectral shapes. (E) Brown outliers with failing spectral shapes were identified
as having lower AVW than expected for the water type (AVW <540 nm).

FIGURE 7 |Histogram of the distribution of Apparent Visible Wavelength
(AVW) from Blue-green (blue), Green (green), and Brown (red) water types
showing the overlap and general ranges expected for each water type.
Ranges from the CASCK-P training data from Figure 4.
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exclusion flag was set to distinguish spectra that pass/fail a nominal
threshold value, as defined below. Using rigid exclusion criteria,
99.55% of the spectra from the atmospherically-corrected HICO
image passed quality control with QWIP score < ± 0.2), while
0.29% fell above the QWIP score threshold, and 0.16% fell below
the QWIP score threshold (Figure 9B). The average gradient of
integral-normalized Rrs(λ) spectra (as a function of AVW) are
plotted for these three scenarios, showcasing instances in which
data were above/failed (Figure 9C), between/passed (Figure 9D),
and below/failed (Figure 9E) the threshold QWIP score. Most
flagged spectra were characterized by continuous negative
reflectance either below 500 nm, or above 600 nm, and
sometimes both. Note, that anomalous negative data should
have been screened out in the SeaDAS processing prior to this
analysis.

Notably, a series of quality flags already exist within the
SeaDAS framework to identify pixels that fail various levels of
quality control (https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/).
Pixels identified as land (LAND flag), radiance saturation (HILT
flag), and clouds or ice (CLDICE flag) are masked during
processing (blue in Figure 10), thus no Rrs data were returned
for these pixels. The only other standard flags that were indicated
over water for this scene were the ATMWARN and
MAXAERITER, which indicate a warning in the atmospheric
correction procedure, and that the aerosol model reached the
maximum amount of iterations, respectively. The ATMWARN
flag included all instances of MAXAERITER, and this flag
comprises <1% of the ocean pixels (Figure 10) in the HICO
scene. The QWIP identified questionable pixels from regions
along the edge of the scan line, inland, and even a few offshore

patches that were not flagged by ATMWARN (brown regions). In
addition, some of the pixels flagged with ATMWARN had
spectral shapes with passing QWIP scores (yellow regions).

A series of additional HICO scenes representing a diverse
range of optical water types (H2012237230813, Columbia River
outflow, OR, USA; H2014191103614, Danube River Outflow,
Romania; H2009344060219, QLD, Australia; see Supplementary
Figures S1B–D) were sub-sampled by a range of incremental
QWIP score threshold values, to illustrate the connection
between QWIP score and spectral shape. Figures 11A−F
identify more satellite-derived spectra that failed the nominal
quality control criteria, as color coded by discretized QWIP
scores. The spectra are often characterized by sharp increases
or decreases in the blue range of Rrs(λ) and/or contain negative
values. In most cases, as spectral data increasingly deviate from
the polynomial relationship between AVW and NDI (492,665),
the anomalous spectral features become more prominent.

3.3 Quality Water Index Polynomial Applied
to Multi-Spectral Validation Data
While the QWIP was developed for hyperspectral measurements,
the approach can be applied to multi-spectral data using sensor-
specific coefficients to derive the hyperspectral-equivalent AVW
as per Vandermeulen et al. (2020). Here, we test the algorithm
efficacy using multi-spectral validation measurements (in this
case, for SNPP-VIIRS) retrieved from NASA’s SeaBASS. In order
to use the QWIP as defined in this manuscript, the AVW derived
from multi-spectral measurements must first be translated to a
hyperspectral-equivalent AVW through the use of sensor-specific
polynomial offsets (Vandermeulen et al., 2020). The most recent
updates to the coefficients for all satellite sensors processed by
OBPG have been developed and published (Vandermeulen, 2022)
(also see Matlab scripts in Supplemental Material).

Applying the same procedure as the HICO analysis, 5.2%
and 12.1% of the VIIRS satellite data were flagged as falling
above/below a QWIP threshold of 0.2, respectively, and 0.2%
and 4.2% of in situ data were flagged as falling above/below the
QWIP threshold of 0.2. Note, given that SNPP-VIIRS has the
fewest number of spectral channels relative to the other
validation data streams, it exhibits a higher uncertainty in
the calibrated AVW values relative to many other heritage
sensors, with a mean absolute error (MAE) of 1.21 nm, and
bias of −0.15 nm. Such uncertainty is expected when
converting a product derived from five bands into an
approximation of its hyperspectral equivalent. To account
for this additional uncertainty, we chose here to relax the

FIGURE 8 | Comparisons of the absolute value of the QWIP score with
the spectral quality score proposed by Wei et al. (2016) (“Wei score”). A QWIP
threshold of >0.2 and aWei score of <0.5 were considered failing spectra and
vice versa. Colored boxes highlight where both approaches pass (green)
and fail (yellow) data. Water types include: Blue-green (blue circles), Green
(green diamonds) and Brown (red squares) following from Figure 2.

TABLE 1 | Comparison of approaches for WISP Lifewatch data.

|QWIP| Wei score

Pass (>0.50) Fail (<0.5)

Pass (<0.2) 737 (B = 25; G = 641; Br = 72)a 39b (B = 0; G = 23; Br = 16b)
Fail (>0.2) 12 (B = 2; G = 10; Br = 0) 54 (B = 8; G = 23; Br = 23)

aNumber of datapoints of B, Blue-green; G, Green; Br, Brown water types.
b10 of these brown data were deemed “false positives” in the QWIP method.
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FIGURE 9 | (A)Mapped HICO scene on which the QWIP procedure was tested. (B) The AVW is compared to NDI, and (C,E) spectra deviating from the QWIP are
nominally deemed to fail quality control criteria, and those (D) within the uncertainty bounds of the polynomial pass. The spectral color scheme relates to the
corresponding AVW values, as defined in (A).

FIGURE 10 | A binary quality control (QC) map of a HICO satellite image, illustrating locations in which the NASA processing “l2gen” flags identified pixels with
suspect quality (ATMWARN) and pixels identified as either passing (|QWIP|<0.2) or failing (|QWIP|>0.2) QC with the QWIP method. Orange pixels were flagged by both
QWIP and l2gen.
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nominal threshold value to 0.3 for subsequent reporting, as the
0.2 threshold appeared too stringent for practical application.

Using a nominal threshold of 0.3, we found that 2.1% and 8.2% of
the VIIRS satellite data were flagged as falling above/below the
QWIP threshold, respectively, and 0.0% and 1.0%of in situ datawere
flagged as falling above/below the QWIP threshold. The flagged
spectra were mostly characterized by elevated blue reflectance when
the QWIP scores are above the threshold (Figure 12A), and
negative/depressed blue reflectance when the QWIP scores are
below the threshold (Figure 12B). A scatter plot comparison
between in situ (410 nm) and VIIRS (410 nm) Rrs matchups
(Figure 12C) shows that the flagged outliers tend to form tightly
grouped clusters with independent trends that deviate significantly
from the overall linear regression fit. Amodest reduction can be seen
in the MAE, and bias between the in situ v. satellite matchups for Rrs
(412) (Figure 12C), while differences at all other wavelengths were
negligible. Notably, the removal of flagged pixels improves the
matching of data frequency distributions at Rrs (412)
(Figure 12E) relative to the native dataset (Figure 12D).

4 DISCUSSION AND FUTURE OUTLOOK

The QWIP approach provides a simple quantitative tool to
evaluate the quality of both field and satellite spectra. The

QWIP polynomial based on Apparent Visible Wavelength
(AVW) and a red and green band difference index was
developed using a broad global training dataset that included
blue, blue-green, green, very green with strong fluorescence, and
turbid brown waters. A QWIP score represents the spectral
deviation from the polynomial with scores less than 0.2
generally considered to be passing. Here, we show how the
QWIP can be useful to diagnose major and minor outliers and
potentially correctable spectral anomalies like inaccurate removal
of surface reflected skylight from above water measurements and
provide a quantitative means to screen databases for realistic
aquatic spectra both in magnitude and spectral shape. It also has
high utility for evaluating different approaches for atmospheric
correction of satellite imagery.

The AVW values calculated from field data collected in turbid
brown and bright green waters overlapped in magnitude with
each other across red wavelengths and were all less than 600 nm.
This result is different from the initial work of Vandermeulen
et al. (2020) who found values of AVW with increasing
chlorophyll up to 617 nm using a synthetic database (Craig
et al., 2020). This suggests caution when using synthetic data
that has highly sloped backscattering and other features (e.g.,
inelastic scattering) that may not be representative of real world
conditions. The brown and green waters could potentially be
better separated with AVW by increasing the spectral range into

FIGURE 11 | HICO spectra that fail quality control criteria by falling above (A,C,E) or below (B,D,F) a nominal QWIP threshold (0.2), for a diverse range of images
from the (A,B) Columbia River outflow, USA, (C,D) Danube River outflow, Romania, and (E,F) Queensland, Australia.
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the near infrared (NIR) out to 800 nm. Tuning the QWIP with
AVW calculated from the ultraviolet to NIR wavelengths could
provide further discrimination of spectral quality and will be
further considered in the future as more datasets become
available that cover this larger spectral domain.

Spectra with negative QWIP scores resulted from data that were
overcorrected for surface reflected skylight, resulting in lower than
expected magnitude in the blue end of the spectrum. Additionally,
several optically shallow spectra that were included in the CASCK
training dataset were identified as having lower than expectedQWIP

scores due to the sharp decrease from green to red wavelengths.
Future research will evaluate how sensitive this metric is to surface
reflected skylight, glint, foam, sensor tilt, and other common issues
related to collection of field spectra. Additional analyses will also be
conducted to see whether the method can be further adapted to
identify a wide variety of optically shallow water spectra including
coral reefs, seagrasses, and other benthic features (Garcia et al., 2018;
Garcia et al., 2020).

While the QWIP was useful for quality control of a raw field
dataset, our research shows that it cannot be the sole quality flag used

FIGURE 12 |Remote sensing reflectance (Rrs) estimated from SNPP-VIIRS that (A) exceeded and (B) fell below a nominal QWIP score of 0.3. (C) Scatter plot ofRrs

(410) for in situ obtained from the SeaBASS archive compared to matchup data retrieved from VIIRS imagery. Blue dots represent passing data with QWIP scores less
than ±0.3. Amodest reduction in mean absolute error andmean bias between in situ and VIIRSmeasurements was foundwhen only passing values (blue dots) are used.
(D,E) The frequency distribution of data improves after the removal of those spectra flagged by the QWIP approach.
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to process raw datasets. We found obviously bad spectra (i.e., dark
spectra with lens covered) that coincidentally had a passing QWIP
score. With our training data, these false positives were easily
identified by adding an additional screen to limit the range of
acceptable AVW for blue, green and brown water types (see
Figure 7) or assessing quality using an addition approach like the
spectral-matching approach (Wei et al., 2016). While the two
approaches yielded very similar results, differences were found
between QWIP and Wei scores for certain water types.
Specifically, the Wei approach had challenges in assessing the
quality of certain green and brown waters compared to QWIP
(see Figures 5, 8).

The QWIP approach also proved useful as a quality control
metric applied to satellite data. Here, QWIP was successfully used
to flag questionable data from atmospherically-corrected ocean
color satellite imagery from the hyperspectral HICO, as well as the
multi-spectral SNPP-VIIRS. Satellite processing chains do have
flags that can identify pixels that fail various levels of quality
control; however, those flags can still let through some
questionable spectra. Comparisons between VIIRS and in situ
match-up data, for example, showed that removal of pixels with
high absolute QWIP scores improved the correspondence between
the field and satellite data. Additional comparisons between
satellite data which is not masked by quality flags would also
prove useful. Further improvement could involve development and
tuning of sensor-specific polynomial offsets used to extrapolate
AVW formulti-channel sensors formore optically complex waters.
The technique could also be tested for 3−4 channel broadband
“RGB-type” sensors allowing for greater uncertainty.

It is worth emphasizing that the discontinuity in multi-spectral
sampling relative to the more continuous hyperspectral
measurements creates a bias in the AVW values, and that the
QWIP values presented in this manuscript are specifically relevant
for 1 nm interval hyperspectral Rrs data. This relationship between
multi- and hyperspectral AVW is non-linear, and varies as a function
of spectral channels and bandwidth (Vandermeulen et al., 2020;
Castagna et al., 2022). In order to use the QWIP on multi-spectral
data streams, one of two methods may be employed: 1) convert the
multispectral AVW values to a hyperspectral equivalent value,
following Vandermeulen (2022), and then utilize the QWIP
relationship as presented in this manuscript, or 2) derive an
independent multispectral QWIP relationship by subsampling a
library of quality-controlled hyper-spectral Rrs to the relevant
multispectral wavelengths, and use this information to derive a
new QWIP polynomial that would only be used with data of that
specific spectral resolution.

Because of its simplicity and highly visual component, we
foresee high applicability for the QWIP method across a wide
array of applications. Data and scripts we provide in the
Supplementary Material would enable users to employ
either approach. The quality of various atmospheric
correction routines can be quickly assessed by comparing

retrieved results to the QWIP. The QWIP can also be used
to fine tune approaches used to remove surface reflected
skylight and other data processing choices from above water
reflectance measurements. The QWIP method provides a
simple tool to help evaluate spectral shape and magnitude
for a variety of aquatic water-leaving reflectance spectra.
Indeed, most researchers are well-equipped to apply the
QWIP method to “qwip” their data into shape.
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