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The European Copernicus programme plans to install a constellation of multiple polar
orbiting satellites (Copernicus Anthropogenic CO2 Monitoring Mission, CO2M mission) for
observing atmospheric CO2 content with the aim to estimate fossil fuel CO2 emissions. We
explore the impact of potential CO2M observations of column-averaged CO2 (XCO2),
nitrogen dioxide (NO2), and aerosols in a 200 × 200 km2 domain around Berlin. For the
quantification of anticipated XCO2 random and systematic errors we developed and
applied new error parameterisation formulae based on artificial neural networks. For the
interpretation of these data, we further established a CCFFDAS modelling chain from
parameters of emission models to XCO2 and NO2 observations to simulate the 24 h
periods preceeding simulated CO2M overpasses over the study area. For one overpass in
winter and one in summer, we present a number of assessments of observation impact in
terms of the posterior uncertainty in fossil fuel emissions on scales ranging from 2 to
200 km. This means the assessments include temporal and spatial scales typically not
covered by inventories. The assessments differentiate the fossil fuel CO2 emissions into
two sectors, an energy generation sector (power plants) and the complement, which we
call “other sector.”We find that combined measurements of XCO2 and aerosols provide a
powerful constraint on emissions from larger power plants; the uncertainty in fossil fuel
emissions from the largest three power plants in the domain was reduced by 60%–90%
after assimilating the observations. Likewise, these measurements achieve an uncertainty
reduction for the other sector that increases when aggregated to larger spatial scales.
When aggregated over Berlin the uncertainty reduction for the other sector varies between
28% and 48%. Our assessments show a considerable contribution of aerosol
observations onboard CO2M to the constraint of the XCO2 measurements on

Edited by:
Zhengqiang Li,

Aerospace Information Research
Institute (CAS), China

Reviewed by:
Francois-Marie Breon,
CEA Saclay, France

Xu Yue,
Nanjing University of Information
Science and Technology, China

*Correspondence:
Thomas Kaminski

Thomas.Kaminski@Inversion-
Lab.com

Specialty section:
This article was submitted to

Satellite Missions,
a section of the journal

Frontiers in Remote Sensing

Received: 01 March 2022
Accepted: 13 April 2022
Published: 11 May 2022

Citation:
Kaminski T, Scholze M, Rayner P,
Houweling S, Voßbeck M, Silver J,

Lama S, Buchwitz M, Reuter M,
Knorr W, Chen HW, Kuhlmann G,

Brunner D, Dellaert S,
Denier van der Gon H, Super I,
Löscher A and Meijer Y (2022)

Assessing the Impact of Atmospheric
CO2 and NO2 Measurements From

Space on Estimating City-Scale Fossil
Fuel CO2 Emissions in a Data

Assimilation System.
Front. Remote Sens. 3:887456.
doi: 10.3389/frsen.2022.887456

Frontiers in Remote Sensing | www.frontiersin.org May 2022 | Volume 3 | Article 8874561

ORIGINAL RESEARCH
published: 11 May 2022

doi: 10.3389/frsen.2022.887456

http://crossmark.crossref.org/dialog/?doi=10.3389/frsen.2022.887456&domain=pdf&date_stamp=2022-05-11
https://www.frontiersin.org/articles/10.3389/frsen.2022.887456/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.887456/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.887456/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.887456/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.887456/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.887456/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.887456/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.887456/full
http://creativecommons.org/licenses/by/4.0/
mailto:Thomas.Kaminski@Inversion-Lab.com
mailto:Thomas.Kaminski@Inversion-Lab.com
https://doi.org/10.3389/frsen.2022.887456
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://doi.org/10.3389/frsen.2022.887456


emissions from all power plants and for the other sector on all spatial scales. NO2

measurements onboard CO2M provide a powerful additional constraint on the
emissions from power plants and from the other sector. We further apply a Jacobian
representation of the CCFFDASmodelling chain to decompose a simulated CO2 column in
terms of spatial emission impact. This analysis reveals the complex structure of the
footprint of an observed CO2 column, which indicates the limits of simple mass balances
approaches for interpretation of such observations.

Keywords: CO2 monitoring mission, NO2, anthropogenic fossil fuel emissions, carbon cycle fossil fuel data
assimilation system, inverse modelling

1 INTRODUCTION

In the resolution of the COP26 Climate Summit in Glasgow 2021,
known as the Glasgow Climate Pact, the historic decision of
phasing out fossil fuel emissions was taken. This is in support of
the 2015 Paris Agreement (UNFCCC, 2015) where the Parties
have agreed to reduce global emissions of greenhouse gases in
order to reduce global warming to below 2°C. As part of this
agreement the implementation of a transparency framework
which requires the regular reporting of national greenhouse
gas inventories is foreseen. In the 2019 refinement (Calvo
Buendia et al., 2019) of their guidelines for national
greenhouse gas inventories (Eggleston et al., 2006), the
Intergovernmental Panel on Climate Change proposes to put
into practice a system supporting the emissions inventory
reporting by an independent approach based on atmospheric
observations and inverse modelling.

The European Commission’s Copernicus programme is
preparing an operational Monitoring and Verification Support
(MVS) capacity with a constellation of multiple polar orbiting
satellitesm, i.e. CO2M, as an essential component (Janssens-
Maenhout et al., 2020). CO2M is planned with imaging
capability sampling XCO2 at a resolution of 4 km2 (ESA,
2020). The goal of the MVS capacity is to derive
anthropogenic CO2 emissions both at the national scale as
well as the scale of megacities and for certain emission hot
spots (Pinty et al., 2017). The systematic attribution of such
atmospheric concentration data to specific emission sources is a
complex task (Balsamo et al., 2021) calling for comprehensive
inverse modelling systems, which ideally include component
models that simulate fossil fuel emissions and biogenic fluxes
(see, e.g., Ciais et al., 2015).

To date, the most widespread tool for quantitative
interpretation of atmospheric concentration measurements are
atmospheric transport inversions (Enting, 2002). At the city scale,
one of the pioneering experiments to estimate greenhouse gas
fluxes is the Indianapolis Flux Experiment (INFLUX), based
mainly on a surface measurement network including
continuous measurements from tall towers, flask samples,
eddy-flux towers, surface-based TCCON-FTS instruments, as
well as regular aircraft sampling of greenhouse gases (Davis
et al., 2017). Using this observational network, Lauvaux et al.
(2016) inferred fossil CO2 emissions at km-scale spatial
resolution from an atmospheric inverse modelling system.

Turnbull et al. (2019) compared emission estimates of CO2

from an inventory-based method with two different
atmospheric inversion systems and found an agreement
among these methods within 7% for whole-city fossil fuel CO2

emission, when taking into account additional proxy tracers for
fossil fuel emissions such as radiocarbon in the inversions.
However, these estimates have been derived only for the
dormant season with minimum influence by CO2 exchange
fluxes from terrestrial biosphere activities.

In addition to XCO2 measurements, CO2M will also observe
the atmospheric aerosol load as well as the atmospheric NO2

column (ESA, 2020). While aerosol observations help to reduce
uncertainties in the retrieved XCO2 product (Houweling et al.,
2019; Rusli et al., 2021), NO2 is co-emitted with fossil fuel CO2

and its atmospheric concentration carries information about the
processes behind fossil fuel emissions, their locations and
strengths. Reuter et al. (2019) demonstrated the use of co-
located observations of XCO2 by OCO-2 and of the NO2

column by S5P to estimate the CO2 flux through a plume
from its cross section and the wind speed. In the context of
CO2M, the SMARTCARB (Satellite Measurements of Auxiliary
Reactive Trace gases for fossil fuel CARBon dioxide emission
estimation) study combined a plume detection algorithm with a
data-driven mass-balance approach to estimate CO2 emissions of
cities and power plants showing the usefulness of complementary
NO2 observations for constraining hot spot emissions (Brunner
et al., 2019; Kuhlmann et al., 2019; Kuhlmann et al., 2020;
Kuhlmann et al., 2021). Based on a data set of simulated
random and systematic errors to be expected in XCO2

retrievals from CO2M measurements (Buchwitz et al., 2013)
(in the following called level 2 error files and abbreviated L2e
files), a study by Wang et al. (2020) assessed the capability of
CO2M to quantify fossil emissions from emissions hotspots and
megacities. Technically, they applied the quantitative network
design approach (Kaminski and Rayner, 2017) to backpropagate
these simulated observational uncertainties to uncertainties in
surface fluxes. To enhance the computational efficiency of their
underlying transport inversion system, the atmospheric transport
was approximated by a Gaussian plume model. One of their
recommendations is to construct “integrated inversion systems
that exploit multiple types of measurements”.

Exactly this strategy is pursued by the Carbon Cycle Fossil Fuel
Data Assimilation System (CCFFDAS) approach. By combining
models of atmospheric transport and of surface emissions it is
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capable of integrating a range of diverse data streams as
observational constraints. The step from a transport inversion
to such a comprehensive CCFFDAS has considerable impact on
the layout of the inverse problem in at least two respects. First,
while the transport inversion directly solves for an unknown flux
field, the CCFFDAS solves for a combination of process
parameters as well as initial- and boundary conditions of the
process modules and simulates surface fluxes in a subsequent
step. Second, while the flux field derived by the transport
inversion relies to a large extent on a regularisation of the
inverse problem through external prior information in the flux
space, the CCFFDAS achieves this regularisation through process
understanding incorporated in the fossil and biogenic modules.
These changes in the layout of the inverse problem are expected
to significantly impact the interpretation of the CO2M data.

A first Carbon Cycle Fossil Fuel Data Assimilation System was
developed and applied by Kaminski et al. (2022) to assess the
added value of CO2M for quantifying sectoral fossil fuel CO2

emissions of countries at global scale. For this global domain it
was, however, impossible to achieve a resolution of the CCFFDAS
modelling chain (in particular of its atmospheric transport
component) as fine as the 4 km2 resolution of CO2M. The
current study presents a new version of CCFFDAS that
operates on the CO2M resolution, but at the cost of a spatially
limited modelling domain. At this resolution, CCFFDAS can be
used to quantify emissions of cities and point sources such as
power plants; also one of the objectives of the planned MVS
capability. The objectives of this study are:

1. To present a prototype of this regional CCFFDAS at the native
resolution of the XCO2 observations and demonstrate its
functioning using a domain centred around a megacity, in
our case Berlin, which includes a large number of fossil fuel
power plants,

2. To illustrate the usefulness of a Jacobian representation of
modelling chain for interpretation of the atmospheric
measurements,

3. To assess the capability of CO2M to constrain fossil fuel CO2

emissions of the city and the surrounding area including the
point sources (i.e., power plants),

4. To assess the added value of NO2 column observations
complementing XCO2 measurements and the role of spatial
differentiation in the ratio of emission factors for NO2 and
CO2, and

5. To assess the added value of simultaneous measurements of
the atmospheric aerosol load.

2 METHODOLOGY

We set up a CCFFDAS modelling chain to simulate two CO2M
XCO2 images over the Berlin area, one on 3 February 2008 and
one on 3 July 2008, starting 24 h before the respective
acquisitions. The flow of information in the forward sense is
shown in Figure 1. The CO2M observation impact is assessed
through the quantitative network design approach that is
described in Section 2.6. This approach is based on a

representation of the modelling chain through a Jacobian
matrix that quantifies the sensitivity of the measurements as a
function of the control vector (Section 3). Our control vector
consists of the surface emissions and the lateral inflow of CO2 as
well as scaling factors of the NO2/CO2 emission ratio. Our 24 h
simulation period is sufficiently long to ensure that the initial
concentration has left our 200 × 200 km2 domain under typical
wind conditions, i.e., we can safely ignore it in the control vector.
The components of the modelling chain are presented in the
subsequent subsections.

2.1 Atmospheric Transport
To link the emission models to XCO2 and NO2 observations by
CO2M we use version 5.2.1 of the Community Multiscale Air
Quality model (Zenodo, 2018), which can be run as an offline
tracer transport model with meteorological input fields derived
from the Weather and Research Forecast model (WRF, version
3.9.1.1, Skamarock et al., 2008). Our model domain of 200 km by
200 km around Berlin is shown in Figure 2. Over this domain we
operate the model at a horizontal resolution of 2 km by 2 km with
32 vertical layers. This domain was the inner-most of four WRF
domains with resolutions of 54, 18, 6 and 2 km, using one-way
nesting (i.e., no feedback from finer to coarser domains). The
WRF simulations were configured as a series of short forecasts
each spanning 24 h, initialised with 12 h of spin-up. Initial and
boundary conditions were derived from the ECMWF’s ERA-
Interim reanalysis product (at 6-hourly, 0.75° resolution), with
higher-resolution sea-surface temperatures from the “real-time
global” SST archive from NCEP (https://polar.ncep.noaa.gov/sst/
ophi/; at daily, 1/12° resolution). The outer domain of the WRF
grid was forced with the ERA-Interim analysis via grid-nudging
above the boundary layer. Key physics parameterisations are
given in Supplementary Table S8. Note that the cumulus
parameterisation was switched off for the inner-most domain,
which was run at a 2 km spatial resolution.

A subsequent processing step is the mapping from the CMAQ
grid to the locations of successful CO2M retrievals, for which the

FIGURE 1 | The flow of information in the forward sense through the
modelling chain.
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L2e files provide the centre coordinates of the respective pixels.
This mapping used the two CMAQ grid cells with their centres
within a 2 km radius from the centre of the retrieval pixel,
weighted in inverse proportion to the distance of their CMAQ
grid centres to the centre of the retrieval pixel. For the XCO2

computation we assume a uniform averaging kernel with values
of 1, which is a good approximation for cloud-free conditions that
is valid over all seasons, see Figure 6 of Buchwitz et al. (2013). The
averaging kernel for NO2 is based on the TROPOMI NO2

retrieval (Eskes et al., 2019), and is valid for clear sky
retrievals. To cover summer and winter conditions, we used
the average of all averaging kernels on two orbits in July 2018,
between 30 and 65° latitude in both hemispheres. The averaging
kernel is zero in the stratosphere, because this is a tropospheric
NO2 product.

2.2 Atmospheric Chemistry
For the time scales addressed in the present study, CO2 is
considered chemically inert. By contrast, the loss of NO2 due
to chemical processes needs to be taken into account. The main
reaction determining the lifetime of NO2 in the lower troposphere
is its oxidation by the hydroxyl radical into nitric acid, as
represented by the following chemical reaction,

NO2 + OH +M( )→kno2oh HNO3 (1)
in whichM is the molecular density of air, andKno2oh the pressure
and temperature dependent reaction rate constant. As other

studies (see, e.g., Beirle et al., 2011) we focus on this OH
reaction and neglect the formation of organic nitrates and
peroxyacyl nitrates (PANs) as well as the shift in the
photostationary balance between NO and NO2 (as influenced
by O3). Beirle et al. (2011) provides typical NO2 lifetimes of 4 h
during summer and 8 h during winter for the 12:45 UTC local
overpass time of OMI at mid latitudes. However, the chemical
transformation of NO2 to nitric acid varies with the diurnally and
seasonally varying hydroxyl abundance, air temperature and
pressure. To take these spatio-temporal variations into account
for the target days in 2008, we make use of hydroxyl radical
distributions, temperature, and pressure from the CAMS
reanalysis (Flemming et al., 2015). The reanalysis data is
available at 3 hourly interval, 9 × 9 km2 horizontal resolution
and 60 vertical hybrid sigma-pressure levels from the surface to
the top of the atmosphere. The coefficients for the reaction rate
constant, combining the high and low pressure limits, are taken
from Atkinson et al. (2004). The chemical lifetime of NO2 due to
Eq. 1 is derived as follows,

τno2 � 1/ kno2oh. OH[ ]( ) (2)
with [OH] being the number density of the hydroxyl radical in
molec./cm3. Supplementary Figure S1 shows the expected
shorter lifetimes during summer than during winter over our
study area. Large variations in lifetime are found, which are
explained in part by the presence of clouds, attenuating the UV
irradiance below the cloud base. A strong diurnal cycle is seen

FIGURE 2 | Model domain including the locations of the largest emitting power plants.
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also, with the longest lifetimes in the early morning during winter
before sun rise. During summer, the mean values around noon
correspond reasonably well with the earlier mentioned estimates
from Beirle et al. (2011). During winter, however, substantially
longer lifetimes are found in the range of 20 and 50 h
around noon.

We simulated NO2 emissions over 24 h before the overpass
around 11:00 UTC. The urban NO2 plume measured by CO2M
represents emissions in a time window starting several hours
before the overpass time of the satellite. Therefore, the average
lifetime can be substantially longer than the reported daytime
values. Our model used a custom set up for the chemistry
simulation that employs a single value of the lifetime for this
24 h period over all height levels. For the winter case, we thus
decided to use an infinite lifetime, which has the advantage that
we can use the same Jacobian for NO2 and CO2. Supplementary
Figure S2 shows the height dependence of the summer life time.
Overall we think that the global-scale estimate of 4 h from Beirle
et al. (2011) represents a reasonable average over time and height
for our summer period, which also falls in the range of 3.6 (±0.8)
hours estimated by Schaub et al. (2007) for the summer period
over Switzerland.

2.3 Electricity Generation
For the electricity generation sector we take the locations of
power plants, temporal emission profiles, as well as annual
emissions of CO2 and NOx from a data set (Super et al., 2020)
compiled as part of the European commissions’s CHE project
(Balsamo et al., 2021). Supplementary Table S1 shows the 10
power plants in the domain with highest CO2 emissions. We
compute vertical profiles through a detailed plume rise simulation
based on an implementation (Brunner et al., 2019) of the
guidelines by the association of Germany engineers (VDI). As
the VDI procedure requires a number of plant characteristics as
input we limited the detailed plume calculation to 11 power
plants within the domain for which these characteristics were
available. These power plants are a combination of the power
plants with the highest CO2 emissions in the area and of several
power plants operated by Vattenfall. The input variables to the
plume rise simulation were provided by a combination of Pregger
and Friedrich (2009), Berlin’s Senate Department for
Environment, Transport and Climate (Andreas Kerschbaumer,
personnel communication) and the plant’s webpages1. As an
example, Figure 3 shows plume rise simulations for

Jänschwalde, the largest power plant in the domain, and for
Reuter West, the largest power plant in Berlin, for both study
periods. For the remaining plants we used the standard profile
from Bieser et al. (2011). The approach yields a vertical emission
profile for each power plant and each hour of our simulation
period, which is then used to distribute the emissions over the 32
vertical levels of our transport model. The vertical extent of the
plumes increases in summer during daytime due to the growth of
the atmospheric boundary layer encompassing the height of
the plume.

The control vector for the electricity generation sector consists
of the CO2 emission of each power plant and of a scaling factor for
the NO2 to CO2 emission ratio, which also absorbs uncertainties
in the NO2 to NOx ratio. Prior uncertainties of the CO2 emission
are assumed to be a constant fraction of 20% of the emission; a
constant fraction of 10% is also explored (see Section 4). With
regard to the degree of differentiation of the scaling factor of the
NO2/XCO2 emission ratio we explore three cases:

Uniform: All plants in our domain share the same scaling
factor.
Per type: All plants in our domain of the same fuel type share
the same scaling factor.
Per plant: Each plant in our domain has an individual scaling
factor.

The prior value for the scaling factor is 1. The (relative) prior
uncertainty of the emission factor ratio is calculated from
reported emission factor uncertainties averaged for several
countries, following the approach used by Super et al. (2020).
Supplementary Table S2 shows the relative emission factor
uncertainty per fuel type. The average uncertainty was used
for all plants of which we could not identify the fuel type and
also for the case “uniform”.

2.4 Other Sector
Our “other” sector accounts for fossil fuel emissions from all
sectors except electricity generation. Other sector emissions of
CO2 and NOx are also taken from the data set by Super et al.
(2020). The control vector for the other sector consists of the CO2

emission into each model grid cell and of a scaling factor for the
NO2 to CO2 emission ratio. In our experiments, we use a
(spatially uncorrelated) prior uncertainty of 52.8% of the
emissions into a grid cell for each grid cell, which translates to
a 20% prior uncertainty when aggregated over Berlin. For the
scaling factor of the NO2/CO2 emission ratio we use a prior of 1
and the prior uncertainty for the average over fuel types
(Supplementary Table S2).

2.5 Natural Terrestrial Biosphere Fluxes
The terrestrial biosphere model we used to calculate the natural
terrestrial CO2 exchange fluxes is based on the Simple Diagnostic
Biosphere Model (SDBM, Knorr and Heimann, 1995), which was
used by Kaminski et al. (2002) for assimilation of CO2 and by
Kaminski et al. (2017) for assimilation of XCO2.

Here we use a new implementation on the 2 km by 2 km grid
of the transport model with a time step of 1 hour. It calculates the

1https://braunkohle.de/wp-content/uploads/2018/04/LEAG_Standortflyer_KW_
Jaenschwalde_WEB.pdf (accessed: 2021-12-16); https://de.wikipedia.org/wiki/
Kraftwerk_Boxberg (accessed: 2021-12-16); https://de.wikipedia.org/wiki/
Kraftwerk_Schwarze_Pumpe(accessed: 2021-12-16); https://de.wikipedia.org/
wiki/Kraftwerk_Schkopau (accessed: 2021-12-16); https://de.wikipedia.org/wiki/
Heizkraftwerk_Reuter_West (accessed: 2021-12–16) https://powerplants.
vattenfall.com/de/buch (accessed: 2021-12-16); https://powerplants.vattenfall.
com/de/klingenberg (accessed: 2021-12-16); https://powerplants.vattenfall.com/
de/moabit(accessed: 2021-12-16); https://powerplants.vattenfall.com/de/
lichtefelde (accessed: 2021-12-16); https://powerplants.vattenfall.com/de/mitte
(accessed: 2021-12-16); https://powerplants.vattenfall.com/de/reuter (accessed:
2021-12-16).
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uptake of CO2 by photosynthesis (expressed as Gross Primary
Productivity, GPP) using the light-use efficiency approach:

GPP x, t( ) � ϵ · α x, t( ) · β x, t( ) · FAPAR x, t( ) · PAR x, t( )
1 + PAR x,t( )

PAR0

(3)

where α is a plant water stress factor, β a temperature-dependent
efficiency scalar, FAPAR the fraction of absorbed photosynthetically
active radiation, and PAR the incident photosynthetically active
radiation, assumed to be 50% of solar incoming radiation. Light use
efficiency, ϵ, and-saturation-level PAR, PAR0, are model parameters.

The water stress factor is determined by

α′ x, t( ) � AET x, t( )
PET x, t( ) · FAPAR x, t( ) (4)

and α being the lesser of α′ and 1. AET and PET are actual and
potential evapotranspiration, respectively. The difference to
Knorr and Heimann (1995) is the additional FAPAR in the
denominator, which accounts for the decreased water demand
when plants only cover part of the land surface. The use of
evapotranspiration takes into account the fact that plants tend
to control most evapotranspiration in water-limited
conditions and require transpiration in order to maintain
photosynthesis.

The temperature-dependent scalar follows Mahadevan et al.
(2008) and is given by

β′ x,t( )� Ta x,t( )−Tmin( )· Ta x,t( )−Tmax( )
Ta x,t( )−Tmin( )· Ta x,t( )−Tmax( )− Ta x,t( )−Topt( )

2 (5)

and the condition β = β′ if β′ is between 0 and 1, but β = 0 if β′ < 0
and β = 1 if β′ > 1 (i.e., β is restricted to values between 0 and 1).
Ta is air temperature, and Tmin, Topt and Tmax are parameters set
to 0, 20 and 40°C, respectively.

Ecosystem respiration, R, is calculated following a Q10

functional relationship with air temperature Ta and is
modulated by a different water stress factor compared to
photosynthesis, assumed to be the ratio of plant available soil
water, w divided by the maximum plant available water holding
capacity of the soil, wmax:

R x, t( ) � R0 · FAPARgs x( ) · w x, t( )
wmax x( ) · Q

Ta x,t( )/10
10 (6)

Q10 expresses the ratio of respiration at air temperature Ta +
10°C to that at Ta, with Ta measured in °C, and R0 is the
respiration rate under standard conditions (w = wmax, Ta = 0).
FAPARgs is FAPAR during the growing season, which is defined
as the period for which Net Ecosystem Exchange (NEE = GPP-R)
is positive. FAPAR is used to account for the impact of available
plant material for decomposition.

Soil moisture is updated hourly using a bucket scheme
following Knorr and Heimann (1995), with an

FIGURE 3 | Plume rise simulation for Jänschwalde (left) and Reuter-West (right) for 3 February 2008 (top) and for 3 July 2008.
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evapotranspiration supply equal to cw · w/wmax, and a demand
equal to evapotranspiration by Priestley and Taylor (1972), which
equals PET. AET is computed as the minimum of supply and
demand at an hourly time step, and uses precipitation and
incoming solar and thermal radiation as input. cw is a model
parameter and describes root zone water supply in the absence of
soil water limitation.

The control variables for the terrestrial biosphere model
component are the parameters ϵ, PAR0, R0, Q10, and cw. The
model was calibrated against NEE from the complete set of
166 Tier-1 FLUXNET2015 sites (Pastorello et al., 2017)
available at the time of download (6 February 2019). Site IDs
are provided in Appendix A. We use NEE derived using the
variable u-star method, reference selected on the basis of model
efficiency 2. The parameter values of the calibrated model are ϵ =
0.0071538 gC/W/hour, PAR0 = 404.62 W/m2, R0 = 0.059024 gC/
m2/hour, Q10 = 1.7622, and cw = 0.52621 mm/h. For our
assessments, we use the calibrated model and assign a prior
uncertainty of 20% to each of the five parameters.

In summary, the model uses as driving data gridded fields of
temperature, precipitation, incoming solar and thermal radiation
and FAPAR. The climate data fields are taken from the ERA5
reanalysis data set 3 on a 0.25° grid. We aggregated the FAPAR
product (Pinty et al., 2011) derived with JRC-TIP (Pinty et al.,
2007) from its native 1km resolution to the 2 km by 2 km model
grid and spatially interpolated the climate data to the same grid
using two-dimensional triangulation-based linear interpolation.

2.6 Quantitative Network Design
The Quantitative Network Design (QND) formalism is presented
in detail by Kaminski and Rayner (2017), see also Tarantola
(2005) and Rayner et al. (2019). In brief, it performs a rigorous
uncertainty propagation from the observations to a target
quantity of interest relying on the indirect link from the
observations to the target variables established by a numerical
model. The link has to be indirect, because, in general there is no
direct link from the observations to the target quantity. There are,
however, direct links from the control vector, which includes the
uncertain inputs to the modelling chain, to target quantities and
observations. For our experiments, the control vector is
composed of the fossil fuel emissions from power plants, the
fossil fuel emissions from the other sector, scaling factors for the
NO2/CO2 emission ratio, and the parameters of the terrestrial
biosphere model.

The target quantities are fossil fuel emissions for each power
plant and from the other sector on the 2 × 2 km2 pixel scale and
aggregated to larger scales, including the scale of Berlin districts
and of the entire city. The observational impact on the target
quantities is quantified by the following two-step procedure: The
first step uses the observational information to reduce the
uncertainty in the control vector, i.e., from a prior to a

posterior state of information. The second step propagates the
posterior uncertainty forward to the simulated target quantity.

Within the QND formalism, we represent all involved
quantities by probability density functions (PDFs). We
typically assume a Gaussian form for the prior control vector
and the observations, if necessary after a suitable transformation.
The Gaussian PDFs’ covariance matrices express the uncertainty
in the respective quantities, i.e., C (x0) and C (d obs) for the prior
control vector and the observations. In the context of these PDFs
we will use the term uncertainty to refer to its full covariance
matrix in the case of a vector quantity. In the case of a scalar
quantity or a given vector component it refers to the square root
of the entry on the diagonal of the full covariance matrix
corresponding to that particular vector component. In the
latter case the uncertainty refers to one standard deviation of
the marginal PDF corresponding to that component.

For the first QND step we use a mapping M from control
variables onto equivalents of the observations. In our notation the
observation operators that map the model state onto the
individual data streams [see Kaminski and Mathieu (2017)]
are incorporated in M. Let us first consider the case of a linear
model, for which we denote by M9 the Jacobian matrix of M,
i.e., the derivative ofMwith respect to x. In this case, the posterior
control vector is described by a Gaussian PDF with uncertainty
C(x), which is given by

C x( )−1 � M′TC d( )−1M′ + C x0( )−1, (7)
where the data uncertainty C(d) is the combination of two
contributions:

C(d) � C(dobs) + C(dmod). (8)
The termC (dobs) expresses the uncertainty in the observations

and C (dmod) the uncertainty in the simulated equivalents of the
observationsM(x). The first term in Eq. 7 expresses the impact of
the observations and the second term the impact of the prior
information. In the non-linear case we use Eq. 7 as an
approximation of C(x).

The mapping N involved in the second QND step is the
mapping from the control vector onto a target quantity, y.
The Jacobian matrix N′ of the mapping N is employed to
approximate the propagation of the posterior uncertainty in
the control vector C(x) forward to the uncertainty in a target
quantity, σ(y) via

σ y( )2 � N′C x( )N′T + σ ymod( )2. (9)
If the model were perfect, σ(ymod) would be zero. In contrast, if

the control variables were perfectly known, the first term on the
right-hand side would be zero. The structural uncertainty ofM is
captured in the term C (dmod) in Eq. 8 and of N in the term
σ(ymod) in Eq. 9, as well as the uncertainty in those process
parameters, boundary and initial values that are not included in
the control vector.

We note that (through Eqs 7, 9) the posterior target
uncertainty solely depends on the prior and data uncertainties,
the contribution of the model error to the uncertainty in the
simulated target variable, σ(ymod), as well as the observational and

2See https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/fullset-data-product/.
3Available from the Copernicus data store at https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form.

Frontiers in Remote Sensing | www.frontiersin.org May 2022 | Volume 3 | Article 8874567

Kaminski et al. Assessment of CO2M in a CCFFDAS

https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/fullset-data-product/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


target Jacobians (quantifying the linearised model responses of
the simulated observation equivalent and of the target quantities).
Hence, the QND formalism can be employed to evaluate
hypothetical candidate networks. Candidate networks are
characterised by observational data type, location, sampling
frequency and time, and data uncertainty but not the
observational value. Here, we define a network as the complete
set of the characterisation of observations used to constrain the
model. We quantify the performance of a candidate network by
its ability to reduce the uncertainty of the target variables.

2.7 Retrieval Uncertainty
Each CO2M satellite has a repeat cycle of 11 days. We apply our
QND framework around the CCFFDAS to the simulated
uncertainty in single measurement retrievals of CO2M for two
specific overpasses with low cloud cover over our study domain
around Berlin, one in winter and one in summer. The XCO2

systematic uncertainty has a main contribution from
perturbations of the optical path of the Earth reflected sun
light that reaches the detector, due to scattering on
atmospheric particles, notably aerosols and ice crystals in
subvisible cirrus clouds. In the ESA AeroCarb project
(Houweling et al., 2019) this error has been quantified by
radiative transfer modelling, accounting for multiple scattering
on aerosol particles that were simulated using the WRF-Chem
model (Chen et al., 2016). The simulated radiance spectra were
used in the Remote Sensing of Greenhouse Gases for Carbon
Cycle Modeling (RemoTeC) algorithm to retrieve XCO2, using
generic a priori assumptions on aerosols, as used for example in
the retrieval of XCO2 from GOSAT. Notice that the GOSAT
retrieval makes use of a bias correction to TCCON data, which is
not used in the AeroCarb computations in order to quantify the
performance of the instrument concept itself. Similar
computations were performed assuming that the CO2

spectrometer on CO2M is accompanied by a multi-angular
polarimeter (MAP) for measuring aerosols. The AeroCarb
computations for Berlin cannot directly be used here, because
different days were used focusing on the year 2013.

Instead we used a neural network that was trained on
RemoTeC GOSAT retrievals as part of the EU CHE project
(Strandgren, 2020). The neural network requires the following
parameters as input: solar zenith angle (SZA), viewing zenith
angle (VZA), AOTNIR, AOTSWIR1, AOTSWIR2, AlbedoNIR,
AlbedoSWIR1, AlbedoSWIR2 (see Supplementary Table S3),
where AOT denotes aerosol optical thickness and the
superscripts NIR (near infrared), SWIR1 (short-wave infrared),
and SWIR2, respectively refer to the bands at 870, 1640, and
2050 nm.

The systematic error generated by the neural network has been
compared to the AeroCarb error simulations. The required
wavelength dependent surface albedos were available from the
AeroCarb dataset. Wavelength dependent AOTs have been
computed using WRF-Chem derived information on the
effective particle radius. Figure 4 shows a comparison between
AeroCarb and neural network generated errors. Some differences
are seen, with the neural network showing larger errors on
average, especially for surface albedos larger than 0.3–0.5.

However, given the wide range of conditions that is covered
by the neural network, and the limited set of input parameters
that is used, the differences remain within the expected range. To
generate data sets of random and systematic errors over our study
domain we ran the trained neural network for each retrieval
provided in the L2e files. Most of the input parameters required
by the neural network (first column of Supplementary Table S3)
are provided with the L2e files (middle column), some were
computed from the available parameters (last column). In winter,
input values for the VZA reach up to 15.58°. As the validity
domain of the neutral network is 0° ≤ VZA ≤14°, values above 14°
were mapped onto 14°.

To quantify XCO2 systematic errors for retrievals that make
use of information on aerosols from a MAP we cannot simply
extend the existing neural network, because of the lack of a
suitable training dataset from GOSAT. To nevertheless obtain an
indicative estimate of the accuracy that can be gained, we trained
another neural network quantifying the ratio of systematic XCO2

errors with/without the use of a MAP. This neural network uses
the same 8 input parameters as before (see Supplementary Table
S3), and has been trained on the AeroCarb simulated systematic
XCO2 errors for Berlin with and without MAP. Given the
difficulty to train a generic neural network based only on the
two cases (winter and summer) that are available from AeroCarb
for Berlin, we trained two networks, one for winter and another
one for summer. The performance of these neural networks
compared with test datasets is shown in Figure 5. As can be
seen, the information on aerosols obtained from a MAP allows
the systematic XCO2 error to be reduced by about a factor of 10.
Finally, we used this second trained neural network to generate
data sets of systematic errors with MAP over our study domain
(bottom panel of Figure 6).

To test the sensitivity of our results to the error specification
we used the L2e files Buchwitz et al. (2013) as an alternative
(Figure 7). For each of the three error specifications, we
computed the variance of the XCO2 observational uncertainty
as the sum of the variances of random and systematic errors. This
reflects the assumption that systematic and random errors are
independent of each other and also in space.

For the retrieval uncertainty in tropospheric column NO2 we
follow the estimates of Lorente et al. (2019) for the TROPOMI
NO2 retrieval. The total uncertainty has contributions from the
slant column retrieval, the stratospheric correction to obtain
tropospheric sub columns, and the air mass factor correction.
The slant column uncertainty is estimated at 0.5–0.6 · 1015

molec.cm−2 for the TROPOMI retrieval, and reflects the
instrumental signal/noise. Therefore this term can be treated
as a random uncertainty. Based on comparisons with NDACC
measurements, the stratospheric correction is estimated to be
10% uncertain on the size of the stratospheric subcolumn,
translating into an uncertainty on the tropospheric NO2

column of 0.3 · 1015 molec. cm−2. Stratospheric NO2

maximises at 30–40 km altitude and shows a predominantly
zonal distribution that varies with season and local time
(Beirle et al., 2016). This error is, hence, expected to show a
significant spatio-temporal coherence on the spatial scale of cities,
and can therefore be assumed to be systematic. It may be possible
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to derive a large-scale correction for this error, which would leave
us with small-scale deviations of that correction. For these small-
scale deviations we regard the above uncertainty of 0.3 ·
1015 molec. cm−2 as a conservative estimate and assume no

spatial correlation. The TROPOMI NO2 validation to ground
based measurements shows a low bias of 25%, which is assumed
to be due mainly to the air mass correction. This error can be bias
corrected, and therefore needs not to be accounted for as an

FIGURE 4 | Comparison of XCO2 systematic error from the AeroCarb error computations (red) for the Berlin winter (left) and summer (right) cases and
corresponding errors from the GOSAT trained neural network (blue).

FIGURE 5 | Evaluation results for the neural network to compute the ratio of the systematic XCO2 errors for the cases with (nominator) and without (denominator)
MAP for the Berlin winter (left, R2 = 0.80, bias = −8.3 · 10–4) and summer (right, R2 = 0.63, bias = −3.1 · 10–3) cases.
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FIGURE 6 | Random (top) and systematic errors without (middle) and with (bottom) MAP for winter (left) and summer (right) study period. Diamond: Schwarze
Pumpe; triangle: Jänschwalde.
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uncertainty. We regard random and systematic error as
independent and compute the variance of the our NO2

observational uncertainty as the sum of the variances of
random and systematic errors.

3 PRESENTATION OF JACOBIANS AND
DECOMPOSITION OF CO2 COLUMNS

As mentioned, the QND approach relies on a Jacobian that
quantifies the sensitivity of the CO2M observations with
respect to the control vector (Section 2.6). This subsection
presents the respective components of this Jacobian.

For the electricity sector we performed individual simulations of
the plumes at the CO2M overpass time of the 170 power plants in
the domain. For each power plant, the respective column of the
Jacobian is the ratio of the simulated XCO2 divided by the emission
over 24 h. Figure 8 shows examples for two of the power plants, the
largest plant in the domain at Jänschwalde and the large plant in

Schkopau, located in the southwestern corner of the domain and
hidden by clouds in the winter and summer cases. We will come
back to this aspect in Section 5. To indicate that we refer to specific
one-day periods rather than entire seasons, we use the terms “winter
case” and “summer case” throughout.

A Jacobian expressing the sensitivity of the simulated XCO2

with respect to an emission from the other sector into any given
surface grid cell was computed by a corresponding forward
simulation with a unit emission into that grid cell (see
Supplementary Figure S3). For area sources a suitable display
format is to select a measurement at a particular point and show
its sensitivity to surface emissions on the grid of the domain, often
denoted as footprint of the measurement. As an example,
Figure 9 shows the sensitivity (footprint) of a CO2 column
over the centre of Berlin (Brandenburg Gate) with respect to
surface emissions from the other sector. The change in display
style with respect to the plumes of the power plants also implies
that we expect regions of high sensitivity upwind of the
measurement point, while the plume of a power plant

FIGURE 7 | Random (left) and systematic (right) errors from L2e data set for the winter (top) and summer (bottom) study period. Diamond: Schwarze Pumpe;
triangle: Jänschwalde.
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FIGURE 8 | Jacobians for two large power plants (respective locations indicated by black dots), Jänschwalde (top) and Schkopau (bottom), winter (left) and
summer (right). Sensitivity of XCO2 with respect to emissions over the past 24 h (ppm/kgC).

FIGURE 9 | Jacobians for surface emissions from other sector in winter (left) and summer (right). Sensitivity of XCO2 over Brandenburg Gate with respect to surface
emissions over the past 24 h (ppm/kgC).
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emission is located downwind of the plant location. We note that
the footprint of the XCO2 column is long and, in the summer case
also somewhat blurred. We will come back to this point.

Figure 9 is complemented by the sensitivity to the inflow from
the lateral boundaries, which Figure 10 shows for the summer
case. It is remarkable that the impact of the inflow is far from
uniform in the vertical domain, a clear indication of the change in
wind direction with height. For example near the surface we have
high impact of the inflow from the southeast, which is consistent
with the structure of the impact from the surface emissions shown
in Figure 9. In the stratosphere there is, however, also large
impact of inflow from the west. The final component of the
Jacobian quantifies the sensitivity of simulated XCO2 with respect
to the parameters in the terrestrial biosphere model.

The top panels of Figure 11 shows an alternative way of
displaying the footprints shown in Figure 9. For each grid cell
it shows the contribution of the sensitivity to emissions into
that grid cell as a percentage of the sum of the sensitivities to
emissions into all surface grid cells, i.e., excluding the lateral

inflow. It shows us that no single grid cell contributes more
than ~1% to the overall sensitivity. This has the important
consequence that, in the absence of additional information on
the field of surface emissions, the information in a single
measurement is insufficient for the attribution of the
measurement to a particular emission point, e.g., the surface
pixel over which the measurement was performed. This
underlines the role of the three-dimensional atmospheric
transport in the interpretation of XCO2 observations and
indicates the limits of simple mass balance approaches.

The top panels of Figure 11 also suggests a further use of the
Jacobians in addition to their role in an inversemodelling/quantitative
network design system. We can apply them as an efficient way of 1)
simulating the XCO2 signal from surface emissions and 2) for
decomposing that signal into the contributions of emissions from
individual emission locations to the overall signal (Kaminski et al.,
1996; Kaminski et al., 1999). For example for a spatially homogenous
emission field, a value of 0.4% in a grid cell indicates that the
emissions from that grid cell contribute 0.4% to the overall signal

FIGURE 10 | Jacobians for inflow from the four lateral boundaries in summer. Sensitivity of XCO2 over Brandenburg Gate with respect to inflow over the past 24 h
(ppm/kgC).
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from the entire emission field. We know that the real emission field is
not homogeneous. Using our other sector emission field (see Section
2.4) we obtain an overall response of 0.13 ppm in the winter case and
0.11 ppm in the summer case and the decomposition of that response
is shown in the bottom panels of Figure 11.

4 SETUP OF INVERSION EXPERIMENTS

Table 1 provides the list of experiments that were conducted for
the two study periods, i.e., in winter and in summer. The default
experiment (experiment 1) employs the CO2M error files based
on the artificial neural network assuming the availability of the
MAP. It does not use any NO2 measurements and assumes prior
uncertainties of 20% for each power plant, each natural flux
parameter, and of other sector for Berlin (translating to a relative
uncertainty of 52.8% at the pixel level). For the lateral inflow it
assumes an uncertainty of 1 ppm that is fully correlated within
each group of 5 grid cells (i.e., over 10 km) in the horizontal
direction and otherwise completely uncorrelated. Experiment 2

also addresses a setup with only XCO2 measurements but it uses
the L2e files instead of those derived from the neural networks,
which are used in Experiments 1 and 3. Experiment 3 uses the
error files based on the artificial neural network, but without
availability of the MAP. Experiments 4–6 equal experiment 1 but
include NO2 as a further observational constraint. These three
experiments differ in the degree of differentiation of the scaling
factor for the NO2/CO2 emission ratio for power plants (see
Section 2.3). Finally, experiment 7 explores the sensitivity with

FIGURE 11 | Footprint of XCO2 over Brandenburg Gate, contribution of sensitivity to emissions into grid cell as a percentage of the sum of the sensitivities to
emissions into all surface grid cells (top) and decomposition of the contribution of the other sector emission into each grid cell to simulated XCO2 over Brandenburg Gate
(bottom) in winter (left) and summer (right).

TABLE 1 | List of experiments.

# Name XCO2 NO2

1 EPFMAP (default) NN w/MAP —

2 PMIF PMIF —

3 EPF NN w/o MAP —

4 NO2 uniform NN w/MAP σr uniform
5 NO2 per type NN w/MAP σr per fuel type
6 NO2 per plant NN w/MAP σr per plant
7 1/2 plant prior σ NN w/MAP —
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respect to the prior uncertainty in the CO2 emissions from power
plants in that is uses a relative uncertainty of 10% compared to
20% in the default experiment.

5 INVERSION RESULTS AND DISCUSSION

The seven experiments listed in Table 1 provide a rich suite of
results, which is provided in Figures 12, 13 (and in tabular form
in Supplementary Tables S4–S7). We first provide a detailed
presentation of experiments 1 and 4 followed by an overview on
all experiments.

In the default setup (experiment 1), a large uncertainty
reduction (≈60%–90%) is found for the three largest power
plants and a moderate uncertainty reduction (up to 10%–20%)
for the next largest (Figure 12). The uncertainty reduction is
higher in the summer case, when both random and systematic
errors are lower (see Section 2.7). The plant in Schkopau is a
special case as it is covered by clouds in both periods (see Section
3). Due to its location on the western boundary in combination
with easterly winds in the winter case its plume is not observed
over our domain in that period.

Next, we present uncertainty reductions for the other sector on
the scales of the 2 km by 2 km grid cells, aggregated over Berlin

FIGURE 12 | Uncertainty reduction for ten largest power plants and all experiments in winter (left) and summer (right).

FIGURE 13 | Uncertainty reduction for the other sector at spatial scales from entire domain to grid cell and all experiments in winter (left) and summer (right).
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districts, over the entire city, over some other towns in the
domain, and over the entire domain (Figure 13). As for the
power plants, the uncertainty reduction is considerably larger in
the summer case. While the uncertainty reduction is low (up to
4% in the winter case and 8% in the summer case) at the grid cell
scale (top panels of Figure 14) and focuses on grid cells with
higher emissions, it increases for emissions accumulated to the
Berlin district scale (up to about 10% in the winter case and 20%
in the summer case) and is higher for districts with higher
emissions (not shown). At the scale of Berlin we see a sizeable
uncertainty reduction (about 28% in the winter case and 47% in
the summer case).

Experiment 4 adds NO2 measurements to the default setup
(experiment 1). The extra NO2 measurements increase the
uncertainty reduction for the large power plants (Figure 12)
in the summer and winter cases. In relative terms the increase in
uncertainty reduction is particularly high for the plants which
were not well observed with XCO2 alone and those with high
NO2/CO2 emission ratio (compare Supplementary Table S1).
The absolute reduction in posterior uncertainty through the

addition of the NO2 measurements is, however, highest for the
larger power plants (see Supplementary Table S4). In relative
terms the increase in uncertainty reduction is higher in the winter
case, when the constraint by XCO2 alone is weaker. The best
overall performance of XCO2 and NO2 is, however, achieved in
the summer case (see also Supplementary Table S6), when both
random and systematic errors are lower (see Section 2.7).

Likewise for the other sector, the extra NO2 measurements
increase the uncertainty reduction on all scales in the summer
and winter cases. On the grid cell scale uncertainty reductions
reach now 25% in the winter case and 40% in the summer case
(bottom panels of Figure 14). High values reflect the combination
of high emission ratio with high CO2 emissions. On the Berlin
district scale the relative increase in uncertainty reduction is
particularly high for districts that were not well constrained by
XCO2 alone such as Spandau. In absolute terms the posterior
uncertainty decreases most for districts with larger emissions
such as Charlottenburg-Wilmersdorf. With the extra NO2

measurements the uncertainty reduction in the other sector
emissions aggregated over Berlin increases to about 50% in the

FIGURE 14 | Uncertainty reduction for other sector emissions at 2 km by 2 km scale over Berlin in winter (left) and summer (right) with (experiment 1, top) without
NO2 (experiment 4, bottom).
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winter case and 60% in the summer case. The best overall
performance of XCO2 and NO2 for the other sector is
achieved in the summer case.

Figure 12 shows the uncertainty reduction for the 10 largest
power plants and all experiments of the winter (left) and the
summer (right) periods. The default experiment performs better
than the experiment with the L2e files for all power plants,
reflecting the lower random and systematic errors of the
default case (Figures 6, 7) The MAP improves the impact of
the CO2Mmeasurements for all power plants and in the summer
and winter cases. Over our study domain, the impact of the MAP
is particularly high in the winter case. Even with reduced prior
uncertainty there is strong uncertainty reduction for large power
plants, in particular in the winter case, when XCO2 alone leaves
more scope for improvement and the atmospheric NO2 lifetime is
longer. The differentiation of the scaling factors in the NO2/CO2

emission ratio has an impact on the uncertainty reduction. As
expected, a uniform scaling factor yields higher uncertainty
reduction than a scaling factor per plant. This is because the
uniform scaling factor is constrained by the atmospheric
observations of all plants (transfer of information between
plants), while an independent plant-specific scaling factor is
only constrained by the atmospheric observations of the plant
in question. In other words, the case of the uniform scaling factor
imposes more prior knowledge as it removes the independence of
the scaling factors. In between these two cases lies the case with a
scaling factor per fuel type, with the exception of the largest of the
ten power plants where it outperforms the case with uniform
scaling factor. The four largest plants belong to the type burning
solid fuel, for which there are two competing effects when
changing from the case “uniform” to the case “fuel type”.
First, the prior uncertainty in the emission ratio for solid fuel
is considerably lower than the average we use in the uniform case,
which increases the performance of the NO2 measurements.
Second, the transfer of information from one power plant to
the next through the use of the same scaling factor for the
emission rate is obviously weaker in the case “fuel type” than
in the case “uniform”, because the information is shared between
fewer power plants. For the larger plants the first effect dominates
the second. In the winter case this concerns the first four power
plants (see Supplementary Table S4) and in the summer case the
first two (see Supplementary Table S6).

Figure 13 shows the uncertainty reduction for the other sector
at spatial scales from the entire domain to grid cell and all
experiments in the winter (left) and the summer (right)
periods. The default case performs better than the case with
the L2e files over all scales. The MAP improves the impact of the
CO2M measurements over all scales and in the summer and
winter cases. Over our study domain, the impact of the MAP is
particularly high in the winter case. Increasing the differentiation
of the scaling factor for the NO2/CO2 emission ratio of the power
plants (from experiment 4 to experiment 5 to experiment 6)
yields a slight decrease of the performance of the other sector.
This is a typical example demonstrating a general feature of the
CCFFDAS, namely that, through the atmospheric constraint,
better prior information (same emission ratio between power
plants) on one sector (here electricity generation) is translated to

better information on the remaining sectors (here the other
sector). Similarly, the reduced prior uncertainty for the power
plants (experiment 7), yields a slight performance increase for the
other sector.

The setup of the CCFFDAS (through our specification of
the control vector, see Section 2) and of the experiments
(through the sensitivities we investigated, see Section 4)
account for a specific choice of uncertain elements in the
processing chain and its inputs. Further uncertain factors not
covered through inclusion into the control vector nor through
sensitivity experiments include the temporal shape of fossil
fuel emission profiles, the spatial differentiation of the NO2/
CO2 emission ratio for the other sector, the correlation
between uncertainties in NO2 and XCO2 measurements
and in space, uncertainties in NO2 measurements, lateral
NO2 influx, and structural uncertainties in the models of
fossil fuel emissions, natural fluxes, and atmospheric
transport including atmospheric chemistry (NO2 lifetime).
We note that all these factors can be handled by the QND
approach with a suitable setup of experiments. Some of them
would, however, require an extension/improvement of the
modelling chain. The inclusion of uncertainty in the temporal
emission profiles would, for example, lead to a refined fossil
fuel emission model. Uncertainties through the use of an
atmospheric NO2 lifetime could be reduced through
inclusion of a dedicated module for (possibly simplified)
simulation of atmospheric chemistry. The inclusion of
structural errors is explicitly foreseen in Eqs 8, 9 and
would require a systematic assessment of model error,
which is a complex task. We note that many structural
errors, e.g., those of the transport model, affect all our
experiments in a similar way and are, hence, less relevant
when we compare the assessments between experiments.

To appraise our posterior fossil fuel emission uncertainties we
have to balance opposing aspects: Neglecting the above sources of
uncertainty in our experimental setup has certainly led to an
underestimation of posterior uncertainty. On the other hand,
there are several factors that, in a future CCFFDAS, would reduce
posterior uncertainties. First, our prior emission uncertainties are
rather conservative, experiment 7 has demonstrated how reduced
prior uncertainty for the energy sector reduces the posterior
uncertainty for both sectors. Second, there is scope for
reducing structural errors in a CCFFDAS with better, more
accurate models of fossil fuel emissions, natural fluxes, and
atmospheric transport. Third, the CCFFDAS approach allows
to complement the atmospheric observations with further, more
direct observations that constrain the models for fossil fuel
emissions and natural fluxes. The inclusion of such
complementary observations in a CCFFDAS will reduce the
degrees of freedom in the inverse problem and thus also
improve the leverage of the atmospheric measurements.
Likewise the assimilation of meteorological data streams from
both in situ and space-borne sensors will help to constrain
atmospheric dynamics and reduce the effect of transport. With
the above considerations our posterior uncertainties might give a
good indication of what is feasible with CO2M observations in
future inversion systems.
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6 SUMMARY AND CONCLUSION

This study explored the impact of CO2M observations in a 200 ×
200 km2 domain around Berlin. For the quantification of XCO2

random and systematic errors the study developed and applied
new error parameterisation formulae based on artificial neural
networks for cases with and without MAP. The study further
established a CCFFDAS modelling chain from parameters of
emission models to XCO2 and NO2 observations and computed a
full Jacobian matrix representation of this modelling chain for the
24 h periods preceeding simulated CO2M overpasses over the
study area in summer and winter. This Jacobian quantifies the
sensitivity of the simulated measurements with respect to the
parameters in the emission models and enables a rigorous
uncertainty propagation (QND approach) to assess the impact
of CO2M observations on fossil fuel emissions. As a by-product,
the full Jacobian also provides the footprint of the CO2 column
and allows us to decompose a simulated CO2 column in terms of
spatial emission impact. This analysis reveals the complicated
structure of the footprint of an observed CO2 column, which
indicates the limits of simple mass balances approaches for
interpretation of such observations.

The study conducted a number of assessments of observation
impact in terms of the posterior uncertainty in fossil fuel
emissions over 24 h on scales ranging from 2 to 200 km. This
means the assessments include temporal and spatial scales
typically not covered by inventories. Our typical metric is the
relative reduction of the uncertainty in emissions through the
information in the CO2M measurements compared to the prior
uncertainty. The assessments differentiate the fossil fuel CO2

emission into two sectors, an energy generation sector (power
plants) and the complement (“other sector”).

We find that XCO2 measurements alone provide a powerful
constraint on emissions from larger power plants and a constraint
on emissions from the other sector that increases when
aggregated to larger spatial scales. The MAP improves the
impact of the CO2M measurements for all power plants and
for the other sector on all spatial scales. Over our study domain,
the impact of theMAP is particularly high in the winter case. NO2

measurements provide a powerful additional constraint on the
emissions from power plants and from the other sector. Through
the atmospheric constraint, more prior information on the CO2

emissions from power plants or on the differentiation of the NO2/
CO2 emission factor reduces the uncertainty in CO2 emissions
from the other sector.

Our results suggest that the capability of CO2Mmeasurements
to constrain fossil fuel emissions varies between summer and
winter cases. The main factor behind the larger constraint in the
summer case are lower random and systematic errors in XCO2

measurements. There are, however, exceptions related to factors
such as cloud cover and atmospheric transport.

The setup of the CCFFDAS and of the experiments focus on
specific uncertain elements in the processing chain and its inputs.
Further uncertain factors such as structural model errors are not
covered, so that the quantitative assessments with the current
prototype might be interpreted as a lower limit for posterior
uncertainty. We can, however, expect that, with sufficient

research effort, future CCFFDAS’s will be able to benefit from
more accurate models of fossil fuel emissions (finer sectoral
resolution, further observational constraints), of natural fluxes
(more terrestrial observations including CO2Mmeasurements of
solar induced fluorescence, better meteorological driving data),
and of atmospheric transport (constrained by observations of
local meteorological conditions) and improved prior
information. In this sense our performance assessments may
provide a realistic indication of what can be achieved. In
summary we find that the combination of CO2M with a
suitable inversion system can provide useful estimates for
urban scale emission reporting/verification. As for the global
CCFFDAS (Kaminski et al., 2022, see), possible application
modes are either a verification mode, in which the system is
operated largely independently from inventory information or a
synergy mode that derives a best emissions estimate by
integrating bottom up information.
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APPENDIX

A FLUXNET Sites
The calibration of model for natural fluxes uses data from
FLUXNET. According to FLUXNET data use policy, the
FLUXNET IDs have to be listed along with the citation
Pastorello et al. (2017):

AR-SLu, AR-Vir, AT-Neu, AU-Ade, AU-ASM, AU-Cpr, AU-
Cum, AU-DaP, AU-DaS, AU-Dry, AU-Emr, AU-Fog, AU-Gin,
AU-GWW, AU-How, AU-Lox, AU-RDF, AU-Rig, AU-Rob, AU-
Stp, AU-TTE, AU-Tum, AU-Wac, AU-Whr, AU-Wom, AU-
Ync, BE-Bra, BE-Lon, BE-Vie, BR-Sa3, CA-Man, CA-NS1, CA-
NS2, CA-NS3, CA-NS4, CA-NS5, CA-NS6, CA-NS7, CA-Qfo,
CA-SF1, CA-SF2, CA-SF3, CH-Cha, CH-Dav, CH-Fru, CH-Lae,
CH-Oe1, CH-Oe2, CN-Cha, CN-Cng, CN-Dan, CN-Din, CN-
Du2, CN-Ha2, CN-HaM, CN-Qia, CN-Sw2, CZ-BK1, CZ-BK2,

CZ-wet, DE-Akm, DE-Geb, DE-Gri, DE-Hai, DE-Kli, DE-Lkb,
DE-Obe, DE-RuR, DE-RuS, DE-Seh, DE-SfN, DE-Spw, DE-Tha,
DK-Fou, DK-NuF, DK-Sor, DK-ZaF, DK-ZaH, ES-LgS, ES-Ln2,
FI-Hyy, FI-Jok, FI-Lom, FI-Sod, FR-Fon, FR-Gri, FR-LBr, FR-
Pue, GF-Guy, IT-BCi, IT-CA1, IT-CA2, IT-CA3, IT-Col, IT-Cp2,
IT-Cpz, IT-Isp, IT-La2, IT-Lav, IT-MBo, IT-Noe, IT-PT1, IT-
Ren, IT-Ro1, IT-Ro2, IT-SR2, IT-SRo, IT-Tor, JP-MBF, JP-SMF,
NL-Hor, NL-Loo, NO-Adv, NO-Blv, RU-Che, RU-Cok, RU-Fyo,
RU-Ha1, SD-Dem, SN-Dhr, US-AR1, US-AR2, US-ARb, US-
ARc, US-ARM, US-Blo, US-Cop, US-GBT, US-GLE, US-Ha1,
US-KS2, US-Los, US-Me1, US-Me2, US-Me6, US-MMS, US-
Myb, US-Ne1, US-Ne2, US-Ne3, US-NR1, US-ORv, US-PFa,
US-Prr, US-SRG, US-SRM, US-Syv, US-Ton, US-Tw1, US-
Tw2, US-Tw3, US-Tw4, US-Twt, US-UMB, US-UMd, US-Var,
US-WCr, US-Whs, US-Wi0, US-Wi3, US-Wi4, US-Wi6, US-
Wi9, US-Wkg, ZA-Kru, ZM-Mon.
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