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Consistency in a time series of ocean colour satellite data is essential when

determining long-term trends and statistics in Essential Climate Variables. For

such a long time series, it is necessary to merge ocean colour data sets from

different sensors due to the finite life span of the satellites. Although bias

corrections have been performed on merged data set products, significant

inconsistencies between missions remain. These inconsistencies appear as

sudden steps in the time series of these products when a satellite mission is

launched into- or removed from orbit. This inter-mission inconsistency is not

caused by poor correction of sensor sensitivities but by differences in the ability

of a sensor to observe certain waters. This study, based on a data set compiled

by the ‘Ocean Colour Climate Change Initiative’ project (OC-CCI), shows that

coastal waters, high latitudes, and areas subject to changing cloud cover are

most affected by coverage variability between missions. The “Temporal Gap

Detection Method” is introduced, which temporally homogenises the

observations per-pixel of the time series and consequently minimises the

magnitude of the inter-mission inconsistencies. The method presented is

suitable to be transferred to other merged satellite-derived data sets that

exhibit inconsistencies due to changes in coverage over time. The results

provide insights into the correct interpretation of any merged ocean colour

time series.
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1 Introduction

Ocean colour is an Essential Climate Variable (ECV), as it captures various aspects of

the marine environment on regional to global scales (GCOS, 2016). Earth observation of

ocean colour is a widely used global quantitative measure to estimate optical constituents

from derived reflectance. It includes the pigment chlorophyll-a concentration (hereafter

“Chl-a”), the diffuse attenuation coefficient of downwelling irradiance (Kd490), as well as

light absorption, and scattering coefficients (Kirk, 2011). Chl-a is used as a proxy of

marine phytoplankton biomass and is responsible for approximately half of the global

OPEN ACCESS

EDITED BY

Wietske Bijker,
University of Twente, Netherlands

REVIEWED BY

Mhd. Suhyb Salama,
University of Twente, Netherlands
Vittorio Ernesto Brando,
Institute of Marine Science, National
Research Council (CNR), Italy

*CORRESPONDENCE

Marit van Oostende,
marit.oostende@hereon.de

SPECIALTY SECTION

This article was submitted to Remote
Sensing Time Series Analysis,
a section of the journal
Frontiers in Remote Sensing

RECEIVED 23 February 2022
ACCEPTED 28 June 2022
PUBLISHED 18 July 2022

CITATION

van Oostende M, Hieronymi M,
Krasemann H, Baschek B and Röttgers R
(2022), Correction of inter-mission
inconsistencies in merged ocean colour
satellite data.
Front. Remote Sens. 3:882418.
doi: 10.3389/frsen.2022.882418

COPYRIGHT

© 2022 van Oostende, Hieronymi,
Krasemann, Baschek and Röttgers. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Remote Sensing frontiersin.org01

TYPE Methods
PUBLISHED 18 July 2022
DOI 10.3389/frsen.2022.882418

https://www.frontiersin.org/articles/10.3389/frsen.2022.882418/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.882418/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.882418/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frsen.2022.882418&domain=pdf&date_stamp=2022-07-18
mailto:marit.oostende@hereon.de
https://doi.org/10.3389/frsen.2022.882418
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://doi.org/10.3389/frsen.2022.882418


photosynthetic uptake of carbon dioxide (Field et al., 1998) and

over half of the global oxygen production (Harris, 1986; Moss,

2009). Moreover, phytoplankton form the basis of the marine

food web (Falkowski and Raven, 2001).

As of 2022, satellite-borne sensors have continuously measured

ocean colour globally for more than 25 years. Continuity and data set

stability are essential in climate research (GCOS, 2011). Because

otherwise it is impossible to interpret the data as a continuous, time-

integrated measurement of global climate. Spatio-temporal merging

of ocean colour data sets optimise the spatial coverage and protects

the temporal continuity of the data (IOCCG, 2007). Analysing trends

using ocean colour data is challenging because of the relatively short

lifespan (~10 years) of a single satellite and large inter-annual and

decadal variability of, e.g. the productivity of the ocean (Henson et al.,

2010; Mélin, 2016; Hammond et al., 2018; Dutkiewicz et al., 2019).

Each ocean colour sensor unique characteristics, such as overpass

time and frequency, swath width, radiometric quality and stability, as

well as spatial and spectral resolution. Moreover, data processed

specifically for each sensor contain their own intrinsic uncertainties

(IOCCG, 2019). Consequently, the construction of a multi-sensor

merged data set is complex, and requires a deliberate approach as the

merging must not result in inter-mission biases or artificial trends

(Djavidnia et al., 2010; Gregg and Casey, 2010; Brewin et al., 2014;

Mélin, 2016; Mélin et al., 2017; Sathyendranath et al., 2017).

Approximately 40 years of data are required to distinguish the

effect of a global warming trend on an ocean colour product, e.g.,

chlorophyll, from the natural variability of this product (Henson et al.,

2010). Therefore, merging is necessary to be able to identify trends

and other long-term statistics in ocean colour and obtain improved

insight into the dynamics of phytoplankton and other optically active

constituents in global waters. Although the total period of the current

merged ocean colour data is probably not long enough for definite

conclusions regarding climate change effects, it is essential to broaden

our understanding of the consequences of merging data sets from

different satellite missions.

Several initiatives exist that producemerged ocean colour data.

These include the European Space Agency’s (ESA) Ocean Colour

Climate Change Initiative (OC-CCI) (Sathyendranath et al., 2019),

the ESA’s GlobColour project (globcolour.info) and the National

Aeronautics and Space Administration’s (NASA) Making Earth

Science Data Records for Use in Research Environments

(MEaSUREs) project (measures.oceancolor.ucsb.edu). The OC-

CCI version 5 data set provides global time series of several

ECV products, including remote sensing reflectance (Rrs), Chl-a

and inherent optical properties derived with common algorithms

on homogeneous spectral reflectance data (Jackson, 2020;

Sathyendranath et al., 2021). It consists of merged records

originating from five different satellite sensors; SeaWiFS,

MODIS and VIIRS by NASA/NOAA (United States), and

MERIS and OLCI by ESA/EUMETSAT (Europe) on an equal-

area grid. The resulting time series, ranging from September

1997 to June 2020, is designed to be the most internally

consistent and stable ocean-colour record so far

(Sathyendranath et al., 2019). Explicitly, the full data set is

band-shifted to a common set of six spectral bands (that of

MERIS) and corrected for inter-mission biases in the spectral

response. However, ensuring multi-mission consistency sufficient

to allow analysis of long-term statistical data remains a major task

since the OC-CCI data set, as well as other multi-mission ocean

colour data sets (e.g. GlobColour), are persistently spatio-

temporally inconsistent (Hammond et al., 2018; Garnesson

et al., 2019). Inter-mission inconsistencies appear as significant

steps in global time series (Jackson, 2020) and seem to coincide

with changes in the availability of single sensors. Similar patterns

are found in numerous studies that use different merged ocean

colour data sets (Kahru et al., 2012, 2015; Navarro et al., 2017;

Sankar et al., 2019; Kulk et al., 2020; Joseph et al., 2021) and are

potentially misinterpreted as a part of natural variability. Some

phenology studies that use merged ocean colour data also show

patterns concurring with mission availability (Gittings et al., 2021;

Staehr et al., 2022). To prevent misinterpretation, it is necessary to

confirm that these patterns are indeed caused by inter-mission

inconsistencies, as opposed to a factual signal.

This study focusses on the OC-CCI-v5 data set because of its

specific objective to produce a consistent data set suitable for

climate science purposes (Jackson, 2020). Thereby, this data set

has smaller inter-mission biases and better match-ups with in

situ data compared to the GlobColour data set (Hammond et al.,

2018; Jackson et al., 2021). Despite sophisticated in situ validation

and inter-mission bias correction of the OC-CCI data set, clear

steps are visible in global time series coinciding with the satellite

mission(s) in orbit at that time. Our research aims to

demonstrate that the different ability of the sensors to observe

specific geographical pixels causes these significant

inconsistencies. We show where coverage differences are most

prominent and we present a method to achieve temporal

consistency in every geographical pixel. The introduced

solution is the “Temporal Gap Detection Method”, which

improves the overall temporal homogeneity of satellite-derived

data sets by correcting the differences in observational gaps per-

pixel. It is particularly effective in coastal waters, high latitudes,

and areas subject to changing cloud cover, which are commonly

most affected by coverage inconsistencies between satellite

sensors (Djavidnia et al., 2010). Moreover, this method is

almost entirely independent of a specific variable, e.g., Chl-a,

and can be transferred to other merged satellite data sets.

2 Description of inter-mission
inconsistencies

2.1 Ocean colour-climate change initiative
data set

This study uses daily products of the global OC-CCI data set

(version 5) in a sinusoidal projection, with a spatial resolution of
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1/24° at the equator (~4.6 km globally) (Sathyendranath et al.,

2021). The sinusoidal version is used because it does not increase

weight in regions of high latitude due to spatial distortion as

opposed to the geographic projection. The monthly composites

presented in this study, are always produced by using all available

daily values. The development and production of the OC-CCI

data set are described in detail in the product user guide by

Jackson (2020). We summarise the essential features of this guide

in the next paragraph for better understanding, further

discussion, and application in this paper.

2.1.1 Production of the data set
Optical satellite sensors measure radiance at the top of the

Earth’s atmosphere. Atmospheric correction is necessary due to the

large influence of the atmosphere on the relatively low signal from

the water surface. The output is the remote sensing reflectance (Rrs)

at the sea surface, which is the ratio of upwelling water-leaving

radiance to downwelling irradiance. The atmospheric correction

method POLYMER v4.1 (Steinmetz et al., 2011, 2016) is applied to

all sensor data, except to data from SeaWiFS, where NASA’s l2gen

processor (SeaDAS 7.5; Franz et al., 2007) is applied. Thereafter, the

full data set is binned to level-3 on a 4 km sinusoidal grid with the

BEAM binner developed by Brockmann Consult (brockmann-

consult. de/cms/web/beam/). Then the binned data is flagged

using a combination of l2gen and IdePix v6.0/v7.0 (brockmann-

consult.de/portfolio/idepix/). After flagging, the data is band-shifted

(Mélin and Sclep, 2015) to match six MERIS spectral bands (412,

443, 490, 510, 560, and 665 nm). Temporally weighted

climatological maps are used to remove inter-mission biases per-

pixel between the band-shifted Rrs products. VIIRS and OLCI are

adjusted to MODIS-corrected-to-MERIS Rrs, as there is no temporal

overlap between these two sensors and MERIS. Ultimately, all data

aremerged to amulti-sensor, dailyRrs data set. From thisRrs data set,

several additional products are computed. Inherent optical

properties (IOPs), such as the absorption coefficients of

phytoplankton, aph, that of detritus plus coloured dissolved

organic matter, adg, and that of total water constituents, atot are

determined using the Quasi-Analytical Algorithm (QAA; Lee et al.,

2009). The diffuse light attenuation coefficient, Kd, is calculated

using themethod created by Lee et al. (2005). Chl-a is estimatedwith

a blend of diverse band ratio algorithms (OCI, OCI2, OC2, and

OCx), weighted by the relative levels in optical water type classes

(Moore et al., 2009). These classes are derived specifically for the

OC-CCI-v5 data set. A table of uncertainties for each water type is

computed from matchups with the OC-CCI in situ database

(Valente et al., 2019). The percentage of the membership to each

optical water type defines the weighted uncertainty for each pixel.

2.1.2 Differences in sensor data
Every sensor has a unique combination of temporal, spatial and

spectral characteristics, which are summarised in Table 1. A single

pixel in the combined data set contains observations from single or

multiple sensors. Because of different overpass times, the merged

data set consists of a combined product with observations occurring

between 10.00 and 13.30 local time. This may have consequences in

areas that show strong diurnal variability (IOCCG, 2007; IOCCG,

2019).

SeaWiFSGlobal Area Coverage (GAC)may contribute ~16 times

fewer observations per 4-km-pixel compared to the other sensors in

the data set, because SeaWiFS GAC has a spatial resolution of 4 km,

whereas the other sensors and SeaWiFS Land Area Coverage (LAC)

have a spatial resolution of 1 km before binning (Jackson, 2020).

VIIRS has the largest swath width and therefore covers a larger area

compared to the other sensors. Consequently, it provides a relatively

large number of daily observations (Figure 1A).

SeaWiFS is the only sensor that is atmospherically corrected

with the l2gen algorithm (Franz et al., 2007) in the OC-CCI data set.

Because the OC-CCI group decided to utilise the best individual

atmospheric correction per sensor but are increasingly using the

same atmospheric correction to provide consistency (Groom et al.,

2022). The other sensors are atmospherically corrected using

POLYMER based on pixel-by-pixel spectral optimisation. One

feature of POLYMER is that it provides stable Rrs under

moderate Sun glint. L2gen, on the other hand, is based on the

estimation of the path radiance in near-infrared spectral bands using

a linear model. It masks Sun glint affected pixels and hence

significant parts of the swath (see Müller et al., 2015b). Brewin

et al. (2014) found that using POLYMER or l2gen results in ~90%

significant correlation between the atmospherically corrected global

Chl-a data sets. Areas that show a lower correlation between

POLYMER and l2gen processed MERIS Chl-a data sets are

located in minimal cloud-covered regions that generally have a

weak seasonality in Chl-a, such as the Sargasso Sea and the North

Pacific subtropical gyre. Djavidnia et al. (2010) reported similar

patterns when comparing MERIS to either MODIS or SeaWiFS.

Djavidnia et al. (2010) attribute the differences between Chl-a

values, measured by the different sensors, to the sensitivity of the

final product to the geometry of the seasonal cycle of solar

illumination in the atmospheric correction. High solar zenith

angles cause larger discrepancies between the Rrs product of

SeaWiFS, MODIS and VIIRS (Barnes and Hu, 2015).

Pixel classification (or flagging) is used to determine whether

a satellite observation is suitable for processing (Sathyendranath

et al., 2019). All the OC-CCI sensor data were analysed using

IdePix. Since the SeaWiFS L2 data are processed with SeaDAS, an

extra flagging step has been applied to these data (Jackson, 2020).

This additional flagging for invalidity includes areas experiencing

glint, cloud shadows, brightness, and high solar and sensor zenith

angles (Müller et al., 2015a).

2.2 The remaining inter-mission
inconsistencies

Despite the many efforts made to remove inter-mission

biases, some inconsistencies inevitably remain (Mélin et al.,
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2016; Jackson, 2020). Even though trends in the OC-CCI-v3 data

set are consistent compared to single missions (Mélin et al.,

2017), major discontinuities in the OC-CCI data set are present,

corresponding to the introduction or discontinuation of a specific

sensor (Hammond et al., 2018). The level of agreement between

the Chl-a estimates by different sensor data sets varies temporally

and geographically (Djavidnia et al., 2010; Brewin et al., 2014;

Hammond et al., 2018). High latitude, coastal regions, areas with

high cloud cover and those with high aerosol loads show, in

general, the largest differences in Chl-a between the different

TABLE 1 Overview of satellite missions used in theOC-CCI data set. The spatial resolution is given for values prior to combining the data sets from the
different missions (from Jackson, 2020).

Satellite/Sensor Active Period Swath Width
(km)

Spatial Resolution
(km)

Mean Local
Overpass Time

Spectral Bands
(nm)

OrbView-2/SeaWiFS 9/1997–12/2010 1,502 1 or 4* 12:20 412, 443, 490, 510, 555, 670

Envisat/MERIS 4/2002–4/2012 1,150 1 10:00 413, 443, 490, 510, 560, 620, 667, 681, 709

Aqua/MODIS 7/2002–06/2020 2,330 1 13:30 412, 443, 469, 488, 531, 547, 555, 645, 667, 678

Suomi NPP/VIIRS 1/2012–06/2020 3,040 1 13:30 410, 443, 486, 551, 671

Sentinel-3A/OLCI 5/2016–06/2020 1,270 1 10:00 400, 412, 442, 490, 510, 560, 620, 665, 674, 681, 709

* Mixture of Local Area Coverage (LAC: 1 km) and Global Area Coverage (GAC: 4 km) resolution.

FIGURE 1
Time series of global OC-CCI data: (A) Sumof pixels daily observed by each sensor (see legend), globally (B)Monthly-averaged andmedian Chl-
a: shown are the original monthly mean, median and “logarithmically transformed” mean (see text for details) (C) Monthly-averaged diffuse
attenuation coefficient at 490 nm, Kd490, and total-, phytoplankton-, and detritus + gelbstoff absorption coefficients at 443 nm, atot, aph, adg,
respectively (see legend). Vertical lines indicate times when the combination of active sensors has changed (see Table 1).
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sensors. Some areas show clear seasonal patterns of inter-mission

inconsistencies (Gregg and Casey, 2007; Djavidnia et al., 2010).

Additionally, different spatial sampling rates of the sensors may

affect long-term trend detection (Brewin et al., 2014). These

studies did not use the OC-CC-v5 data set, but we consider them

relevant because the sensors included are similar and the

construction method has not changed significantly between

the different OC-CCI data set versions.

Few studies have produced time series of Chl-a on a global or

regional scale using version 5 of the OC-CCI data set (Kulk et al.,

2020; Joseph et al., 2021). The consistency of the version 5 data

set shows some limitations, as steps were found in the Chl-a/

primary production time series, coinciding with the time that

MERIS commenced in April 2002 and discontinued in April

2012. Jackson (2020) reported inter-mission inconsistencies,

appearing as such significant steps in the global monthly-

averaged Chl-a time series. These were attributed to the

increase in coverage of highly productive coastal regions by

MERIS and the processing of MERIS data with POLYMER.

Multiple ocean colour products, including the fundamental

remote sensing reflectance, show these steps in the monthly-

averaged time series (Figures 1B,C). Application of logarithmical

transformation was suggested by several studies to reduce effects

of high Chl-a values on statistics (Campbell, 1995; Brewin et al.,

2014; Jackson, 2020). In these studies, logarithmical

transformation refers to transforming the original Chl-a data

set to its natural logarithm, which is then averaged and

transformed back to a normal distribution. We will not use

logarithmical transformation in this study because we are

specifically interested in the inconsistencies in merged satellite

data sets. Above that, by applying logarithmical transformation

to the data set, these inconsistencies are still present (Figure 1B).

We also focus on Chl-a from here on, because it is the variable

with the best in situ validation (Valente et al., 2019) and it is the

most widely used ocean colour product. Note that the gradual

increase at the end of the time series in both Figures 1B,C is an

artefact that arises during the production of the OC-CCI data set.

This problem not yet solved and the consequences of this artefact

are not yet established, but is beyond of the scope of this study.

3 Methods

The irregular spatio-temporal coverage of ocean colour sensors

can result in bias when producing statistics (Gregg and Casey, 2007).

A previously un-investigated cause of inconsistencies between data

fromdifferentmissions could be the different ability of the sensors to

observe specific geographic positions (pixels) consistently in time.

Therefore, we investigate non-random observation gaps over the

seasons for all geographical pixels and present a new method to

homogenise merged data sets temporally.

3.1 Temporal gap detection method

The Temporal Gap Detection Method (TGDM) is

introduced to enable the construction of an annually equally

represented daily time series for every geographical pixel. Each

day within the data of a pixel is scanned for observation

availability in a time window of ±n days of a respective day.

If there are no observations for that day or in the temporal

vicinity (the time window around), this day of the year is masked

out in every year for the selected geographical pixel. The

following steps illustrate the method in more detail for one

random pixel (56° 56′ N, 4° 21′ E) located in the North Sea

(see Figure 2):

1) The black markers in Figure 2A illustrate all observations in

this geographical pixel. There are no observations in the

middle of the winter at any point in time, because, the

solar zenith angle at local noon is too large (~80°) at its

location of 56° 56′ N. Therefore, the signal-to-noise ratio of

the radiance used to calculate the reflectance from the satellite

sensor is too low (IOCCG, 2000). Furthermore, it is mostly

cloudy here in winter.

2) A time window is moving over every day of the geographic

pixel. Within this time window (and its selected day), the

amount of observations are summed (Figure 2B). The length

of the time window used in this example is 27 days, 13 before

and 13 after the specific day. The time window length of

27 days is determined by optimisation, which is described in

Section 3.2. A day is marked red if it did not receive any

observations on the day itself, nor in its corresponding time

window. These observational gaps are generally slightly

longer during the first period (9/1997–4/2002), when only

the SeaWiFS sensor was active.

3) The summed observations time series in Figure 2B is

rearranged to a “day of the year” composition in Figure 2C

where the lowest value over all years is taken. The red marked

days did not receive any observations for that day of the year

(plus its time window) in at least one of the years in the full

time series. These days of the year are masked in every year of

the full time series. As a result, the time series is no longer

affected by missing observations in individual years. Another

consequence is that certain time intervals of the year are no

longer visible. The pixel in this example has been observed

consistently in the local spring and summermonths but not in

the winter and not during minor gaps around days

90 and 200.

4) The blue markers below the original observations in

Figure 2A represent the observations that are kept after

temporal filtering using the TGDM. For this specific

example of a single pixel, 81% of the total observations

remain after applying the TGDM.
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A hypothetically fully observed geographical pixel in the OC-

CCI-v5 data set contains N = 8,336 daily data records.

Consequently, the TGDM method could potentially mask

~4.3% data records for every non-observed day of the year in

a geographical pixel (length of data set: ~23 years). However, this

is not the amount that is typically lost, since pixels are not

observed daily. The mean number of observations per pixel is

substantially lower, namely, N = 978 globally. The pixel used in

Figure 2 (N = 1714) contains ~21% of observations compared to

being fully observed. After applying the TGDM to this specific

pixel, ~17% of records are kept (N = 1,388) compared to a

hypothetically fully observed pixel. The masked data masked are

not bad data but potentially distort a time series due to

inhomogeneity over time.

3.2 Finding the optimal time window
length

The determination of the time window length presents an

optimisation problem. Our objective is to determine the optimal

reduction of the magnitude of the inter-mission inconsistencies

in the time series caused by coverage differences and its coupled

time window length. A too long time window length may not

reduce the inconsistencies sufficiently, whereas a time window

that is too short results in excessive removal of observations. The

global, monthly Chl-a time series based on the median is used for

optimisation because it is generally less variable and less

susceptible to outliers compared to a time series based on

the mean.

3.2.1 Magnitude of inter-mission inconsistencies
The magnitude of the steps in the time series of Chl-a

caused by inter-mission coverage changes (hereafter Simc) is

quantified by estimating the difference between the sub-

periods and the corresponding times of the full period. The

Simc can also be estimated by using another variable than Chl-

a. An adapted version of standard deviation is used to

calculate Simc:

1) The Chl-a time series is divided into four broad sub-periods.

These sub-periods are defined as; the first period when only

SeaWiFS is available in orbit (9/1997–4/2002), the second

period when MERIS and MODIS join (5/2002–4/2012), the

third period when VIIRS is launched and MERIS terminates

(5/2012–5/2016) and the fourth period when OLCI joins the

time series (6/2016–6/2020).

2) The trend lines of the monthly mean or median Chl-a time

series of the full period and the four sub-periods are estimated

by decomposition into a trend-, seasonal- and residual-

component with Seasonal-Trend decomposition using

Loess (STL) (Cleveland et al., 1990).

FIGURE 2
The Temporal Gap Detection Method (TGDM) applied as a showcase to one pixel located in the North Sea (using a time window length of
27 days): (A) Original observations for this pixel (in black) and those remaining after TGDM is applied (in blue). (B) Full time series of the summed
number of observations for this pixel within the time window calculated per day. Time periods without observations are marked in red. (C) The
minimum number of observations of the full time period shown in (B) as a function of the ‘Day of year’. Days of the year without observations (in
red) are masked in every year for the full time series.
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3) Linear least-squares regression analysis is performed to

produce regression lines of the trend lines of the full

period and the four sub-periods.

4) The differences between the means of the regression lines of

the sub-periods (C1i) and the means of corresponding parts

(C2i) of the regression line of the full period are calculated and

squared.

5) The Simc is quantified by taking the square root from the

mean of these four squared differences.

The associated equation is

Simc �
��������������∑P

i�1(C1i − C2i)2
P

√
, (1)

where Simc is the magnitude of the steps in the time series

of Chl-a caused by inter-mission coverage changes, C1i the

average Chl-a of the regression lines of the sub-periods, C2i the

corresponding sub-periods of the regression line of the full

period, and P is the number of sub-periods (P =4, in this

study).

3.2.2 Optimisation
The TGDM is applied to the global Chl-a data repeatedly,

using a gradually increasing (+ 2 days) time window length

between 15 (1+2 × 7) days and 365 (1+2 × 182) days. The

Simc is calculated for each time window length. A threshold

value is introduced, which is defined as the standard deviation of

the residuals time series (estimated with LOESS). The Simc is

deemed sufficiently low when it matches this threshold value.

The corresponding time window length to this Simc and

threshold value is used for the TGDM as the optimal time

window length.

3.3 Validation methods

It is well known that specific geographical areas, such as

coastal regions or regions at higher latitudes, consist of waters

with varying phytoplankton concentrations. For a time series

that analyses such areas, it is crucial that the observed part of

the area is not changing with each active sensor. As an

example, MERIS provided data from higher latitudes than

other sensors. Consequently, during the period when MERIS is

active, the observed area at higher latitudes increases

compared to the period when MERIS is not available. The

coverage of an area should be as homogeneous as possible over

time to avoid inconsistencies. Inter-mission coverage

differences should therefore be minimised after applying

the TGDM. The OC-CCI data set includes products of the

observation count for every sensor. These are used to derive

the per-sensor contribution to a pixel. The average count of

observations per month in a pixel for every sensor is calculated

for the original- and the temporally homogenised data set. The

dependency of the observation count (before and after

TGDM) on the distance to coast, latitude, and latitude in

December is determined. December was chosen to show the

effect of adverse viewing geometries during mid-winter at

Northern latitudes. This validation method is independent

since the TGDM–except for optimisation–does not use

information from the sensor observation variables (e.g.,

Chl-a).

A second validation method is carried out to confirm

whether the TGDM performs similarly on densely- and

scarcely covered areas. An example with data from the

Mediterranean Sea is used because it is one of the most

densely covered areas in the OC-CCI data set. A second data

set of the Mediterranean Sea is prepared with an artificially

diminished coverage density. The TGDM is then applied to

the original- and the artificial Mediterranean Sea data set. If

the Simc is reduced similarly in the time series of both data sets,

the coverage density of the area has an insignificant influence on

the functioning of the TGDM.

This artificial Mediterranean Sea data set is prepared by

introducing data gaps along the date dimension in every

geographical pixel. These data gaps were not randomly

chosen. Instead, the irregularly and scarcely observed Bay of

Bengal is used as a reference to create the observational gaps for

every date per geographic pixel. The coordinate indices of the Bay

of Bengal region are reconstructed artificially to match the

coordinate indices of the Mediterranean Sea with a similar

distance to the coast. The date dimension of each

geographical pixel in the Mediterranean Sea is compared to

the accompanying “Bay of Bengal pixel”. If a “Bay of Bengal

pixel” does not contain data for a certain date, the observation of

that day is removed in the related “Mediterranean Sea pixel”.

This results in a heavily diminished coverage density in the

artificial Mediterranean Sea data set because now it contains

significant observational gaps.

3.4 Data set without SeaWiFS

The goal of the TGDM is to make the distribution of

observations per geographic pixel more similar for all years

and therefore periods (>1 year) with the fewest observations

are limiting. Consequently, the resulting coverage after

applying the TGDM is mainly determined by the first

period (09/1997–04/2002) in the OC-CCI data set. It

contains the poorest coverage during this time, since

SeaWiFS is the sole active mission (Figure 1A). This

directly affects the days of the year that are masked in

every geographical pixel during the full period. Since it is

impossible to acquire additional data during this time, because

this data does not exist, the only way to increase coverage

density for the full data set is to either accept a larger Simc or
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to exclude this first period. The length of the time series is

shortened significantly when removing this first period.

However, for some studies coverage density may be more

important than the length of the time series. The TGDM is

applied to the data set without the inclusion of the first period,

to assess the increased coverage density.

4 Results

4.1 Time window length

4.1.1 Effects on the data set
Using not only a single day in question to homogenise the

data set but also allowing observations in a time window around

that day leads to fewer masked observations. The length of the

time window influences the number of pixels and the associated

Chl-a values that are masked. Figure 3 shows a strong sensitivity

of the rigorousness of the mask to high Chl-a values: a small time

window length (a strong cut) of 15 days leaves only ~50% of

pixels with low Chl-a and ~10% of pixels with high Chl-a

(>40 mg m−3). Using a relatively long time window length of

149 days, leaves ~100% of the pixels with low Chl-a and ~35% of

pixels with Chl-a above 40 mg m−3.

4.1.2 Optimal time window length
Figure 4 shows the trend line of the original global Chl-a,

determined by STL decomposition of the monthly median time

series. The calculated Simc of this trend line is 0.0039 mg m−³,

which is almost twice the calculated threshold value of

0.0026 mg m−³. Figure 5 shows that after applying the

TGDM, the Simc can be reduced to <0.0015 mg m−³ with a

time window length of 15 days. By using this time window

length, 61% of the records in the data set are masked. If a time

window length of 365 days is used, 1% of the data records are

masked and the corresponding Simc is 0.0035 mgm−³. The Simc

increases rapidly from 15 until a time window length of

approximately 50 days. After that, the Simc does not

increase much further (Figure 5). The Simc surpasses the

threshold value at a time window length of 27 days.

Therefore, a time window length of 27 days is used in the

following analysis. With a cut based on this time window

length, 30% of all data are masked. The masked pixels

contain a large proportion of high Chl-a values (see Figure 3).

FIGURE 3
The fraction of data remaining compared to the full data set
after applying the TGDM as a function of Chl-a and used time
window length (in days). Lines represent the results of
polynomial fits.

FIGURE 4
The trend component, derived with STL, of the global,
monthly median Chl-a time series. Additionally shown are linear
regression lines for the full period of OC-CCI data and the four
sub-periods of varying mission combinations: 1: SeaWiFS
only, 2: +MODIS/MERIS, 3: MERIS/+VIIRS, 4: +OLCI.

FIGURE 5
The magnitude of the inter-mission inconsistencies of the
Chl-a (Simc) in the global time series as a function of time window
length (blue) used in the TGDM (see text for details) and the
coupled amount of data records masked after TGDM
(orange). The dashed red line represents a threshold value defined
by the standard deviation of the noise in the time series.
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4.2 Validation of TGDM

4.2.1 Coverage area and timing
The top panels (A,B, andC) in Figure 6 show that differences in

coverage between different ocean colour sensors are found in terms

of latitude, seasonality and distance to the coast in the original data

set. In the northern hemisphere, VIIRS does not observe pixels

further north of 82.5° N, while MERIS observes the most northerly

pixels, and reaches 86.5° N. In the winter months, SeaWiFS is the

most limited sensor; in December, it reaches ~48° N, whereas other

satellite sensors extend to ~54° N. These differences in latitudinal

coverage arise from the individual restriction of acceptable Sun

zenith angles in the data processing chain of each sensor. For

comparison, all satellite missions reach a similar latitude - up to

approximately 79.5° S - because of Antartica’s land and ice masses in

the Southern Hemisphere (data not shown). OLCI has the highest

monthly mean of observations per-pixel located nearest to the coast

(4.9) and SeaWiFS the least (2.4). The bottom panels (D, E, and F) in

Figure 6 show that the application of the TGDM to the original data

set successfully reduces the differences in coverage between sensors.

The maximum latitudes where pixels are observed have equalised in

both the data set of the full time series and that of only December.

The coverage differences related to the distance to the coast have

becomemore equal (Figure 6D) as the range between the least mean

observations per month nearest to the coast by SeaWiFS (3.1) and

the most observations by VIIRS (4.5) has decreased. The

corresponding mean Chl-a values of the different sensors at the

pixels nearest to the coast have equalised from a range of 2.7–3.8 to

2.1–2.4 mg m−³ (see Table 2). MERIS has the highest average Chl-a

near the coast (3.8 mgm−³) and SeaWiFS the lowest (2.7 mgm−³) in

the original data set. The highest values of Chl-a were masked in all

sensors after applying the TGDM,which is expected from the results

shown above (Figure 3).

4.2.2 Coverage density
The original monthly-averaged Chl-a time series of the

Mediterranean Sea is shown in Figure 7A. The time series of the

Mediterranean Sea data set, which had its coverage density

artificially diminished, is shown in Figure 7B. The “artificial” data

set consists of only 18.6% of the number of observations compared

to the original data set. In both time series, the initial Simc’s are the

same: ~0.021 mg m−3 Figures 7C,D demonstrate that the inter-

mission inconsistencies in the monthly-averaged Chl-a time series

are minimised after the TGDM. The percentage of data kept of the

FIGURE 6
Global monthly-averaged number of observations per pixel for each satellite sensor (see legend) as a function of: the pixel centre’s distance to
the coastline (binned on 4 km and the x-axis shows the bin centre) (A,D), the latitude for the full period (binned on 1° for the northern hemisphere)
(B,E), and the latitude for only the northern winter month December (C,F). Shown are the results for the original data set (top: (A–C) and the data set
after applying the TGDM (bottom: (D–F).
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original Mediterranean Sea data set after applying the TGDM is

97.7%. The number of observations in the artificial Mediterranean

data set is reduced to 26.3%. This means that a significant number of

observations in the artificial data set is masked to achieve temporal

consistency. The Simc is now minimised to 0.005 mgm−3 for the

original time series and to 0.006 mgm−3 for the artificial time series.

Hence, the initial Simc’s and the Simc’s after applying the TGDMare

similar for both the Mediterranean Sea and the artificial

Mediterranean Sea. This shows that coverage density does not

significantly affect the Simc and thus the behaviour of TGDM.

4.3 Temporally homogenised data set

The original time series of monthly-averaged global Chl-a

clearly shows the inter-mission inconsistencies (Figure 8A).

After applying the TGDM, the Simc is reduced from

0.024 mg m−³ to 0.004 mg m−³ (see Table 3). The original

and the temporally homogenised time series ofChl-a are

shown in Figures 8B–D for the regions north of the tropics

(>23° 26′ N), the tropics (23° 26′ N to 23° 26′ S) and south of

the tropics (>23° 26’ S), respectively. These regions are chosen
to separate the data set into areas with similar solar

TABLE 2 The average Chl-a per sensor of the pixels nearest to the
coast (centre of the pixel located between 0 and 4 km from the
coastline) of the original data set and the temporally homogenised
data set (i.e. after applying the TGDM).

Chl-a [mg m−3]

Original After TGDM

SeaWiFS 2.7 2.4

MERIS 3.8 2.4

MODIS 3.0 2.3

VIIRS 2.9 2.2

OLCI 2.8 2.1

FIGURE 7
The performance of the TGDMon data sets with differing coverage densities: (A) Themonthly-averaged Chl-a time series of the Mediterranean
Sea and (B) the Mediterranean Sea data set with artificially reduced observations. The indicated numbers Noriginal and Nartificial represent the total
count of observations. Panels (C) and (D) represent the monthly-averaged Chl-a time series after applying the TGDM to the original Mediterranean
Sea and the artificial Mediterranean Sea, respectively. The fractions of the total observations that remain after TGDMare indicated as “Fraction of
N”. Vertical lines indicate changes in sensor contributions (colouring specified in Figure 1).
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geometries. The Simc in the original Chl-a time series during

the MERIS period is particularly pronounced north of the

tropics and the tropics (Figures 8B,C, respectively). The

smaller Simc south of the tropics (Figure 8D) is likely

caused by the lower number of coastal shelve pixels in this

region as well as the latitudinal observational reach of the

satellites is distributed more equally here. The Simc is

minimised in all regions after applying the TGDM. The

TGDM improves the Simc more in tropics and north of the

tropics compared to south of the tropics because Simc is more

pronounced in these regions in the original data set. The

average of Chl-a also decreased in the global data set and its

subsets, especially during the period when MERIS is active.

MERIS is able to observe more pixels near the coast, i.e., from

regions with a generally higher productivity. Hence, the

MERIS data contain more coastal pixels with high Chl-a

values. As observations near the coast, consisting of higher

Chl-a values, are masked when applying the TGDM, the

variability in the data set is slightly reduced. The monthly

median Chl-a time series is lower and less seasonally variable

FIGURE 8
Time series of the monthly mean and median Chl-a before and after applying the TGDM: (A) global (B) north of the tropics (C) the tropics, and
(D) south of the tropics. Vertical lines indicate changes in sensor contributions (colouring specified in Figure 1).

TABLE 3 TGDM effect on themagnitude of the inconsistencies (Simc) of the Chl-a time series (monthly mean andmedian) and data kept compared to
the original data set for several subsets (geographical and temporal).

Global North of
Tropics

Tropics South of
Tropics

Global – after 2002

mean (median)

Simc original [mg m−³] 0.0238 (0.0039) 0.0557 (0.0115) 0.0214 (0.0038) 0.0070 (0.0018) 0.0214 (0.0038)

Simc TGDM [mg m−³] 0.0038 (0.0026) 0.0079 (0.0039) 0.0032 (0.0024) 0.0038 (0.0014) 0.0028 (0.0025)

Data kept [%] 70 76 69 67 89
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than the mean time series, because the values are (nearly) log-

normally distributed (Campbell, 1995). This generally results

in a lower Simc in the median time series compared to the Simc

of the average time series (Table 3).

After applying the TGDM, 70% of the observations in the

global data set remain (Table 3). Regional differences are large

(Figure 9A) because of the different capabilities of the sensors to

observe specific pixels. Somewhat counterintuitively, more

observations are masked south of the tropics (67%) as

opposed to north of the tropics (76%), while the Simc is

considerably larger north of the tropics. This may be

explained by the large number of pixels masked in the

latitudes south of 40° S, which are often covered by clouds,

but are quite constant in terms of variability within the ocean

colour product. The Intertropical Convergence Zone (ITCZ) is

clearly visible in Figure 9 as a band near the equator. Higher

latitudes are filtered quite extensively because of high solar zenith

angles in the local winter and due to restrictions of data

processing for high wind speeds, which are common in these

areas.

If the first sub-period, observed by SeaWiFS only, is

removed (t2: 5/2002–6/2020), the coverage density is greatly

improved and the amount of data kept after applying the

TGDM globally is 89%. The number of observations after

applying the TGDM, has increased for all sensors, and

slightly more gained observations originate from MERIS and

OLCI (Table 4). The coverage density increases predominantly

in high latitudes, areas with high cloud cover (Figure 9C), and

near the coast (Figure 9D). These gained records were not

included before because the SeaWiFS data set processed with

l2gen, has smaller latitudinal range and a lesser ability to

observe pixels near the coast. Therefore the first sub-period

is the limiting factor when applying the TGDM to the full

data set.

FIGURE 9
Data kept after applying the TGDM: (A) The fraction of observations of the full period, t1, and (B) the period t2 (5/2002–6/2020). In t2 the period
when only SeaWiFS is active, is not included. Difference in data coverage between t1 and t2, globally (C) and in detail, its subset (D) for the Baltic-,
North Sea, and surrounding sea.

TABLE 4 The fraction of data kept after applying the TGDM for the two
periods, separately shown for each sensor.

Data Kept [%]

Full Time Series After 5/2002

SeaWiFS 76 90

MERIS 67 88

MODIS 72 90

VIIRS 71 90

OLCI 68 89
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5 Discussion and Conclusion

The importance of temporal consistency in long-term time

series cannot be stressed enough (GCOS, 2011). This study

demonstrates that differences in data coverage of ocean colour

satellite missions result in significant inter-mission

inconsistencies in a merged data set. These inconsistencies

appear as sudden steps when a satellite mission is introduced

or terminated in the OC-CCI-v5 time series. We suspect that

coverage discrepancies between sensors potentially affects

multiple studies that use merged satellite data sets - in context

with ocean colour, since similar patterns have been found earlier

(e.g., Kahru et al., 2012, 2015; Navarro et al., 2017; Sankar et al.,

2019; Kulk et al., 2020; Joseph et al., 2021). A novel method, the

TGDM, is introduced that leads to a temporal homogenisation of

observations per geographic pixel in the data set and effectively

reduces the observed inter-mission inconsistencies in the time

series. In our view, the results offer improved insights by

enhancing the interpretation of merged data sets, and in

particular that of ocean colour time series.

5.1 Coverage homogenization

Jackson (2020) suggests that inter-mission inconsistencies

can be minimised by applying a logarithmic transformation to

the data set. In effect, this approach reduces the contribution

from areas consisting of relatively high Chl-a, making the global

average approximately ~30% lower. The Simc is reduced, but it

remains significant after applying the logarithmic transformation

to the OC-CCI-v5 Chl-a data set (Figure 1B) as the proposed

approach does not account for differences in data coverage of the

different satellite missions. The TGDM statistically removes

irregularly observed records independent of the absolute

values of the variable in focus. The optimal time window

length in the TGDM is found when the Simc is insignificant,

i.e., in the same order of magnitude as the noise of the time series.

The length of the optimal time window also has a direct influence

on how many data can be used for analysis. By using the optimal

time window length of 27 days on the full data set, approximately

30% of daily records are masked globally. This may seem

excessive, however, masking these (potentially high quality)

records is necessary to create a temporally consistent time

series that contains minimal inter-mission inconsistencies

caused by irregular coverage. This is essential for a correct

interpretation of long-term data analysis that includes data

from different satellite missions.

5.2 Characteristics of the masked records

The first period (9/1997–4/2002) in the OC-CCI data set is

solely observed by SeaWiFS. The global number of daily-

averaged observations by SeaWiFS is lower than by the other

ocean colour sensors because of the initially lower spatial

resolution (4 km for SeaWiFS GAC vs. 1 km) and the

additional flagging for invalidity of the atmospheric correction

(l2gen). Consequently, it is the dominant factor in the TGDM as

the observational gaps of SeaWiFS determine the records that are

masked to a great degree. By excluding this first period, the

coverage density after applying the TGDM is increased

significantly (Figures 9C,D). Particularly in areas near the

coast, with high cloud cover, and at high latitudes. The

disadvantage is that the time series initiates ~4.5 years later.

The records masked with the TGDM are not of lower quality,

but are excluded because they are not observed consistently over

time in the merged data set due to the different coverage

capabilities of the sensors. OLCI and MERIS have a relatively

early local overpass time (10:00) compared to SeaWiFS (12:20),

MODIS (13:30) and VIIRS (13:30). Clouds commonly develop

during the day, thus sensors with a later overpass time may

encounter more obscured pixels. Many observations are gained

in generally cloudy areas when applying the TGDM to the time

series without the SeaWiFS-only period (after 5/2002) when

comparing the patterns of Figure 9C to the composite cloud

coverage between 2001 and 2010 presented by Mercury et al.

(2012). The lack of coverage during the SeaWiFS-only period in

commonly cloudy areas, is caused by the overpass timing along

with observing fewer pixels overall, since it was the only sensor

operating during that time. It must be pointed out that changes in

coverage over time may not solely be caused by the change of

satellites, but possibly also by shifts and trends in global

cloud coverage (Mao et al., 2019). Pixels at regions with high

solar zenith angles are masked more frequently in the full

time series because of differences in the Level-2 processing,

i.e. the atmospheric correction. Pixels from highly-scattering

waters, i.e., turbid waters, are also more often flagged for

invalidity when conducting atmospheric correction with

l2gen. This results in a lower contribution of SeaWiFS

observations of bright pixels. These pixel exist, for

example, near river mouths, and within blooms of

coccolithophores. Calcite-producing coccolithophores are

highly scattering single-celled organisms that are generally

confined to temperate to subpolar waters in the upper part of

the euphotic zone (Balch et al., 2018). MERIS and OLCI

provide a better coastal coverage than the other satellite

sensors present in the data set (Figure 6A). The global

average of Chl-a is highest during the period when MERIS

is active because it observes a greater number of pixels of

high Chl-a, e.g., on productive, coastal shelves. This presents

itself as sudden steps in a time series when the MERIS

mission starts and ends. After applying the TGDM, the

average Chl-a values near the coast have equalised for all

sensors (Table 2). The highest latitudes observed in the full

time series and in December have levelled as well for all

sensors after applying TGDM (Figures 6E,F).
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5.3 Temporal composition

On a daily basis, clouds, aerosols, inter-orbit gaps, Sun glint,

and high solar zenith angles prevent complete daily coverage by

either obscuration or lack of sampling. This irregular spatio-

temporal sampling of ocean colour sensors can produce

inconsistencies in monthly and annual mean Chl-a estimates

(Gregg and Casey, 2007). Monthly composites have better data

coverage, but daily and weekly processes cannot be resolved

(Cole et al., 2012). Monthly composite time series are used

extensively for analysing long-term trends, seasonal variability,

and anomalies in ocean colour data sets (e.g., Henson et al., 2010;

Djavidnia et al., 2010; Mélin, 2016; Hammond et al., 2018; Sankar

et al., 2019; Gittings et al., 2021). They rely on a sub-sample of

days, which may introduce uncertainty (IOCCG, 2019). Several

studies have shown that statistics of inter-mission comparisons

are degraded when comparing monthly averages concerning

daily values, particularly when the number of days is relatively

low (Barnes and Hu, 2015). Using monthly composites reduces

differences due to noise, but also integrates differences created by

irregular sampling by each sensor (Djavidnia et al., 2010).

Monthly composites can be safely used after applying the

TGDM because the irregular sampling inconsistency is

minimised.

5.4 Consequences for phenology

The average daily coverage increases significantly by merging

multiple ocean colour data sets (IOCCG, 2007; Maritorena et al.,

2010). Caution is advised, when producing long-term statistics

on this type of data, since the coverage is distributed unequally in

both time and space. This has implications also for performing

and interpreting phenology studies. The amount of missing data

is directly related to the initiation, peak, and duration of an algal

bloom (Cole et al., 2012; Racault et al., 2014). A greater amount of

missing data records result in determining a later initiation and

peak timing of a bloom, and a decreasing duration of a bloom.

For example, the study by Kahru et al. (2011) found that in the

Foxe Basin, Baffin Bay, and Kara Sea, the annual maximumChl-a

of the bloom to become seasonally earlier, and also of longer

duration over the years. They used the merged GlobColour data

set (SeaWiFS, MERIS, and MODIS). Our results here show that

SeaWiFS coverage is poor in these areas (which are all located

above the Arctic Circle) because the number of observations has

increased significantly in these areas when the SeaWiFS-only

period (9/1997–4/2002) is not included in the TGDM

(Figure 9C). This means that the first period of the time series

consists not only of fewer observations but also of seasonally,

unequally observed pixels, compared to later years when the data

sets from other satellites are added. SeaWiFS does not observe

pixels as far north as other sensors. Thus, it may observe the

spring bloom later, or not at all. For example, the study by Staehr

et al. (2022), who used a merged data set consisting of the

SeaWiFS, MODIS, MERIS, and VIIRS sensors in the Kattegat,

found that the number of spring blooms are severely

underestimated between 1998 and 2002, compared to the in

situ data. Which is exactly the period when only SeaWiFS is

active. In later years, the satellite data improved by matching the

in situ data better. Gittings et al. (2021), who used the OC-CCI-

v4 data set, found anomalies that seem to coincide with the

presence of sensors as well, specifically whenMERIS commences.

During the period when MERIS is active, from 2002 to 2012, the

spring bloom initiates earlier and terminates later in the Red Sea.

The amount of observed data points increases after 2002,

particularly in coastal waters when MERIS joins the data set.

Our findings here suggest that these results may (partly) be

artefacts due to the use of different satellite sensors, since the

amount of missing data is directly related to bloom initiation and

duration.

5.5 Recommendations

Merging ocean colour data sets is essential for ensuring

continuity and consequently enabling the derivation of long-

term statistics and trends. Our results demonstrate that

inconsistencies in inter-mission coverage introduce significant

artefacts in the time series of ocean colour products, which are

not caused by a true change of the water surface leaving

reflectance or poor correction of sensor sensitivities.

Therefore, we recommend to temporally homogenise the

coverage of merged data sets and presented a method

(TGDM) to perform such a correction.

Future research is certainly required to investigate the effect

of coverage differences between sensors in merged data sets on,

e.g., trends regarding bloom initiation, peak and duration of a

bloom. The TGDM homogenises the coverage of merged data

sets and can therefore be used reliably for long-term phenology

studies. One disadvantage of the TGDM is that areas of

potentially high interest are partly masked out, which may

lead to under-sampling for frequency analysis. Phenology

studies generally profit from more observations–but only, if

these are distributed equally over time. TGDM masks

observations that are unequally distributed over time in the

data set, and therefore reduces potentially biased trends. The

coverage density can be improved considerably when the period

before 5/2002 is excluded from the OC-CCI-v5 data set. Another

approach that may be beneficial to phenology studies is

decreasing the amount of missing data points. This can be

achieved by, e.g., using weekly composites or decreasing the

spatial resolution after applying a temporal homogenisation

method, such as the TGDM.

The Simc, caused by inter-mission coverage differences, is

smaller in the median and the logarithmically transformed Chl-a

time series compared to the average Chl-a time series (Figures
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1B, 8). Additionally, the Simc of the Chl-a time series is reduced

by not including pixels located on the coastal shelf or at high

latitudes. Therefore, using the median or the logarithmically

transformed Chl-a as well as not including the coastal shelf or

areas at high latitudes may reduce the Simc sufficiently for some

type of studies, even without applying our method.

The TGDM is most useful in quantitative, large merged data

sets where it is possible to mask just a few percent of the data set.

A goal of this study is to construct a temporally consistent data

set where the variable values (e.g., Chl-a) do not change because

the inter-mission coverage changes. The TGDM masks

irregularly observed pixels. To increase the number of

observations when applying the TGDM, it may be useful to

determine the optimal time window length per region. Areas with

an initial insignificant Simc can likely be processed using a longer

time window for the TGDM. This ensures that more data

remains available. For example, many data records can be

recovered south of the tropics because the initial Simc is not

as pronounced there compared to north of the tropics (Figure 8).

The initial Simc is smaller because this area consists of more

pixels with relatively constant ocean colour properties. However,

relative to the tropics and north of the tropics, more data are

masked because of more persistent cloud cover. More research is

needed to investigate these local differences to avoid unnecessary

data loss.

For the production of merged ocean colour data sets, we

recommend using a similar atmospheric correction for all sensor

data, when possible. This ensures that pixels with similar ocean

colour properties are flagged for invalidity in the data set. Areas

that are inconsistently observed between sensors are unsuitable

for in situ or virtual monitoring stations that aim to assess long-

term trends or statistics because these can result in artefacts.

Ideally, before setting up monitoring stations, the coverage

differences between sensors should be evaluated for the

location of the monitoring station. For existing monitoring

stations, it is important to make sure that there are no

coverage inconsistencies before drawing any long-term

conclusions. If observational inconsistencies do exist, TGDM

could be applied to correct for this. To ensure further continuity

of the ocean colour Environmental Climate Data records and

ability to analyse long-term time series, more satellite data sets

should be added (e.g., Sentinel-3B) and new missions should be

deployed to maintain sufficient overlap between data sets.

Surely, long-term analysis of satellite data based on several

missions of varying sensor types, must consider the consequences

of the differences in the capacity of different sensors to observe

specific regions and times. Temporal coverage homogenisation is

advised on this type of data to avoid introducing artefacts in long-

term statistical analysis.
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