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This paper investigates the backscatter evolution and surface changes of ice aprons (IAs)
by exploiting time series of X- and C-band SAR images from PAZ and Sentinel-1 satellites.
IAs are extremely small ice bodies of irregular shape present on steep slopes and complex
topographies in all the major high-Alpine environments of the world. Due to their small size
and locations in complex topographies, they have been very poorly studied, and very
limited information is known about their evolution and responses to climate change. SAR
datasets can provide handy information about the seasonal behaviour of IAs since physical
changes of IA surfaces modify the backscattering of RaDAR waves. The analysis of the
temporal variations of the backscatter coefficient illustrates the effects of increasing
temperatures on the surface of the IAs. All IAs considered in the analysis show a
strong decrease in backscatter coefficient values in the summer months. The
backscattering patterns are also supported by the annual evolution of the coefficient of
variation, which is an appropriate indicator to evaluate the heterogeneity of the surface.
Higher mean backscatter values in the X-band than in the C-band indicate surface
scattering phenomena dominate the IAs. These features could provide key information
for classifying IAs using SAR images in future research.
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1 INTRODUCTION

Satellite remote sensing is an attractive alternative to costly and time-consuming field observations
(Gao and Liu 2001) and has shown great potential in a variety of applications for mountain
environments, such as glacial hazards monitoring (Bühler et al., 2013; Nefeslioglu et al., 2013),
geomorphological mapping (Loibl and Lehmkuhl, 2013; Kääb et al., 2014; Meier et al., 2018), climate
change impact assessment (Rafiq and Mishra, 2016; Kraaijenbrink et al., 2017; Magnin et al., 2019;
Rastner et al., 2019) and glacier dynamics (Strozzi et al., 2002; Sam et al., 2018; Farinotti et al., 2019).
Different satellite data types like optical (Luckman et al., 2007; Berthier et al., 2014), SAR (Rabus and
Fatland, 2000; Quincey et al., 2009; Waechter et al., 2015), altimetry (Kaab, 2008; Neckel et al., 2014;
Trantow and Herzfeld, 2016) and derived products like Digital Elevation Models (DEMs) (Rignot,
2003; Bamber and Rivera, 2007) are used for mountain studies. All data types have their advantages
and limitations, and the choice of data depends on the application (e.g. terrain complexity of the
study region, research objective) and the data availability. Optical/multispectral remote sensing is the
oldest and most used monitoring technique for snow-covered regions, with a well-established history

Edited by:
Wietske Bijker,

University of Twente, Netherlands

Reviewed by:
Muhammad Adnan Siddique,

Information Technology University,
Pakistan

Oriol Monserrat,
Centre Tecnologic De

Telecomunicacions De Catalunya,
Spain

*Correspondence:
Suvrat Kaushik

suvrat.k007@gmail.com

Specialty section:
This article was submitted to

Remote Sensing Time Series Analysis,
a section of the journal

Frontiers in Remote Sensing

Received: 27 April 2022
Accepted: 01 June 2022
Published: 30 June 2022

Citation:
Kaushik S, Cerino B, Trouve E,

Karbou F, Yan Y, Ravanel L and
Magnin F (2022) Analysis of the

Temporal Evolution of Ice Aprons in the
Mont-Blanc Massif Using X and C-

Band SAR Images.
Front. Remote Sens. 3:930021.
doi: 10.3389/frsen.2022.930021

Frontiers in Remote Sensing | www.frontiersin.org June 2022 | Volume 3 | Article 9300211

ORIGINAL RESEARCH
published: 30 June 2022

doi: 10.3389/frsen.2022.930021

http://crossmark.crossref.org/dialog/?doi=10.3389/frsen.2022.930021&domain=pdf&date_stamp=2022-06-30
https://www.frontiersin.org/articles/10.3389/frsen.2022.930021/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.930021/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.930021/full
http://creativecommons.org/licenses/by/4.0/
mailto:suvrat.k007@gmail.com
https://doi.org/10.3389/frsen.2022.930021
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://doi.org/10.3389/frsen.2022.930021


(König et al., 2001; Dietz et al., 2012). SAR sensors allow for all-
day and all-weather observations, which is particularly important
for observations in polar or high mountain regions that
experience polar darkness in winter and heavy cloud cover
conditions (Robinson et al., 1984; Lubin and Massom, 2005).
In addition, the ability of electromagnetic waves to penetrate the
snowpack and interact with surface and subsurface features is a
significant advantage of SAR imagery over optical imagery. In the
case of snow/ice studies, the SAR signal with longer wavelengths
can penetrate deeper into the snowpack and provide valuable
information about snowpack characteristics like the snow grain
size, the snow depth and the amount of liquid water in the form of
snow water equivalent (SWE) (Floricioiu and Rott 2001). Using
the potential of SAR, many successful studies have been published
for various applications in glacier and snow/ice studies: snow
cover mapping (Sokol et al., 2003; Thakur et al., 2013), snow
depth retrieval (Awasthi et al., 2017; Li et al., 2017), SWE
estimation of the snowpack (Patil et al., 2020), glacier zones
delineation (Arigony-Neto et al., 2007; Kundu and Chakraborty,
2015; Fu et al., 2020) and snow/ice classification (Moen et al.,
2015; Casey and Haas, 2016; Khaleghian et al., 2021).

Considering the number and often recentness of these
applications, we can safely state that SAR remote sensing
techniques have evolved rapidly in recent years. However,
challenges remain in imaging areas of high relief and complex
topographies (Taylor et al., 2021) because the side-looking
geometry of SAR acquisitions results in slant range and slope
dependent cell resolutions. The SAR acquisition geometry also
results in well-known geometric distortions, which become more
severe as the complexity of terrain surfaces increases (Gelautz
et al., 1998; Chen et al., 2018). In addition, since the backscattered
signal of each pixel of SAR imagery is the coherent sum of the
backscattered signals from all the scatterers (ground features that

reflect RaDAR waves) in the imaged area, the resulting speckle
degrades the final image quality (Lucas, 1995; Chan and Peng,
2003). Moreover, a critical element for SAR processing, DEMs
also suffer from increasing inconsistencies in steep slopes.
Therefore, although SAR images have seen numerous
applications in mountain areas, they have mainly been limited
to large and low slope angle glaciers (generally <15°) (Joughin
et al., 2010). Small ice bodies on steep rock slopes like hanging
glaciers, snow and ice covers, snow-filled couloirs, glacierets and
ice aprons often exist in cirques or niches in rock walls or steep
rock faces, making their global observation extremely challenging
(Helfricht et al., 2015). As a result, these ice features have rarely
been studied. In situ observations are also limited; hence there
exists a critical gap in understanding these features.

Guillet and Ravanel, 2020 state that ice aprons are very small
(typically smaller than 0.1 km2) ice bodies of irregular outline that
lie on steep slopes >40° that may not be thick enough to deform
under their own weight. Guillet et al., 2021 showed that IAs
constitute a critical component of the mountain ecosystem
because of the old age of the ice they preserve, but very few
studies have been dedicated to understanding their
characteristics. Most glacier inventories fail to consider IAs as
a specific glacial entity and often show them as part of larger
glacial systems (Benn and Evans, 2010). This results from our lack
of understanding of differentiating these small features from
other glacier parts. The small size and the complex
topography associated with the locations of the IAs also
prevent previous studies from attempting to understand their
physical behaviour using SAR images. As a result, our
understanding of the behaviour and geometric changes of
these small ice bodies is very limited.

Keeping this perspective, this paper aims to understand the
physical behaviour of IAs in the Mont-Blanc massif (MBM

FIGURE 1 | Glacier zones. Brown: bedrock, dark blue: ice, light blue: snow.
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hereafter) (western European Alps), using time series of X-band
PAZ and C-band Sentinel-1 images. For this, we made a first
regional synthesis of the temporal changes occurring at the
surface and sub-surface of the IAs through the annual cycle.
Further, we attempted to link the temporal changes in SAR
backscattering response to the annual meteorological changes.
We also tried to understand the behaviour of the IAs in different
RaDAR wavelengths of SAR images for a better understanding of
the scattering characteristics of the IAs.

The paper is organized as follows: Section 2 provides the
background theory on the interactions of the RaDAR waves with
snow/ice and glacier surfaces, Section 3 presents the study area
and the datasets used for the study, Section 4 describes the
methodology and the processing steps, Section 5 deals with
analyzing the results followed by a brief discussion to interpret
the results and Section 6 summarizes the primary research
outcomes from the study in the form of conclusions.

2 BACKGROUND SYNTHESIS

2.1 Microwaves and Snow/Ice Interactions
SAR imaging works on the principle of active imaging, i.e., the
satellite sensor transmits electromagnetic (EM) radiation with
varying wavelengths between 0.3 and 0.01 m and receives the
returned echoes (called backscatter) from the Earth’s surface
(Wiley, 1985; Bruder, 2013). The backscattering from the
ground surface essentially depends upon the dielectric
constant of the surface and medium, the surface roughness,
and the shape and size of the scatterers (Stiles and Ulaby,
1980). If the target surface has a layer of snow, the longer
lengths of the EM wave can penetrate the snowpack up to

depths of tens of meters. In this case, the final backscattered
signal received by the SAR sensor is the sum of the contributions
from within the snowpack and the underlying ground/rock. The
backscattered signal received from the snowpack is the sum of the
surface scattering at the air/snow interface, volume scattering
from inside the snowpack, scattering at the rock/snow interface
and volume scattering from the ground surface beneath (in case
the penetration depth of the SAR signals is high enough). Many
mathematical models based on physical and empirical laws have
been formulated to model the backscattering response from the
snowpack (Cooper, 2007). SAR backscattering signals from snow/
ice depend on (1) sensor parameters such as the wavelength of the
signal, the polarization (single pol (HH, VV), dual-pol (HH/HV
or VV/VH) or quad/full pol (HH/VV/HV/VH) and the incidence
angle; and (2) snowpack or ground characteristics, which include
the density, the liquid water content, the size and shape of the
particles and the surface roughness. In general, longer
wavelengths penetrate the snowpack deeper and thus produce
more volume scattering (Johansson et al., 2018). X-band SAR
(2.4–3.75 cm, 8.0–12.5 GHz) is more sensitive to the snowpack
than both the L (23.5 cm, 1–2 GHz) and C-band (5.6 cm,
5.3 GHz) SAR. In glacier studies, the dielectric constant values
play a significant role in analyzing the internal properties of the
snow/ice. The dielectric properties of snow at a particular signal
wavelength are dependent on the relative proportion of liquid and
solid water. Studies by Brown et al., 1999 and Casey and Haas,
2016 have shown that even a small amount of liquid water
(~3–5% liquid water content) can drastically affect the
penetration depths of EM signals in snow/ice. For example,
C-band SAR can potentially penetrate up to a depth of around
10 m in dry snow (Mätzler, 1987), but as the snowpack begins to
melt, the dielectric properties of the snow change considerably,
and the penetration depth is reduced to as low as 3 cm (Ashcraft
and Long, 2006; Zhou and Zheng, 2017).

Longer L-band (23.5 cm, 1–2 GHz) wavelengths penetrate
5–10 m deeper than C-band into the snowpack and travel
almost unaffected through dry snow. Thus, studies involving
the L-band to analyze snow cover properties are rare because they
provide significantly less information about the properties of the
snow (Strozzi et al., 1997).

2.2 Interaction of MicrowavesWith Different
Glacier Zones
The snowpack properties like snow grain size, density, roughness,
stratigraphy, and water content in different snow zones are
different. As a result, the RaDAR scattering characteristics,
represented as backscattering coefficient values, should also be
different. This contrast in backscattering strength helps delineate
different snow zones from SAR image data (Ramage et al., 2000;
Zhou and Zheng 2017; Winsvold et al., 2018). A different
approach to classifying snow zones is based on the glacier
zones more familiar to glaciologists. For the study area, we
considered the local Equilibrium Line Altitude (ELA) at an
altitude of 3,300 m a.s.l. based on the analysis of Rabatel et al.,
2013. Areas below this altitude range fall in the ablation zone of a
glacier system, as ablation rates are generally higher than

FIGURE 2 | Temporal mean of 28 PAZ descending images acquired in
2020. Glacier profile along the Brenva glacier on the Italian side of Mont-Blanc
massif (MBM) (red). The image shown is in the original RaDAR geometry.
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accumulation rates in the MBM region. Areas above the ELA are
said to be the glacier’s accumulation zone. Regions around the
ELA are said to be the transition zone of the glacier system, where
ELA can vary from 1 year to the next depending on the
meteorological conditions.

The glacier system can accordingly be divided then into three
commonly known glacier areas, namely, the ablation zone (below
the ELA, i.e., < 3,300 m a.s.l.), the transition zone (the zone
around which ELA fluctuates each year, i.e., 3200–3400 m a.s.l.)
and the accumulation zone (regions above the ELA, > 3,400 m
a.s.l.). We add a fourth zone to this standard classification
criterion called the IA zone, a separate, steeper entity above
the accumulation area (Figure 1). Figure 2 shows the profile
along the Brenva glacier (on the Italian side of the MBM) on a
mean image created by stacking 28 PAZ descending images.

Since the snowpack properties are also profoundly affected by
the meteorological parameters, these variations differ across
seasons of the year. Hence, the temporal backscatter response
of RaDAR waves across different glacier zones is discussed in the
following paragraphs.

2.2.1 Ablation Zone
Due to intense melting at the lowest elevations, especially at the
glacier front, bare ice is usually exposed as the firn cover has
ablated away. A smooth bare ice surface either absorbs RaDAR
signals if it penetrates the ice pack or reflects the waves away from
the sensor because they act as a specular surface, especially when
meltwater is present on the ice surface. As a result, the glacier
fronts typically show very weak backscattering, especially in the
summer months. Surface melting is also intensive; hence, the
snowpack is damp, most noticeably during the spring (associated
with frequent rainfall events at lower elevations) and summer

months. As a result, the penetration depth of the RaDAR wave
decreases dramatically, and the backscattered signal is the lowest.
In fall and winter, however, the meltwater starts refreezing with
the onset of the temperature drop. According to Marsh et al.,
2021, alternating sessions of melting and refreezing can produce
large snow grains due to the metamorphism that acts as effective
scatterers and the overall backscattering increases. After the
summer and before winter, the fall period defines when the
meltwater starts to refreeze again, forming large ice crystals.
This can lead to an increase in the backscattering intensity in
the images analyzed after the summer period.

2.2.2 Transition Zone
This is the glacier system’s most dynamic (with the most
variations) zone. It experiences seasonal changes throughout
the year. In summer, occasional and frequent surface melting
dominates. The meltwater can either percolate down and spread
into layers or stay on the surface and make the snowpack surface
damp. If the meltwater percolates and later recrystallizes, it can
form large ice pipes and lense, profoundly affecting the SAR
signal of long wavelengths. In this frozen state, the ice layers
backscatter RaDAR waves strongly, and we notice a sharp rise in
the RaDAR backscattering signal, especially in images acquired in
fall and winter. On the contrary, if the meltwater stays on the
surface, making the snow damp, it can lead to a sharp signal drop,
as observed in the wet snow zone. The dynamics of the transition
zone change with the meteorological parameters and the regional
ELA shifts within the zone.

2.2.3 Accumulation Zone
As we move higher along the glacier system, the effects of
meteorological changes become less significant. The

FIGURE 3 | The study area, Mont-Blanc massif. The base image shown is taken from ArcGIS World Imagery database.
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accumulation zone of the glacier system is mainly defined by the
presence of dry snow for a large part of the year. The most
dominant scattering mechanisms for dry snow are volume
scattering from the snowpack and surface scattering from the
snow/ice interface. Since the thickness of the snowpack in glaciers
is generally substantial (more than the penetration depth of
X-band RaDAR), the RaDAR waves do not reach the rock
surface. Hence, for shorter wavelengths, volume scattering
from within the snowpack dominates.

Previous studies by Jezek et al., 1993; Partington, 1998, and
Rau and Braun, 2002 have suggested that this zone appears very
dark with low backscattering values, especially at longer
wavelengths. However, exceptions are observed in regions
where snow accumulation is low, and snow crystals can grow
near the surface (Liu et al., 2006). Also, with smaller wavelengths
like the X-band, where the surface scattering phenomenon plays
an essential role, the high backscatter values are related to wind
action and depth-hoar development because of internal
temperature and moisture gradients (King et al., 2015). The
snow grain size is generally uniform, but frequent dry snow
events and heavy winds increase surface roughness, which leads
to an increase in RaDAR backscattering at smaller wavelengths
like the X-band. Due to the low penetration depth of the X-band,
volume scattering from layers close to the surface and surface
scattering dominate.

2.2.4 IA Zone
The last zone in focus is the IA zone, which has not yet been
studied or classified separately from the other glacier zones before
this study. IAs occur at the highest part of the glacial system
(Figure 1) and occupy the steep headwalls of cirque and slope
glaciers. They usually occur on very steep slopes (>40°), where
fresh snow accumulation is limited because of the steepness of the
surface (Magnin et al., 2017). IAs, as the name suggests, are thin
(thickness up to a fewmeters for most regions), cold (temperature
<0°C) ice bodies that may not be thick enough to deform under
their own weight (Guillet and Ravanel, 2020). The backscattering
mechanism of the snow/ice pack depends on the complex multi-
layered structure, the grain size, the density, the depth, the
number of impurities, the stratigraphy, and the surface
roughness. Since the physical characteristics of IAs are
different from other types of glaciers, we expect their resulting
backscattering response to time series also to be different.

Since IAs are present on very steep slopes, so even in winter
months, IAs are generally covered by only a thin layer of fresh dry
snow (in the order of a few decimeters). Below this thin layer of

snow is a highly metamorphosed, rigid and solid stratified layer of
ice that extends to the base of the IAs (Guillet et al., 2021).

As a result, the backscattered signal by an IA in winter comes
from the snow/ice interface, which creates a dielectric
discontinuity for the RaDAR signal by the difference in the
electrical properties of ice crystals and dry snow. In summer,
the dielectric discontinuity is created by the layer of water, wet
snow, mixed with dry snow in parts and the ice layer. Since these
discontinuities occur at shallow depths or the surface of the IA,
surface scattering or shallow sub-surface volume scattering
mechanisms dominate. However, as the snow becomes wet,
the surface scattering at the air/snow interface dominates
(Thakur et al., 2013; Guneriussen, 1997). Further in this study,
we analyze the temporal backscattering response of IAs in the
following sections utilizing both X- and C-band RaDAR datasets.

3 STUDY AREA AND DATASETS

3.1 Study Area: The Mont-Blanc Massif
The study area is the MBM (Figure 3), located in the north-
western Alps. Its total area of ~550 km2 is shared by three
countries: France, Italy and Switzerland. It is the highest and
most glacierizedmassif in the French Alps, with around 20% of its
total area covered by glaciers (Berthier et al., 2016). The largest
glacier in the MBM is the Mer de Glace, with an overall total area
of 30 km2. The massif consists of 12 large glaciers broader than
5 km2, bordered by steep walls (Gardent et al., 2014). Deep valleys
on the sides of the MBM are mainly built-in highly fractured
rocks. The steep, irregular terrain combined with events of glacial
erosion promotes the development of slope glaciers and smaller
ice bodies like IAs. Considering the high average elevation of the
massif, IAs and large glacier accumulation zones lie above the
regional ELA. The geological setting of the MBM also promotes
the development and existence of permafrost at high elevations.
Modelled analysis by Magnin et al., 2015 shows that out of the
total 85 km2 of steep slopes (>40o) on the French side of the
MBM, almost certainly, about 45–79% of the area would be
underlain by permafrost at elevations above 1900 m a.s.l. in N
faces and above 2,600 m in S faces where structural settings are
favourable. Permafrost would bemore continuous above 2,600 m.
Above 3,600 m, permafrost would most certainly occupy the
entirety of the steep rock walls irrespective of the aspect.
These factors make MBM the perfect study site for an in-
depth study of the high mountain steep slope ice bodies like
IAs. Figure 3 shows the locations of the 19 IAs (in red)

TABLE 1 | Datasets used for the study.

Data Type Satellite Data Source Resolution
(m or Time)

SAR Polarization Year(s) of Acquisition

SAR PAZ (desc.) 1.36 * 2.43 (range* azimuth) HH/HV 2020 (every 11 days)
Sentinel-1 (desc.) 10 * 10 (range * azimuth) VV/VH 2016—2020 (every 6 days)

Optical Orthophotos (IGN) 0.2 2015
DEM ALOS WORLD 3D 30 31/03/2015
Meteorological data SAFRAN daily 2016—2020

CROCUS daily 2016—2020
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considered for analysis in this paper. The yellow line on the
Brenva glacier (the Italian side of the MBM) shows the glacier
profile from the ablation zone to the IA zone.

3.2 Datasets
The datasets used for analyzing the temporal behaviour of IAs
on RaDAR images are described in detail in this section.
Table 1 provides all datasets used for the study and their
characteristics.

3.2.1. SAR Images
This study analyses a time series of high-resolution PAZ images
and a time series of medium resolution Sentinel-1 images. Data
from both satellites have been selected with similar orbit
characteristics to maintain consistency in our comparison. We
processed 28 Single Look Complex (SLC) PAZ descending images
available in 2020. All images of PAZ are dual-polarization (HH/
HV) acquired at 5 h 44 am over the study area in descending
orbits with an incidence angle of 37.8° and every 11 days from 12/
02/2020 to 25/12/2020. 244 Ground Range Detected (GRDH)
Sentinel-1 A/B images in descending orbits, covering the period
from 2016 until 2020, were downloaded and processed. The
nominal incidence angle for Sentinel-1 images is 38.3o. These
images are acquired at 05 h 35 am every 6 days. Images from both
satellites cover almost the whole study region, allowing the
selection of different areas spread across the massif with
different topographic characteristics.

3.2.2 Additional Data
The backscattering change observed in SAR time series needs to
be interpreted from other data. Meteorological data, in particular
the air temperature and the total precipitation, are the essential
parameters that influence the physical state of the snowpack.
Additional information like the total water content of the snow
and snow depth can also help better understand the results
obtained from the SAR time series. Therefore, we utilized the
SAFRAN reanalysis datasets (Durand et al., 1983, 2009), which
provide temperature, precipitation, wind speed, and other
meteorological variables at an hourly time step. This dataset is
available as NetCDF files from 1958 for all the French massifs.
Eachmeteorological variable is available at every 300-m-elevation
band, at 0, 20, 40°s slopes and eight aspects. Snow depth and snow
liquid water content simulations are taken from Crocus
reanalyses detailed snow cover model (Brun et al., 1989).
Crocus is coupled with the ISBA land surface model within
the SURFEX (EXternalized SURFace) simulation platform
(Masson et al., 2013).

Aerial orthophographs at 20 cm resolution, downloaded from
Geoportail IGN (Institut national de l’information géographique
et forestière), were used as reference images for validation. The
DEM used for processing the SAR images was ALOSWORLD 3D
(AW3D30) provided by JAXA (Japanese Aerospace Exploration
Agency) at 30 m resolution. According to Tadono et al. (2016),
the vertical and horizontal accuracy of the DEM is better than
5 m. The choice of the DEM was based on the quality and the
availability over the entire study region.

4 METHODOLOGY

To compare the behaviour of the IAs with other glacier regions
and differentiate them as unique glacier entities, we processed two
large time series of SAR images from X-band PAZ in 2020 and
C-band Sentinel-1 from 2016 to 2020. The temporal profiles of
backscattering coefficients and statistical parameters are extracted
after coregistration and calibration to avoid the effects of
geometric distortions or artefacts that commonly plague SAR
images. The flowchart of the processing chain performed is given
in Figure 4. Detailed explanations for some key steps are given in
subsections 4.1–4.5. After this processing chain, temporal profiles
of backscattering signals are analyzed for 19 visible IAs in the
PAZ images and 8 IAs visible in both Sentinel-1 and PAZ images.
Besides the analysis of the temporal profiles of the backscattering
signal, we also compute the coefficient of variation (CV) to assess
the surface homogeneity of IAs. Meteorological variables such as
air temperature, precipitation, and liquid water content are also
deployed for a joint analysis with the temporal profiles of
backscattered signals.

4.1 Visibility Analysis For Identifying IAs Free
From Geometric Distortions
IAs are very small ice bodies located on very steep slopes. The
slant range acquisition geometry of SAR images is always

FIGURE 4 | Flowchart of the processing steps.
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associated with geometric distortions, which can create
geometrical artefacts (GA): strong foreshortening, layover
(active and passive) and shadow (active and passive) (Kaushik
et al., 2021a). To study the temporal evolution of backscattering
response from IAs, it is necessary to find areas free from these
artefacts. An extensive visibility analysis was performed to build a
mask that incorporates all kinds of GAs for identifying and
selecting clean (referred to as ‘visible’) IAs for further analysis.
For this, we follow the methodology proposed by Cigna et al.,
2014, which combines the results from the R-Index (RI) (Notti
et al., 2010) and layover-shadow simulations using ray-tracing
algorithms (Kropatsch and Strobl, 1990). The RI, which
effectively integrates local topography and satellite acquisition
parameters, can only identify areas of active layover and
foreshortening regions. Passive layover and active and passive
shadow regions thus need to be mapped using ray-tracing
algorithms. A final mask that incorporates all kinds of GAs
can thus be prepared by combining the results from the two
methods. Using this GA mask as a base, we carefully select our
observation areas, avoiding regions affected by GAs. Moreover,
we only selected regions of interest with more than 100 pixels to
obtain reliable estimates of statistical parameters. A detailed
analysis of this method could be found in Kaushik et al., 2021b.

4.2 Processing of SAR Single Look Complex
Images
The SAR SLC images were downloaded and imported into
SARScape (L3Harris Geospatial, 2022) for basic pre-processing
required to compute the image time series. All images were
accurately coregistered at sub-pixel pixel accuracy to remove
the bias from spatial shifts between repeat pass acquisitions.
After this, the coregistered datasets were radiometrically
calibrated and normalized. Radiometric calibration is vital
when comparing RaDAR data from different sensors, in
different acquisition modes, at different periods or generated
by different processing algorithms. Radiometrically calibrated
SAR images represent the backscattering coefficient,
corresponding to the transmitted and backscattered power
ratio. It is a dimensionless quantity, represented either in the
linear scale or by log normalizing the linear values (10* log10 of
the linear values) in the dB scale. Radiometric calibration depends
on SAR sensor-related parameters, usually available in the
metadata and on the geometry factors dependent on the local
topography. At the calibration step, we used SARScape to correct
for two effects: (1) the different incidence angles of the satellites,
which affect the backscattering signal and (2) the influence of the
topographic factors like terrain slope. ALOSWorld 3D DEM was
used as a reference to determine all the terrain parameters
correctly. Radiometric normalization was applied to all images
to correct for the dependency of backscatter on the difference in
incidence angles between acquisitions. This is also particularly
important for wide swath datasets like Sentinel-1, where
incidence angles change from near range to far range. We
applied the most used square cosine correction technique
given by Leberl (1984). After the calibration and
normalization, the final product gives the value of the

backscattering coefficient, which is the RaDAR backscatter per
unit area, commonly called sigma nought (denoted as sigma0),
expressed in decibel (dB). All values used in our comparison and
analysis are expressed in sigma0.

4.3 Interpolation of Sentinel-1 Data on PAZ
Acquisition Dates
To compare the X- and C-band’s backscattering, we use the data
from 2020 as PAZ data are available only for this period. For a fair
comparison, it is necessary to compare images acquired in the
same configuration (e.g., geometry, polarization) and cover the
same period with acquisitions at as close as possible hours and
dates. The latter conditions are significant for mountain terrains
where weather changes can be significant and very quick. If the
temporal sampling frequency difference between the two sets of
images is not considered, the significant difference can introduce
uncertainties that are hard to quantify (Loew et al., 2017).
However, the PAZ data are acquired every 11 days, while the
Sentinel-1 data are available every 6 days; it is impossible to have
both data acquired in the same configuration for the same dates.
Since co-polarized images fromHH and VV polarizations usually
provide similar backscattering coefficients (Lubin and Massom,
2005), we can compare HH polarized images from PAZ with the
VV polarized images from Sentinel-1. The incidence angles of
both datasets are similar, and all images have been
radiometrically calibrated and normalized, so the effect of the
difference in incidence angle is negligible. Therefore, our main
focus was to reduce the impact of different time sampling
frequencies. Various approaches to linear interpolation can
overcome this problem by resampling Sentinel-1 images for 2020.

For this analysis, since Sentinel-1 images are available at a
regular and higher temporal sampling frequency (61 images every
6 days for the entire year of 2020) compared to PAZ, we chose to
resample Sentinel-1 time series at the PAZ acquisition dates. The
temporal signal at each pixel location is over-sampled in the
frequency domain using a Discrete Fast Fourier transform
(D-FFT) and zero-padding to obtain a daily sampling of the
temporal profile after the inverse Fourier Transform. The values
of the dates where PAZ images are then available (almost every
11-days) are kept to build the interpolated Sentinel-1 image time
series at the exact dates as the PAZ image time series.

4.4 Temporal Profiles of Backscattering
Signals and Seasonal Analysis
For the temporal profile analysis along with the glacier profile, the
PAZ images from 2020 were divided into four seasons: Winter
(December 21 - March 20), Spring (March 21 - June 20), Summer
(June 21 - September 20) and Fall (September 21 - December 20).
All PAZ images that fall within the seasonal range were
temporally averaged to reduce the effects of speckle noise from
individual images. Hence, we built a mean Summer (average of all
11-days images for June 21 - September 21) and fall, winter, and
spring images. Seasonal backscattering profiles along glaciers are
generated using the four seasonal mean images (winter, spring,
summer and fall). The sigma0 values used in these profiles are
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obtained by extracting the mean value for a 9x9-pixel spatial
window instead of just taking the pixel values.

To locate the visible IAs, their shapefiles, originally digitized in
a GIS environment on very high resolution optical/aerial images
in the WGS 84 coordinate system, were transformed in the
RaDAR range/azimuth coordinate system. A rigorous visual
inspection was performed to ascertain that no pixel from any
type of geometric artefacts falls within the selected IA shapefiles.
Then, conventional basic statistical features (mean, standard
deviation, min-max values) can be computed using all pixels
inside the shapefiles.

4.5 Second-Order Statistics: Coefficient of
Variation as an Indicator of Surface
Heterogeneity
The mean (first-order) helps observe the backscattering
coefficient’s temporal variation related to the snow/firn/ice.
But the standard deviation (second-order) is not very useful
for SAR imagery affected by multiplicative noise. To
investigate homogeneity in a set of pixel values affected by
speckle, a conventional feature is the so-called coefficient of
variation (CV), also commonly known as relative standard
deviation, defined as a ratio of the standard deviation σ by the
mean value μ:

CV � σ/μ (1)
CV can be calculated spatially, for example, over a window or

sub-window for speckle filtering (Nicolas et al., 2001), temporally
between a time series of images (Koeniguer and Nicolas, 2020) or
spatiotemporally (Lê et al., 2015) to detect changes. As a ratio, CV
values should not be affected by possible radiometric calibration
errors. For SLC images, the CV is expected to be close to 1 in
homogenous areas with a fully developed speckle. CV values less

than 1 usually indicate the presence of a permanent scatterer with
a very high deterministic component, whereas values significantly
larger than 1 reveal heterogeneous areas interpreted as the
presence of texture. If speckle filters are used, CV values are
expected to be close to 1/√ Leqwhere Leq is the equivalent number
of looks achieved by the filter.

Here, we propose to use the spatial CV (across the entire area
of the IA) to analyze the temporal evolution of the homogeneity
of IAs surfaces. The estimator of CV in Equation 1 is sensitive to
the number N of samples in the estimation window. To take this
uncertainty into account, the statistical behaviour of the CV
estimator can be modelled (Koeniguer and Nicolas, 2020), and
a confidence interval derived:

CV ∈ [CVray − k
����
1/N

√
pσray;CVray + k

����
1/N

√
pσray] (2)

In Equation 2, CVray = 1 and σray = 1, (where ray stands for the
Rayleigh criteria), k is a constant value defined by the confidence
level based on the standard deviations. For our analysis, we
choose k = 3, N is the number of pixels in the given area. The
interval defined around the CV = 1 is called the Rayleigh interval,
around which the CV estimator is expected to vary. The variation
of the spatial CV values within this interval would thus indicate a
truly homogenous area. Any significant positive deviation from
this interval indicates surface changes resulting from melting,
crevasses, the appearance of a strong scatterer like rocks, etc.

5 RESULTS AND DISCUSSION

The section is divided into five sub-sections which describe: 1) the
seasonal variation of the X-band backscatter through the Brenva
glacier system (section 5.1), 2) temporal backscatter profiles for
different IAs in the MBM using X- and C-band data, and their
comparison with climate variables (section 5.2), 3) variation of

FIGURE 5 | Temporal profile of backscattering signals on PAZ images in 2020 along the Brenva glacier.

Frontiers in Remote Sensing | www.frontiersin.org June 2022 | Volume 3 | Article 9300218

Kaushik et al. Temporal Evolution of Ice Aprons

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


the spatial coefficient of variation through the year for 8 different
IAs in PAZ images (section 5.3), 4) accuracy assessment for the
temporal interpolation applied to Sentinel-1 images to match the
dates of PAZ images (section 5.4) and 5) comparison of the
backscatter coefficient in X- and C-bands for 8 IAs (section 5.5).

5.1 Seasonal Variation of the RaDAR
Backscatter Through the Glacier System
Figure 5 shows the evolution of the RaDAR backscatter signal
along the Brenva glacier through different seasons. The
glaciological understanding of this area is used to delineate
different zones. Based on Rabatel et al. (2013), we placed the
regional ELA line conservatively at 3,300 m a.s.l. Accordingly, the
ablation zone (<3,200 m a.s.l.), the transition zone
(3,200–3,400 m), the accumulation zone (3,400–3,560 m) and
the IA zone (>3,560 m) were delineated.

The first observation is that the sigma0 values are higher in fall
and weaker in summer for almost all glacier zones, with the
average values being −24,15 dB in spring and −31.38 dB in
summer −21,86 dB in fall and −22.52 dB in winter. This
observation is consistent with Partington (1998), Jezek (1999)
and Rau and Braun (2002). Indeed, in summer, water content
increases due to summer melting, which leads to a decrease of the
backscattered signal, while in fall, the refreezing of water can lead
to recrystallization of snow/ice, causing an increase in
backscattered values.

In a large part of the ablation zone, up to an elevation of
2,900 m a.s.l., we are in the bare ice zone (as defined in Figure 1)
most of the year, and the signal strength does not show strong
variations. The small peaks observed in this bare ice zone result

from an increased backscattering strength due to the crevasses
that act as a strong scatterer, as highlighted by Forster et al.
(1996), Steffen and Heinrichs (2001) and Marsh et al. (2021). As
we move higher in the ablation zone, we notice an increase in
backscattering signals for all seasons, especially in fall and
winter. The sharp increase in signal strength observed at
3,000 m a.s.l is due to the strong layover observed in the SAR
image (Figure 2).

The transition zone is characterized by a fluctuating seasonal
profile defined by a sharp increase and drop in sigma0 values. The
drop and increase in signal strength can be correlated with either
liquid water (for a drop in signal) or recrystallized ice/snow (for
an increase) on the surface, especially in the fall and winter
profiles.

In the part of the accumulation zone between 3,400 and
3,570 m a.s.l., we observe a sharp rise in backscattering values
with the elevation for all seasonal profiles. The four seasonal
backscattering signals become closer at 3,500 m as similar
backscattering trends are observed throughout the year.

The IA zone is separated from the accumulation zone by a
bergschrund. The data points taken around the bergschrund
show a sharp rise in backscattering values, indicating the
presence of a deep fracture which causes the backscattering
signals to increase (around 3,560 m a.s.l.). This increase can be
a valuable indicator for detecting the bergschrund to delimit the
IA zone boundaries. The observed values for the IAs zone for all
profiles are comparable to that of the bare ice zone present at the
glacier front. However, two different behaviours can be observed:
i) the summer values are the weakest in the IA zone, whereas they
can be higher in the bare ice zone due to debris and crevasses; ii)
the spring values are the lowest in the bare ice zone due to the

FIGURE 6 | Temporal backscattering profile for 19 visible IAs classified depending on their elevation using 28 PAZ images in 2020. Altitudes in m a.s.l.
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presence of wet snow at low altitudes, whereas spring and winter
values are very close on the IA zone.

5.2 Temporal Evolution of Backscattering
Response From Different IAs in the
Mont-Blanc Massif
From the visibility analysis we performed for the descending PAZ
images, we identified 19 IAs visible in the study region. Figure 6
shows the annual variation of the backscattering response for the
19 IAs, classified according to their elevation. At a first look, all
IAs seem to show a very similar trend, with a noticeable drop in
signal strength in summer (July and August) and a stable period
before and after the summer months. The average drop in signal
strength for all IAs was around 4.5 dB, which agrees with the
results shown previously by Dehecq et al., 2016 who also reported
a drop of 3 dB in the snow-covered areas while working with the
X-band. The average minimum backscattering value was
−14.5 dB, similar to the values previously reported by Phan
et al., 2014 for the wet snow (working with the X-band). The
onset of the melting period for all IAs is also similar, with the first
major melting event observed after mid-July (which begins at the
start of the summer months in the northern hemisphere). A
gradual increase in the backscattering signal is observed from the
first week of September, with a prolonged period of stability
persisting for all IAs from October till the end of March, with
meteorology not significantly influencing the backscatter.

To observe the long-term temporal evolution of backscattering
values, a similar analysis was done using 244 Sentinel-1 A/B
images for 4 years, from 2016 to 2020 (Figure 7). Similar trends
for IAs behaviour were observed over the 4 years: a period of
stability in the fall to spring months, while a noticeable drop was
observed with the onset of the summer months. The average

signal drop over four summers for all the IAs was ~6.53 dB. For
the highest elevation IAs, the mean drop in the summer months
observed was ~6.71 dB, while the same for middle elevation IAs
was ~6.02 dB, and for the lowest elevation, IAs were ~6.86 dB.
Considering the locations of the IAs (at very high elevations
above the regional ELA), it can be concluded that liquid water
exists even at the highest elevations during the summer months in
the MBM. The drop in signal strength for the C-band is more
than what was observed for the X-band. This difference may arise
due to the different wavelengths and their subsequent interaction
with the IAs surfaces. Overall, a decrease in signal strength is
observed in both X- and C-bands, indicating the effects of melting
on the IAs even at higher elevations.

Figure 8 shows the joint analysis of the backscattering
evolution on Sentinel-1 images and meteorological variables
such as air temperature, precipitation, and liquid water
content for the Chardonnet IA (at 3,650 m a.s.l.). The melting
signs (sudden drop in backscattering values) are observed for the
Chardonet IA when the mean air temperature rises above 274 K
(1°C). The drop in signal strength can be directly attributed to the
melting of the IAs, and the subsequent increase of the liquid water
content, which decreases the dielectric constant. The melting
trend ceases as the air temperature drops to lower than 266 K, and
a gradual increase in sigma0 values is observed. A period of
stability is observed in winters, as the air temperature is more
stable at these elevations after the summer months. The surface
changes resulting from new snowfall events are minimal as not a
significant amount of snow accumulates on such steep slopes, as
previously mentioned. Today, Guillet and Ravanel, 2020 is the
only study to conclusively show the effects of the changing
climate on the surface changes of IAs. Their study of 6 IAs in
the MBM showed a systematic loss of surface area of IAs since the
Little Ice Age (LIA). However, our study provides the first clear

FIGURE 7 | Temporal backscattering profile for 8 visible IAs using Sentinel-1 images (2016–2020).
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FIGURE 8 | Joint analysis of the temporal backscattering profile for the IA on the north face of Chardonnet with meteorological parameters (air temperature,
precipitation, and liquid water content).

FIGURE 9 | Three cases in temporal profiles with an increased coefficient of variation. The fully developed speckle class (field area), a signal indicating some
radiometric changes (IAs), and a signal with extreme variations of CV values indicate rapidly changing heterogenous surfaces (ablation zone of active glaciers).
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evidence, observed from RaDAR images, of the surface changes
experienced by stable ice bodies like the IAs.

5.3 Annual Variation of the Coefficient of
Variation From PAZ Images
Figure 9 shows the annual variation of the spatial CV values for
three different land classes i.e., grass field, IA and ablation zone of
a glacier. We notice that the CV values remain stable and
consistent around a value of 1 (mean value 1.037) for the
homogeneous surfaces (in this case, the grass field in

Chamonix valley). The spatial CV values also fluctuate within
the Rayleigh interval, indicating that homogeneity of the surface
is maintained throughout the year. The highest CV values for the
glacier ablation area (mean value = 2.089) represent a dynamic
and spatially heterogeneous surface. For the IAs, the CV values
fluctuate between those of spatially homogeneous and
heterogeneous areas. The variation of the spatial CV values
(mean CV = 1.25) indicates a quasi-stable surface (surfaces
that might be homogenous at some intervals during the year).
To better understand IAs characteristics, an analysis of the annual
evolution of the spatial CV values was performed for 8 IAs located

FIGURE 10 | Annual evolution of the spatial coefficient of variation for 8 IAs using PAZ images.

FIGURE 11 | Comparison of the original Sentinel-1 signal with the resampled signal after temporal interpolation (we show an example for the IA on the NW face of
Grand Flambeau).
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at a mean elevation of 3,468 m a.s.l. and visible in the PAZ images.
In Figure 10, we notice that the CV values for none of the 8 IAs
fall within the Rayleigh interval, which defines the zone of
homogeneity as described in section 4.3. This implies that
even though the IA surfaces (especially in winter) show values
close to the Rayleigh interval during some months, they are never
truly homogeneous. The mean spatial CV values show that the
average CV values for 8 IAs are the highest in summer (1.55),
while they are the lowest in winter (1.25). This is consistent with
the observation in Figure 10:a gradual but noticeable increase in
the CV values in summer and a decrease and more stable value in
winter. The annual mean CV values in spring and fall are almost
similar, 1.35 and 1.37, respectively. The mean value for the spatial
CV for all IAs is 1.37. The increase in CV values in summer
suggests increased heterogeneity of the surface of IAs, caused by
the physical changes resulting from the changing meteorology. In

section 5.2, we showed the effects of the increasing temperature
on the backscattering response of IAs. By comparing the annual
evolution of the backscattering responses of different IAs with the
evolution of the CV, we would notice an inverse relationship. As
backscattering signals drop in summer, the corresponding CV
values increase. This is partly due to the surface melting of IAs
and the possible exposure of strong scatterers like rocks on the
IAs surface.

5.4 Accuracy Assessment of the Temporal
Interpolation of Sentinel-1 and PAZ
Datasets
The process of temporal interpolation and its necessity were
described briefly in section 4.3. To confirm the success of the
interpolation steps, we compared the signal variation from the

FIGURE 12 | Comparison of the temporal backscattering profiles for 8 IAs in X-band PAZ and C-band interpolated Sentinel-1 images.
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original signal and the resampled signal for the IA on the NW face
of Grand Flambeau (Figure 11). As can be seen from the results,
both signals (original and resampled) show good conformity for
most parts in backscatter values throughout the study period. The
highest difference in backscatter values as observed was 0.02 in
linear units. It can be assumed that such a difference will not
significantly affect the final comparison results. Similar results
were also observed for other areas tested. Hence, it is safe to
suggest that the resampled Sentinel-1 images can be used for a fair
comparison with the PAZ images without inducing a significant
bias in the comparison results because of the interpolation.

5.5 Comparison of the Signal Strength of IAs
Between C-Band Sentinel-1 and X-Band
PAZ Images
Section 5.2 showed the evolution of backscattering signals in
2020 in X-bands and from 2016 to 2020 in C-band for different
IAs. In this section, we try to quantitatively compare the evolution
of the backscattering signals from Sentinel-1 and PAZ datasets in
2020 after resampling C-band time series at the X-band dates.
According to the analysis, it is observed that for all IAs except for
the IA on the N face of Col du Tour, the backscattering response
in the case of the X-band is generally higher than that in the case
of the C-band (Figure 12; Table 2). The average backscattering
coefficient value for the 8 IAs is −9.22 dB with the X-band and
−10.66 dB with the C-band. So the signal strength from the
X-band is ~1.4 dB higher than the same received from the
C-band. Another observation is that the difference in the
backscattering strength between the two bands is higher in
winter than in summer. The best example of this is the IA
trend on the N face of Argentiere, where the minimum value
for the backscatter coefficient was observed in both the X-band
(−17.50 dB) and C-band (−18.81 dB). The highest value is
observed for the IA on the E face of Aiguille de Leschaux
(−3.82 dB and—4.02 dB in the X- and C-band, respectively).

The Pearson r value for the two annual trends shows a high
correlation for all IAs. On the one hand, this indicates that the
backscattering trend from both datasets is in good agreement. On
the other, this also confirms the behaviour of the IAs with
seasonal changes.

For the IAs, since the snow thickness is not substantial
(generally less than the penetration depth of both X- and

C-bands in dry snow), surface and shallow surface scattering
phenomena seem to dominate. As the penetration depth of the
C-band is higher than that of the X-band, surface and shallow
surface volume scattering are almost undetectable for a few
meters of dry snow surface compared to ground backscatter
(Hall et al., 2005; Leinss et al., 2015). On the other hand,
X-band has the highest sensitivity to surface changes; hence,
changes on the surface of IAs cause an increase in
backscattering signals more easily than with larger
wavelengths. Moreover, below the thin layer of snow that
accumulates in winter is a thick layer of ice that absorbs
most of the penetrated RaDAR energy. This is another
reason for the lower signal strength observed in the case of
the C-band compared to the X-band.

6 CONCLUSION

This study was dedicated to understanding the physical
backscatter properties of the IAs using X- and C-band RaDAR
datasets. As a first result, we analyzed the seasonal variations of
backscattering signals utilizing temporal profiles along with the
Brenva glacier system. We noticed that the seasonal variations of
the IAs were similar to that of the bare ice zone marked at the
front of the glacier profile. Previous research has shown that the
thickness of the IAs is not very significant and beneath the thin
layer of snow which can accumulate on the surface of the IAs, is a
highly metamorphosed layer of ice. Since the composition of the
IAs is similar to the bare ice zone (except for the presence of
crevasses and debris), we can expect a similar physical behaviour
between the two glacier zones.

Further, a comparison of temporal backscatter trends for the
19 visible IAs in the PAZ images for 2020 shows a considerable
drop in signal strength in summer. The same trend is also
observed for a long term profile built with Sentinel-1 images
since 2016. The backscatter trends corroborate with the
meteorological changes observed during the same period. The
sharp drop in backscatter relates directly to the melting of the
snowpack, which leads to an increase in the liquid water content.
A further comparison with the spatial coefficient of variation also
shows that the CV values increase in the summer months and are
most stable during the winters. The annual variation of the CV
away from the Rayleigh interval strongly indicates the increase in

TABLE 2 | Statistical analysis of X- and C-bands RaDAR backscattering for 8 different IAs.

Parameter Satellite IA Chardonnet IA Dome IA Tour IA Grand
Flambeau

IA Grandes
Jorasses

IA Blaitiere IA Aiguille
de Leschaux

IA Argentiere

Mean PAZ −8.1 −8.5 −11.2 −8.5 −6.6 −11.7 −7.8 −11.2
Sentinel −8.4 −11.9 −9.8 −11.0 −9.9 −13.5 −8.2 −12.8

Standard deviation PAZ 2.2 2.2 1.4 3.7 2.4 1.7 2.3 2.7
Sentinel 2.1 2.6 1.69 3.8 2.5 1.8 2.8 2.3

Minimum value PAZ −15.8 −14.3 −14.1 −14.5 −13.5 −14.8 −11.3 −17.5
Sentinel −13.1 −17.4 −13.5 −17.7 −15.1 −15.9 −12.4 −18.8

Maximum value PAZ −6.4 −5.3 −8.5 −3.2 −3.1 −8.6 −3.8 −9.8
Sentinel −6.8 −8.8 −7.6 −6.0 −6.1 −9.1 −4.0 −10.6

Pearson r 0.83 0.90 0.94 0.97 0.94 0.81 0.92 0.89
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heterogeneity, indicating significant surface changes. The results
give the first indication from RaDAR images of the summer
melting and surface change of IAs, which corroborates the
previous findings of Kaushik et al. (2021a) and Guillet and
Ravanel (2020) from optical images.

Further, we compared the backscatter response of 8 IAs zones
in the X- and C-band. We observed that the average annual signal
response from the IA was 1.4 dB higher than that from the
accumulation zones with the X-band. We can conclude that
IAs are more sensitive to the shorter wavelengths of the
X-band than to the C-band. As the X-band is more sensitive
to the surface and sub-surface variations, the physical processes of
surface scattering dominate the physical response of IAs to
RaDAR waves. This plausible explanation improves our
understanding of the physical processes dominating the
surface changes of IAs. This study is a first attempt focused
solely on RaDAR images to improve our understanding of IAs,
which are small but significant ice bodies overlooked by the
scientific community. As a further continuation of this research,
our enhanced understanding of the behaviour of the IAs should
help researchers differentiate them from other parts of the glacial

system. This research can also form the basis for the automatic
classification of IAs in RaDAR images.
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