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Deep Learning usually requires large amounts of labeled training data. In remote sensing,
deep learning is often applied for land cover and land use classification as well as street
network and building segmentation. In case of the latter, a common way of obtaining
training labels is to leverage crowdsourced datasets which can provide numerous types of
spatial information on a global scale. However, labels from crowdsourced datasets are
often limited in the sense that they potentially contain high levels of noise. Understanding
how such noisy labels impede the predictive performance of Deep Neural Networks
(DNNs) is crucial for evaluating if crowdsourced data can be an answer to the need for large
training sets by DNNs. One way towards this understanding is to identify the factors which
affect the relationship between label noise and predictive performance of a model. The size
of the training set could be one of these factors since it is well known for being able to
greatly influence a model’s predictive performance. In this work we pick the size of the
training set and study its influence on the robustness of a model against a common type of
label noise known as omission noise. To this end, we utilize a dataset of aerial images for
building segmentation and create several versions of the training labels by introducing
different amounts of omission noise. We then train a state-of-the-art model on subsets of
varying size of those versions. Our results show that the training set size does play a role in
affecting the robustness of our model against label noise: A large training set improves the
robustness of our model against omission noise.
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1 INTRODUCTION

Deep Neural Networks (DNNs) are the state of the art for the classification and segmentation of
imagery data. The training of such models usually requires large amounts of labeled samples, which
are often difficult to obtain. In the remote sensing domain, one way of acquiring such a labeled
dataset is the utilization of crowdsourcing for label generation. For example, the popular source
OpenStreetMap project (OSM) combines data from volunteers and public institutions into a large-
scale geographic dataset from which locations and shapes of streets and buildings can be extracted
and be used as training labels. However, using such information can introduce registration noise and
omission noise in the training data (Mnih and Hinton, 2012). Registration noise describes
inaccuracies of the location of objects in the label map, while the term of omission noise is used
when objects that appear in the imagery are completely missing in the label map. The latter poses a
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big challenge when crowdsourced datasets are used to generate
the training labels, since the spatial distribution of user activity is
often very inhomogeneous and thus the degree of omission noise
can be extremely high, depending on the area of interest.
Therefore, it is of major importance to understand how this
type of noise affects the training of a DNN. As of now, this
understanding is far from complete. While it has been shown that
DNNs are able to memorize label noise completely (Zhang et al.,
2017), it also has been observed frequently that DNNs tend to
focus on clean labels first and only later in the training process
overfit to noise (Arpit et al., 2017; Arazo et al., 2019). Different
impacts of noisy labels on predictive performance have been
reported, ranging from highly damaging (Rahaman et al., 2021)
over negligible (Rolnick et al., 2018; Wang et al., 2018) up to even
beneficial under certain circumstances (Henry et al., 2021). This
raises the question of what makes a model robust against label
noise. It has already been shown that the type of noise is an
important factor to consider (Vorontsov and Kadoury, 2021).
Other important factors might be the capacity of the model and
the complexity of the dataset. To answer the above question, all
potentially relevant properties of the model, the data and the
noise should be examined and their impact on the model
robustness evaluated. We see the size of the training set as one
of these potentially relevant properties, since it is an important
factor for the model’s predictive performance as well: In order to
achieve good performance, a model must be trained on a
sufficiently large dataset, otherwise it will likely overfit to the
training data. Therefore, in this work we analyze whether the size
of a training set has an impact on a model’s robustness against
label noise. We view model robustness as the ability of a model to
keep the difference between its performance when trained on a
clean dataset and its performance when trained on a noisy dataset
as low as possible. Our contributions are the following:

• creation of multiple datasets for building segmentation with
different sizes and different levels of omission noise

• reporting of multiple performance metrics on a clean test set
of DNNs trained on these datasets

• interpreting these results with regard to the role of training
set size for model robustness

To this end, we use imagery and corresponding labels from the
SpaceNet dataset (Shermeyer et al., 2020). We subsequently
introduce noise in the labels and generate subsets of the
original dataset with different sizes and different levels of
noise. We then train a DNN on each of those subsets and
report the performance metrics on a clean test set. Our results
will show that changing the training set size does not have an
observable impact on the model robustness in most cases, except
for very small training set sizes which negatively affect the
robustness of our model.

2 MATERIALS AND METHODS

In this section, we describe the process of creating the dataset,
introducing omission noise into the labels, and creating subsets of

different sizes. Furthermore, the chosen model and the training
procedure are explained.

2.1 Base Dataset
For our experiments, we are using imagery from the 6th SpaceNet
competition (Shermeyer et al., 2020). The dataset contains 3,401
image tiles of the port area in the city of Rotterdam. Each tile has a
resolution of 900, ×, 900 pixels. Corresponding labels for building
footprints are also provided. The dataset was then split into a
training set of 2,770 images and a test set of 631 images. In order
to increase the number of samples, data augmentation was
performed on the training set by rotating each tile and the
corresponding labels by 90, 180 and 270 degrees. The
augmented samples were added to the original ones so that
after the augmentation, the final training set contained 11,080
images.

2.2 Introducing Label Noise
To determine the impact of label noise on model performance, we
created several copies of the training set described above and
introduced a different amount of label noise in each copy. In our
analysis we focus on the noise type of omission noise which means
that objects that are visible in the image are missing in the label mask.
We introduce omission noise by removing whole buildings at
random from the ground truth labels until a predetermined
threshold regarding the fraction of missing building pixels is
reached. The building data is available as vector data, which
makes removing single instances straightforward. In the following,
we refer to the noise level as the fraction of missing building pixels
that was aimed for in this procedure. Since we avoid removing
individual pixels for the sake of a more realistic noise scenario, those
predetermined noise levels are not reached accurately in the datasets.
We created 11 copies of the dataset with noise levels ranging between
0 and 1, with 0 meaning that we did not introduce any additional
noise and 1 meaning that every single building in the training labels
was removed. Examples from those copies are shown in Figure 1.

2.3 Generating Subsets of the Training Set
of Different Size
In addition to different levels of label noise, we also need datasets
of different size to determine the impact of training set size on
model robustness. Therefore, we sample from the initial training
set to gain access to training set sizes of 100, 500, 1,000, 5,000 and
10,000. In the experiments described below, the training sets are
sampled newly in each training run to exclude the possibility of
biased results due to characteristics of a single sample.

2.4 Model Training
For our experiments we use DeepLabV3+, a state of the art
architecture for semantic segmentation based on an encoder-
decoder structure (Chen et al., 2018). We train the model on
each of the 66 types of training sets (6 different training set sizes
and 11 noise levels) and report performance metrics always on the
same test set of 631 images. Each model was trained for 30 epochs,
using the Adam optimizer (Kingma and Ba, 2014), an initial learning
rate of 10−4 and an exponential learning rate decay schedule with a
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decay rate of 0.9 and 10,000 decay steps. The number of epochs was
chosen because after 30 epochs, the models trained on the biggest
training set did not show considerable changes in the test accuracy
anymore. Note that the labels of the test set are not affected by
introducing omission noise as it was done for the training set.
Furthermore, we repeat each training run 10 times to capture the
variety in results due to random initialization.

3 RESULTS

For assessing the impact of the training set size and the noise level
on the performance of our models, we evaluate the models’
performances on a clean validation set. To capture as many
aspects of the models’ behaviour as possible, we consider a
variety of metrics:

• Pixelwise accuracy
• Intersection over Union (IoU) of the ‘building’ class, given
by TP

TP+FN+FP

• Intersection over Union (IoU) of the ‘background’ class,
given by TN

TN+FN+FP
• Precision of the ‘building’ class, given by TP

TP+FP
• Precision of the ‘background’ class, given by TN

TN+FN
• Recall of the ‘building’ class, given by TP

TP+FN
• Recall of the ‘background’ class, given by TN

TN+FP

where TP is the number of pixels correctly classified as buildings,
TN is the number of pixels correctly classified as background, FP is
the number of pixels wrongly classified as buildings and FN is the
number of pixels wrongly classified as background. For each of those
metrics and each of the examined training set sizes, we show how the
metric changes when the training data is corrupted with varying
levels of omission noise. Next to the absolute metric values, we also
provide relative values by scaling all values of the same dataset size
between 0 and 1. This makes it easier to compare the ‘sensitivity’

FIGURE 1 | A sample of the imagery and labels used in our experiments. (A) SpaceNet imagery. (B) Ground truth label mask. (C) Label mask with noise level 0.5.
(D) Label mask with noise level 0.9.

FIGURE 2 | Accuracy on a clean validation set for different noise levels
and sizes of the training set. Transparent area gives the standard deviation of
10 repetitions of the training procedure.

FIGURE 3 | Predictions and ground truth for one image in the validation
set. Predictions were made by models trained on clean training data.

Frontiers in Remote Sensing | www.frontiersin.org July 2022 | Volume 3 | Article 9324313

Gütter et al. Impact of Training Set Size

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


towards label noise between models trained on datasets of
different sizes.

The development of pixelwise accuracies with label noise is
shown in Figure 2. What can be clearly seen, is that the accuracies
decrease with increasing noise levels and do not get worse than
0.928, which is exactly the fraction of pixels from the background
class to the overall pixel count in the validation set. This
behaviour is a necessary consequence of the experimental
setup, since at the maximum noise level no buildings are
present anymore in the training data and therefore all models
learn to always predict the background class, regardless of the
input. For the smaller dataset sizes of 100, 500 and 1,000 samples
the corresponding models reach almost the same accuracy even
without any label noise in the training data, indicating that they in
general predict only the background class. Furthermore, we
observe as expected that–with the exception of the training set

size of 500–a larger training set size leads to better accuracies.
This can also be observed by looking at the predictions of the
respective models shown in Figure 3, where one can see how the
prediction for one sample gradually gets better when more
samples are used to train the model.

A better choice for a segmentation metric than the pixelwise
accuracy in the case of highly unbalanced classes is often the
Intersection over Union (IoU). It captures the overlap between
predictions and labels, with a value of 0 meaning that there is no
overlap and a value of 1 meaning that predictions and labels are
perfectly identical. Thus, a value approaching 1 is preferable. In
Figure 4, we visualize the pixelwise IoU for the ‘building’ class
and ‘background’ class, respectively.

For the ‘building’ class, we observe a performance decrease
with higher noise levels and lower training set sizes, see
Figure 4A. At the maximum noise level there are no buildings

FIGURE 4 | IoU on the validation dataset for the two classes. (A) Pixelwise loU for the ‘building’ class on a clean validation set for different noise levels in the training
set. (B) Pixelwise loU for the ‘background’ class on a clean validation set for different noise levels in the training set. (C) Relative loU for the ‘building’ class on a clean
validation set for different noise levels in the training set. Relatives values were obtained by scaling all values of the same training set size between 0 and 1. (D)Relative loU
for the ‘background’ class on a clean validation set for different noise levels in the training set. Relatives values were obtained by scaling all values of the same
training set size between 0 and 1.
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left in the training data, which necessarily results in a validation
IoU of zero. The same seems to be true for models trained on the
smallest training set of 100 samples, where the IoU is almost at
zero even without any label noise in the training set. The overall
pattern of the IoU for the ‘building’ class is remarkably similar to
the pattern of the precision for the ‘background’ class and the
recall of the ‘building’ class, what we see later in Figure 5C and
Figure 6C, respectively. This is an expected behaviour in the case
of training data that is biased towards one class and models that
get gradually more biased towards this class. Looking at the
relative values shown in Figure 4C, it becomes visible that the
models trained on the biggest training set of 10,000 samples
display a higher relative performance than the other models
trained on smaller training sets across all noise levels. Also,
models trained on the smallest training set of 100 samples
exhibit the lowest relative performance across most of the

noise levels. In other words, the models trained on the biggest
training set are more robust against omission noise while the
models trained on the smallest training set are the most
vulnerable. In the ‘background’ class shown in Figure 4B, we
observe a similar pattern as for the ‘buildings’ class. All models
converge towards an IoU of ≈ 0.84 at the maximum noise level.
However unlike in the previous class, the relative metric values
shown in Figure 4D do not show a clear ordering, so the training
set sizes cannot be linked to model robustness here.

To analyze the behaviour of models trained on different dataset
sizes further, we also study precision and recall performances. The
former are shown in Figure 5. The precision of the ‘building’ class
shown in Figures 5A,C is not affected very much by the noise level
until the very end for almost all dataset sizes. It seems that the model
is very robust against omission noise in this regard. This is an
interesting property that–if true in the general case–it would mean

FIGURE 5 | Precision on a clean validation set for different noise levels in the training set. (A) Precision for the ‘building’ class on a clean validation set for different
noise levels in the training set. (B) Precision for the ‘background’ class on a clean validation set for different noise levels in the training set. (C) Relative Precision for the
‘building’ class on a clean validation set for different noise levels in the training set. Relative values were obtaining by scaling all values of the same training set size
between 0 and 1. (D)Relative Precision for the ‘background’ class on a clean validation set for different noise levels in the training set. Relative values were obtaining
by scaling all values of the same training set size between 0 and 1.
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that applications which place particular importance on the precision
of the minority class could utilize noisy labels for training without
suffering disadvantages for their primary goal. Only the models
trained on the smallest dataset sizes exhibit a clear decrease of the
precision also for low and medium noise levels. Additionally, those
models also display a very high variability, making themnot only less
robust against label noise but also unstable in general performance.

Looking at the recall curves of the building class in Figures
6A,C, we see again the exact same pattern as in the
‘background’ precision in Figures 5B,C and the ‘building’
IoU in Figures 4A,C. The recall of the ‘background’ class
shown in Figure 6B converges to 1 at the maximum noise level
for all training set sizes, which makes sense since there can be
no false negatives when always the ‘background’ class is
predicted. For the smallest dataset size of 100, the recall
even is almost at 1 without any noise in the training data,

indicating a heavy focus on the ‘background’ class in those
model’s predictions. A look at the relative recall values of the
‘background’ class (Figure 6D) shows that in comparison to
the ‘building’ class, the pattern is roughly reversed: Models
trained on the smallest training set size achieve the highest
relative performance across most of the noise levels, followed
by the models trained on medium-sized training sets. The
models trained on the two biggest training set sizes show the
least reaction to the noise level and consequently achieve the
lowest relative recall across all noise levels.

4 DISCUSSION

In this section, we discuss and evaluate the observed results in
order to draw conclusions about the effects of noisy training data

FIGURE 6 | Recall on a clean validation set for different noise levels in the training set. (A) Recall for the ‘building’ class on a clean validation set for different noise
levels in the training set. (B) Recall for the ‘background’ class on a clean validation set for different noise levels in the training set. (C) Relative Recall for the ‘building’ class
on a clean validation set for different noise levels in the training set. Relatives values were obtained by scalling all values of the same training set size between 0 and 1. (D)
Relative Recall for the ‘background’ class on a clean validation set for different noise levels in the training set. Relatives values were obtained by scalling all values of
the same training set size between 0 and 1.
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and different training set sizes to the model performances of a
DeepLab V3+ architecture for the building segmentation task.

4.1 Minimum Required Training Set Size
One can see in Figure 2 that models trained on datasets of the
sizes 100, 500, and 1,000 perform very poorly even when no
omission noise is introduced in the training labels. For the sizes
100 and 500, the models trained on clean test sets perform even
worse than models that always predict the background class. It is
therefore safe to assume that those training sets sizes are not
sufficient for the task at hand, and that a training set of more than
1,000 samples is required in our setting for a model to at least
outperform a model that always predicts the majority class.

4.2 High Concentration of Background by
Models Trained on Small Dataset Sizes
As one can see in Figure 2, Figures 4A,B, Figure 5B, Figures
6A,B, the performance of models trained on the smallest dataset
size of 100 samples does almost not change at all when increasing
the noise level, indicating that the models are heavily biased
towards the ‘background’ class independently of the noise level. A
look at the predictions of those models on unseen test data shown
in Figure 3 confirms that, while not consisting purely of
background, the fraction of building pixels seems to be
considerably smaller than in the other model’s predictions.A
possible reason for this behaviour could be overfitting
combined with the class imbalance in the training data. It is
very likely that models trained on small datasets will overfit on
those datasets and merely memorize the data instead of
recognizing actual patterns, as shown in Zhang et al. (2017).
In our case, it could be that, due to overfitting, the models are
unable to detect any buildings in the test images with high
confidence. Furthermore, the models might have learned from
the imbalance in the training data that most pixels belong to the
background class and therefore assign this class to every input
where they can’t detect a building with high confidence.
Consequently, the ‘background’ class is assigned to almost
every input that does not belong to the original training data.

4.3 Higher Sensitivity of Small Dataset Sizes
Towards Label Noise
In all of the observed metrics that evaluate the ‘building’ class we
see that for most of the noise levels, models trained on smaller
training sets display worse relative performances, meaning that
omission noise does affect these models disproportionately
stronger (see Figure 4C for IoU, Figures 5C,D for Precision,
and Figure 6C for Recall). Especially models trained on the
smallest training set size of 100 samples are highly vulnerable
to omission noise in the training data, although those models are
unable to learn reasonable patterns anyway, so this vulnerability
does not have any implications in practice. However, the
observation that models trained on less samples are more
vulnerable to omission noise still holds when comparing the
two largest training sets of 5,000 and 10,000 samples.

4.4 Effect of Class Imbalance on the
Experiments
The abovementioned trends do not hold for the IoU of the
‘background’ class shown in Figure 4D or the recall of the
‘background’ class shown in Figure 6D. While in Figure 4D
there is no clear pattern visible, in Figure 6D we can see that the
recall of models trained on smaller training sets benefits stronger
from omission noise than the recall from models trained on
bigger datasets. We know that at the maximum noise level, all
models will always predict the ‘background’ class, therefore a
natural interpretation of Figure 6D is that models trained on
smaller training sets converge towards this state faster. Since this
is not desirable, we view the pattern in Figure 6D as in line with
the observations from the other metrics where models trained on
smaller datasets are more negatively affected by omission noise
than models trained on bigger datasets, even though the order of
the training set sizes in Figure 6D is reversed.

5 CONCLUSION

In this study, we explored the effect of the training set size to
the robustness of a deep learning model for building detection
in satellite imagery against omission noise. For that, we
artificially introduced omission noise to a dataset to
simulate the issue of limited labels in crowdsourced datasets
in a controlled environment. In our particular setup, we could
observe a clear impact of the training set size on the robustness
of the model. First, what is not surprising, too small training
datasets should be avoided in terms of absolute performance
measures, as they are so small that the model does not
generalize well for unseen data. In terms of the robustness
against label noise, the relative decreases in all metrics except
precision for the ‘building’ class and recall for the ‘background’
class are rather similar with a slightly more robust behaviour
with the largest training set. With respect to the precision in
the ‘building’ class the models are robust against labels noise
up to a noise level of 0.8. Based on this result we can confirm
previous findings (Gütter et al., 2022) in support of the
hypothesis that the training set size does affect model
robustness of DNNs against omission noise positively. It is
important to note that this is not an obvious property: Unlike
the better performance of larger training sets in absolute terms,
to our knowledge there is no prior reason for assuming that
larger training sets are also more robust against label noise.
Testing this hypothesis more extensively and deriving methods
to increase the robustness will be a task for future work.
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