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The Orbiting Carbon Observatories-2 and -3 make space-based measurements in the
oxygen A-band and the weak and strong carbon dioxide (CO2) bands using the
Atmospheric Carbon Observations from Space (ACOS) retrieval. Within ACOS, a
Bayesian optimal estimation approach is employed to retrieve the column-averaged
CO2 dry air mole fraction from these measurements. This retrieval requires a large
number of polarized, multiple-scattering radiative transfer calculations for each iteration.
These calculations take up the majority of the processing time for each retrieval and slow
down the algorithm to the point that reprocessing data from themission over multiple years
becomes especially time consuming. To accelerate the radiative transfer model and,
thereby, ease this bottleneck, we have developed a novel approach that enables modeling
of the full spectra for the three OCO-2/3 instrument bands from radiances calculated at a
small subset of monochromatic wavelengths. This allows for a reduction of the number of
monochromatic calculations by a factor of 10, which can be achieved with radiance errors
of less than 0.01% with respect to the existing algorithm and is easily tunable to a desired
accuracy-speed trade-off. For the ACOS retrieval, this speeds up the over-retrievals by
about a factor of two. The technique may be applicable to similar retrieval algorithms for
other greenhouse gas sensors with large data volumes, such as GeoCarb, GOSAT-3,
and CO2M.
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1 INTRODUCTION

Carbon dioxide (CO2) is one of the primary greenhouse gases in Earth’s atmosphere. To better
understand its sources and sinks in the carbon cycle, the Orbiting Carbon Observatories-2 (OCO-2)
(Eldering et al., 2017) and -3 (OCO-3) (Eldering et al., 2019) make space-based measurements of
reflected sunlight to retrieve column averaged CO2 dry mole factions (XCO2). When sunlight passes
through the atmosphere, a wavelength-dependent fraction gets absorbed. How much sunlight gets
absorbed depends on, besides other factors, the concentration of various atmospheric gases, such as
oxygen (O2), CO2, water vapor (H2O), and carbonmonoxide (CO), as well as on the concentration of
aerosol and cloud particles which modulate photon path length. The OCO-2/3 sensors have three
instrument channels to measure reflected sunlight at a high spectral resolution in the oxygen A-band
(O2A-band) as well as the weak and strong CO2-bands (WCO2-band and SCO2-band), located at
0.76, 1.61, and 2.06 µm, respectively. To derive XCO2 from these measurements, OCO-2/3 employs
an optimal estimation (OE) retrieval algorithm, termed as the ACOS retrieval (C. O’Dell et al., 2018).
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The ACOS retrieval employs a physics-based retrieval with
uncertainty quantification. In an iterative process, a physical
radiative transfer forward model (Bösch et al., 2006; Connor
et al., 2008; O’Dell et al., 2018; O’Dell et al., 2012) is used to
calculate the top-of-atmosphere radiances from a state vector that
is defined a priori. This modeled radiance is then compared to the
measured radiance observed by OCO-2/3. Next, differences
between the calculated and measured spectrum are propagated
back to the forward model and a new spectrum is computed with
an updated state vector. The process is repeated until a minimum
error threshold between measured and calculated radiances is
reached or the maximum number of iterations is exceeded.
Besides many other variables, the final state vector provides an
estimate of XCO2. To keep the error in the retrieved XCO2 below
0.1%, the error in the forward radiative transfer model (RTM)
needs to be itself on the order of no more than 0.1% (Hasekamp &
Butz, 2008). This places strict accuracy requirements on any RTM.
Such accuracy can be achieved with computationally expensive
high-resolution calculations that take the spectrally varying
absorption of gases into consideration [e.g., LBLRTM (Clough
et al., 2005)]. However, OCO-2 produces 1million soundings every
day which yields approximately 100,000 cloud-free soundings. This
results in 40 million cloud-free soundings per year that need to be
processed. Retrieving XCO2 from these soundings requires running
OE and the RTM for each sounding multiple times. As the mission
gets longer, reprocessing time and cost increases for new releases to
the point that it might become too expensive to reprocess the data
altogether. Most of the time spent during OE is spent in the RTM,
approximately 92%. This work describes the latest developments
by the OCO-2 mission to reduce the computational cost of these
calculations. Besides OCO-2 and OCO-3, the developed approach
can be readily applied to other greenhouse gas sensors such as
GeoCarb (Moore et al., 2018), CO2M (Kuhlmann et al., 2019), and
hyperspectral instruments in general that operate from the ultra
violet to the shortwave infrared.

1.1 Radiative Transfer Speed-Up Methods
The computational cost of high-resolution calculations has been a
bottleneck for many applications over the last few decades. A
variety of methods have been developed to ease the computational
burden. For example, the correlated-k method (Goody et al.,
1989; Lacis and Oinas, 1991) is frequently used to speed up RTMs
by dividing the spectrum into bands that can be described by a
small number of coefficients and weights. Using these coefficients,
pseudo-monochromatic calculations are performed that can then
be used to reconstruct the full spectrum. Building on correlated-k
“exponential sum fitting” (Wiscombe and Evans, 1977) can be
used to optimize the number of k values where the mean
transmittance is expressed as the weighted sum of exponentials
at monochromatic wavelengths. Similarly, optimal spectral
sampling (OSS) (Moncet et al., 2015) expands upon
exponential sum fitting by directly approximating radiances
from a subset of monochromatic RTM calculations. The
accuracy, with respect to line-by-line calculations can be tuned
by the number of monochromatic wavelengths being used.
Alternatively, principal components can be used to speed up
RTMs (Natraj et al., 2005; Liu et al., 2006; Efremenko et al., 2014).

Unfortunately, errors associated with most RTM speed-up
approaches well exceed the targeted 0.1% error budget for
OCO-2. More recently, the use of machine learning is gaining
attention to further accelerate RTMs (Reichstein et al., 2019).
Machine learning approaches can unfold their full potential if
enough training data are available to fit the model. Fortunately, to
replace an RTM with a machine learning approach, the RTM
itself can be used to generate a training data set, theoretically of
any size. There exist end-to-end approaches where the radiances
are directly modeled from the state vector with more complex
machine learning models such as neural networks (Bue et al.,
2019; Pal, Mahajan, & Norman, 2019; Gao et al., 2021; Brence
et al., 2022) or Gaussian processes (Gómez-Dans et al., 2016;
Vicent et al., 2018; Svendsen et al., 2020). End-to-end approaches
can be multiple orders of magnitude faster than more traditional
approaches since they omit the costly RTM calculations entirely.
However, end-to-end approach struggles with high-accuracy
requirements for high-dimensional state spaces. Additionally,
approaches using neural networks have the inherent
shortcoming of being less interpretable than other methods
and can exhibit erroneous non-linear behavior when
extrapolating from the state space they were trained on. This
can lead to large unexpected errors. Other approaches to
accelerate RTMs with the help of machine learning replace
only part of a RTM. These methods are often referred to as
hybrid approaches and merge calculations based in physics and
statistical methods. For example, low-fidelity physical radiative
transfer calculations can be augmented by a neural network to
match those of high-fidelity calculations (Brodrick et al., 2021),
radiative transfer calculations performed at a subset of
wavelengths can be extended across the entire spectral range
(Le et al., 2020), or a neural network is used to predict the
atmospheric transmittance profile that can then be used in a
physical RTM (Stegmann et al., 2022). Using a hybrid approach
reduces the dimensionality of the challenge compared to end-to-
end approaches at the cost of an increased computational burden.

Finally, there is the approach currently implemented in the
operational OCO-2 processing pipeline. This approach relies on a
2-step RTM. First, a fast low-accuracy 2-stream RTM that is used
to calculate a spectrum given a state vector. In the second step,
this low-accuracy spectrum is “adjusted” with a small number of
high-accuracy RTM calculations that account for multiple
scattering by using 24 streams (Christopher W O’Dell, 2010).
The wavelengths at which the high-accuracy calculations are
performed are selected so that they evenly sample the column-
integrated gas optical depth as well as a multiple scattering error
term, further described in Duan et al. (2005). This effectively
reduces the computational cost by orders of magnitude compared
to high-accuracy calculations over the full spectral range.
Additionally, to further speed-up the calculations, the low-
accuracy calculations are performed only at a subset of
wavelengths with the remaining wavelengths being filled in by
linear interpolation. This interpolation step reduces the number
of required low-accuracy RTM calculations to approximately
8,000 in the O2A-band and SCO2-band, respectively, and
3,000 in the WCO2-band. This reduces the computational cost
of the low-accuracy calculations by an additional ~60%.
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Nevertheless, the forward model is still a significant bottleneck in
OCO-2/3’s OE retrieval. Reprocessing the full data record for new
versions requires a significant financial investment as well as more
than a year of reprocessing time. This results in a significant delay
between updates made to the RTM and providing new data to the
community that benefits from those updates. Therefore, we
investigated how an additional algorithm speed-up could be
realized while maintaining most of the existing and validated
algorithm. A prime candidate for additional speed-up of the RTM
is the high level of correlation within the low-accuracy calculations.
The current linear interpolation exploits the correlation at
neighboring wavelengths but does not utilize the correlation of
non-neighboring wavelengths. We experimented with linear and
non-linear machine learning approaches (linear regression,
random forests, and neural networks) aiming for a method that
would provide a significant benefit over the current approach. Using
some initial experiments, we down selected the possible approaches
to amodel that exploits non-neighboring correlations in a simple and
fully interpretable manner that is described in the following.

The structure of this article is as follows: in Section 2, we
discuss the data set used in this study, Section 3 details how we
model spectra from a subset of wavelengths, Section 4 discusses
the results followed by discussion in Section 5. Finally, Section 6
provides a conclusion and discusses next steps.

2 DATA CHARACTERISTICS

We selected a subset of the OCO-2 data record by sampling every
fourth land nadir and ocean glint sounding from days 1, 6, 11, 17,
22, and 27 from each month between January 2016 and March

2017. Cloudy scenes were excluded since they are flagged and
removed in a preprocessing step before the operational OE
retrieval. This results in a set of 20,948 OCO-2 soundings that
are used in this study. For each sounding, we performed the RTM
calculations on the high-resolution (0.01 cm−1) for the at-sensor
reflectance over the full spectral range of the three OCO-2
instrument bands. For the O2A-band, WCO2-band, and
SCO2-band the high-resolution grid has 27,494, 12,961, and
10,690 points, respectively. The distribution of the soundings
over various state variables is shown in Figure 1.

The soundings were split into a training, validation, and
testing set. Each set consists of a subset of the considered
soundings that are exclusive to this set. To avoid data leakage
between the three data sets, we split the soundings by their
observation time, with the first 80% of soundings (01/01/
2016 to 12/27/2017) being used for the training set, the next
10% (01/01/2017 to 02/11/2017) being used for the validation set,
and the remaining 10% (02/17/2017 to 03/27/2017) for the testing
set. The training set was used to fit the model parameters, or train
the model; the validation set was used to estimate how well the
model generalizes to new data and tune various model
parameters; and the testing set to report the final model accuracy.

2.1 Dimensionality
While OCO-2/3 samples each instrument band over
1,016 wavelength bins, the unconvolved calculated spectra
require roughly an order of magnitude more monochromatic
radiance calculations to accurately capture the underlying
spectral features. The radiances at these wavelengths are not
independent and, in part, governed by the same physical
processes, for example, the absorption by oxygen or the

FIGURE 1 | Distribution of subset of state variables from OCO-2 soundings used in this study. Training set is shown in blue, Testing set in orange. *Airmass
describes the relative airmass of a sounding defined as 1/cos (solar zenith angle) + 1/cos (viewing zenith angle).
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scattering by aerosols. To estimate the degrees of freedom of each
instrument band, we performed a principal component analysis
(PCA) using the training set and investigated howmany principal
components (PC) are required to describe 99.9% of the variability
in each band.

The cumulative explained variance for the first 15 PCs
(variance of the original signal that can be described by the
combination of the first 15 PCs) of the O2A-band, WCO2-band,
and SCO2-band is shown in Figure 2. The WCO2-band has the
lowest dimensionality with the first two PCs describing 99.9% of
the variance. The O2A-band and SCO2-band require
approximately four PCs to describe 99% of the variability and
an additional five PCs to describe 99.9% of the variance. Note that
these PCs are for simulated, monochromatic spectra with no
Doppler shifts, instrument noise, or other instrumental effects.
Given the more than 10,000 wavelengths of each channel, there
seems to be a large degree of correlation within each band.
Judging from the PCA, we expect the WCO2-band to require
the least amount of information to be modeled and even though
the O2A-band contains almost twice as many monochromatic
wavelengths, we expect to require the same amount of
information for this band as for the SCO2-band.

3 METHODS

3.1 Modeling Spectra From a Subset of
Wavelengths
As a first order approximation, following Beer’s law (Swinehart,
1962), the monochromatic radiance measured by OCO-2/3, Iλ
[W·sr−1·m−3], can be approximated by the incoming top-of-
atmosphere solar radiance, Iλsun, divided by the cosine of the
solar zenith angle, μ, multiplied by the surface albedo, ρ, and

atmospheric transmittance which depends exponentially on
airmass, m [-] and absorption optical depth, τλ (see Eq. 1).
For the purposes of explanation, we assume a constant surface
albedo across the band. This assumption easily generalized to a
linear or quadratic dependence, as is used in the ACOS retrieval.
Note, Eq. 1 does not account for emitted radiation from the
surface or atmosphere. Thus, the proposed method is limited to
applications where emitted radiation by the surface or
atmosphere can be neglected.

To model the relationship between the radiance at individual
wavelengths, we first take the natural logarithm of the radiance.
This linearizes the relationship between wavelengths within a

FIGURE 2 | Cumulative explained variance of the first 15 principal
components for the three OCO-2/3 instrument bands. O2A-band is shown
with blue stars, WCO2-band with orange dots, and SCO2-band with green
squares. Note, for clarity, cumulative explained variance is shown only
from 0.99 to 1.0 and, therefore, omits data points that have a cumulative
explained variance of less than 0.99.

FIGURE 3 | Ordering of information content of each wavelength as
determined by the autoencoder for O2A-band (A,B), WCO2-band (C,D), and
SCO2-band (E,F). The 100 most important wavelengths are highlighted with
black diamonds. The most informative wavelengths are shown in yellow,
the least informative wavelengths in black.
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given instrument band. Afterwards, we can approximate the
radiance at each wavelength of the full-resolution spectrum as
a linear combination of the radiance at a subset of wavelengths, i,
by multiplying them by matrix, A, from now on referred to as
“correlation matrix.” Finally, we take the exponent of this product
to get back to the predicted radiances, î (see Eq. 2). For this
relationship, Iλsun and ρ can be omitted since they can be
approximated as constant (variations in Iλsun are small
compared to OCO-2/3 accuracy and the wavelengths
dependence of ρ can be neglected for the narrow OCO-2/
3 bands).

Iλ � ρ
Iλsun
μ

e−mτλ , (1)

î � exp(ln(i)A), (2)
cost � α R(A) + 1

2n
∑n

k�1(îk − il)
2
with

R(A) � ||A||2 � ∑n

k,l�1A
2
k,l. (3)

For 800 input wavelengths, the correlation matrix, A, for the
O2A-band, WCO2-band, and SCO2-band contains 800 rows
and 27,494, 12,961, and 10,690 columns, respectively. This
results in approximately 20 million free parameters for the
O2A-band and 10 million parameters for the WCO2- and
SCO2-band that need to be determined using the training
set. Rather than solving for the correlation matrix directly we
first initialize A randomly and then minimizing the root mean
square error between the reconstructed spectrum, î, and the true
spectrum, i, for the set of trainings spectra (see Eq. 3). For the
minimization, we use the Google TensorFlow framework

(Abadi et al., 2016) and Adam gradient descent algorithm
(Kingma & Ba, 2014). To make this iterative process robust,
the radiance at each wavelength is standardized by subtracting
the mean and dividing by the standard deviation as calculated
from the training set. Additionally, we add L2 regularization
(R(A) in Eq. 3), also referred to as weight decay, to our cost
function with a small weighting factor of α = 1e-11. The
L2 regularization helps to avoid overfitting to the training set
by encouraging smaller values in the correlation matrix, A.
The weighting factor, was determined empirically using the
validation set.

Note the approximation we make in Eqs 1, 2 neglects various
wavelength-dependent non-linear effects, such as rotational
Raman scattering (Sioris & Evans, 2000) and small spectral
dependencies by aerosols and surface albedo. Additionally,
solar-induced fluorescence (SIF) (Sun et al., 2017) is not
captured in our approximation. For OCO-2/3, SIF is
calculated separately and added to the radiance calculations in
a post-processing step. Thus, it is not considered for our
approximation. Doppler shifts, the impact of the solar
spectrum, and convolution with the instrument line shape
function (ILS) all happen downstream of this algorithm in the
forward model, and therefore need not be considered.

To summarize, each high-resolution spectrum is modeled
from calculated monochromatic radiances at a subset of
wavelengths. This approach is similar to the linear
interpolation that is currently implemented operationally in
the OCO-2/3 processing pipeline. However, the new approach
allows to exploit not only the relationship of the radiance at
neighboring wavelengths but of each wavelength to each other
wavelength.

3.2 Finding the Most Informative
Wavelengths
To identify which subset of wavelengths contains the most
information to model the full resolution spectrum, we utilize an
autoencoder. Autoencoders have been previously used for feature
selection (Han et al., 2018) and allow considering linear as well as
non-linear relationships between input wavelengths. An
autoencoder consists of three pieces, an encoder, that projects the

FIGURE 4 |Correlationmatrix,A, for the O2A-band (A), WCO2-band (B), and SCO2-band (C). Input wavelengths are shown on the x-axis and output wavelengths
on the y-axis. Positive entries are shown in red, negative entries in blue.

TABLE 1 | Comparison of model error in percent relative to continuum using a
correlation-based method to select input wavelengths and using an auto-
encoder (AE), as proposed. The number of resulting input wavelengths for each
band are indicated with #wl. The parameter dθ is part of the input wavelength
selection algorithm described by Bai et al. (2020).

Method O2A-band WCO2-band SCO2-band

Bai et al. (2020) dθ = 9, #wl = 90 dθ = 4, #wl = 47 dθ = 9, #wl = 114
0.016 0.013 0.024

AE (this work) 0.009 0.008 0.010
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data into a lower dimensional space, a bottleneck, that constrains the
dimensionality of the low-dimensional space, and a decoder that
projects the data from the low-dimensional space back into its
original form. To train the autoencoder, a loss function is minimized
using gradient descent that measures the difference between the
original spectrum and reconstructed spectrum after encoding and
decoding. For our application, we used a neural network with
100 neurons in the layers that encode and decode the data,
respectively. Initial experiments showed that more neurons in the
encoder and decoder lead to similar results but at a higher

computational cost. The middle layer that forms the bottleneck
consists of 20 neurons. The number of neurons for the bottleneck
were chosen as a tradeoff between being able to reconstruct the
spectra with high accuracy and being able to order the importance of
individual wavelengths down to only a few remaining wavelengths
(once the number of wavelengths drop below the number of neurons
in the bottleneck they cannot be sorted anymore). This architecture
forces the neural network to encode the full high-resolution
spectrum (~27,000 wavelength for the O2A-band,
~11,000 wavelengths for the weak and strong CO2-bands) into a
20-dimensional latent space and then reconstruct it from this space.
This requires the neural network to weight the contribution of each
wavelength to the 20-dimensional space. Wavelengths that contain
redundant information will be given less weight while wavelengths
that carry unique information will be given more weight. To extract
this weighting, we applied the following approach to spectra of each
instrument channel separately.

Using the training set we train the autoencoder for 100 epochs,
then we randomly pick a set of 100 wavelengths, perturb each
wavelength, and measure the mean square error (MSE) between the
original and encoded and decoded spectra. The 10 wavelengths that
have the least effect on the MSE are deemed the least important and
removed. This process is repeated until only 20 wavelengths are left.
The later a wavelength is removed, the higher this wavelength’s
information content.

An alternative approach to find the most informative input
wavelengths of each band is to calculate the pairwise correlation
of all wavelengths and iteratively choose and remove wavelengths
that are highly correlated. This has recently been proposed by Bai
et al. (2020) and we compare our approach of using an auto-

FIGURE 5 | Modeling error in percent relative to continuum for different
number of input wavelengths. O2A-band is shown with blue stars, WCO2-
band with orange dots, and SCO2-band with green squares.

FIGURE 6 | Reconstruction error in percent relative to continuum with respect to airmass for the (A) O2A-band, (B) WCO2-band, (C) SCO2-band as well as
dp_abp for the (D)O2A-band, (E)WCO2-band, and (F) SCO2-band. The mean is shown in red, the 5th and 95th percentile in orange, and the error of individual spectra
with grey dots.
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encoder to this method. Please refer to (Bai et al., 2020) for a
detailed description of the algorithm.

4 RESULTS

4.1 Informative Wavelengths
Figures 3A,B show the ordering of the wavelengths for the O2A-
band as determined by the autoencoder from least to most
informative. For the O2A-band, the most informative
wavelengths are in the continuum at both ends of the band as
well as deep in the absorption bands. This suggests that the degrees
of freedom of the spectra in the O2A-band are constrained both by
the reflected radiance at wavelengths where there is little to no
absorption (information about solar and viewing geometry as well as
aerosols and surface reflectance) as well as wavelengths with high gas
absorption (abundance of various absorbing gases in the
atmosphere, including CO2). The optical properties of aerosols
and the surface albedo are typically a smooth function of
wavelength. For the narrow instrument bands for OCO-2/3, this
allows to interpolate some of these characteristics. Similarly, the gas
absorption at a givenwavelength is dependent on the abundance of a
certain gas. This abundance can be best approximated from the
wavelengths that are deep in the absorption bands. Figures 3C,D
show a similar plot but for the WCO2-band. Similar to the O2A-
band the wavelengths in the continuum seem to carry the most
information about the spectrum. Figures 3E,F show the most
important wavelengths for the SCO2-band.

To better understand how the individual wavelengths
contribute to the modeled spectra, we show the structure of the
fit correlation matrix for each instrument channel in Figure 4.
Positive entries are shown in red and indicate a positive correlation
between input wavelengths and output wavelengths. Negative
entries are shown in blue and indicate a negative correlation.
For the O2A-band (Figure 4A), wavelengths in the continuum
(756–759 nm) are clearly correlated with each other. The same is
true at longer wavelengths (770–772 nm) where most but not all
wavelengths are in the continuum as well. However, there seems to

be little information that links the continuum from both sides of
the O2A-band. For the WCO2-band (Figure 4B) and SCO2-band
(Figure 4C), the structure of the correlation matrix is less
pronounced. However, as one would expect, there seems to be a
small increase in positive correlation for neighboring wavelengths,
indicated by a red diagonal stripe around the one-to-one line.

To compare our proposed auto-encoder approach to the
correlation-based wavelength selection by Bai et al. (2020), we
iteratively adjusted dθ so that it would result in the same number of
input wavelengths described in the article. Using the wavelengths
chosen with our auto-encoder and the correlation-based approach,
we fit the correlation matrix on the training set and evaluated the
average modeling error over the testing set. The errors in percent
relative to continuum are shown in Table 1.

The wavelengths chosen with the auto-encoder clearly enable
models with a smaller modeling error. However, it should be
noted that the auto-encoder is by orders of magnitude
computationally more expensive. Because it only needs to be
run once during training, this is often an acceptable cost.

4.2 Spectral Modeling Results
4.2.1 Error Dependence on the Number of Input
Wavelengths
The more input wavelengths we consider as model inputs the
higher we expect the accuracy but with a diminishing increase in
accuracy for each added wavelength. Figure 5 shows the model
accuracy for 100, 200, 400, 800, and 1,600 input wavelengths for
each of the three bands on the test set.

For the O2A-band, the error does not decrease for adding more
than 800 input wavelengths. The increase in accuracy for theWCO2-
band and SCO2-band saturates even earlier at 400 wavelengths.

The graph illustrates how the proposed approach can be tuned
to either prioritize computation cost over error (small number of
input wavelengths) or accuracy over computational cost (large
number of input wavelengths).

The errors are even smaller when we compare the spectra after
convolving them to the 1,016 instrument channels of OCO-2.
This further reduces the error of the O2A-band with 800 input
wavelengths from 0.0048% to 0.0035%. For the WCO2-band and
SCO2-band with 400 input wavelengths, the error is reduced
from 0.0064% to 0.0042% and 0.01% to 0.0059%, respectively.

4.2.2 Error Dependence on State Space
We analyzed the model error with respect to various state variables.
For most variables, there is no clear dependence. However, a clear
dependence of the modeling error is found with respect to the path
length of the solar radiation through the atmosphere, with the error
increasing for longer path lengths. This effect is similar in magnitude

TABLE 2 | Modeling error in percent relative to continuum for models trained with spectra including cloud contamination (mixed) and tested on cloud-free and cloud
contaminated spectra. The last row shows the performance for the models fit with cloud-free data for comparison (as proposed).

Train spectra Test spectra O2A-band WCO2-band SCO2-band

Mixed Cloud free 0.009 0.008 0.010
Mixed Cloud contaminated 0.016 0.013 0.024
Cloud free Cloud free 0.006 0.007 0.010

TABLE 3 |Modeling error in percent relative to continuum for models trained with
land nadir and ocean glint soundings. The last two rows show the
performance for the models fit with a mix of land and ocean (as proposed).

Train spectra Test spectra O2A-band WCO2-band SCO2-band

Ocean Ocean 0.004 0.004 0.006
Land Land 0.006 0.005 0.008
Land + ocean Ocean 0.005 0.006 0.008
Land + ocean Land 0.007 0.008 0.012
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for all three instrument channels (see Figure 6) and indicates that
our assumption, î can be expressed as exp(ln(i) A) (see Eq. 2), is
increasingly violated for these viewing geometries and solar zenith
angles. This could be due to scattering by aerosols, light refraction by
the atmospheric density gradient, or other effects not captured in Eq.
2. Additionally, we find some dependencies of modeling errors
associated with the effects of thin clouds that were not flagged by the
O2A-band preprocessor (ABP). One quantity associated with clouds
in a fairly quantitative way is dp_abp which represents the retrieved
surface pressure minus the surface pressure from a meteorological

forecast model. For dp_abp, we notice increasing modeling errors
when it deviates more than 1,000 Pa from zero, indicating that
clouds challenge the proposed speed-up approach.

4.2.3 Sensitivity to Clouds
As discussed previously, soundings with strong cloud contamination
(as identified by the ABP cloud flag) are excluded from OCO-2/
3 processing and were therefore omitted in the training and testing
sets in this study. However, this restricts the use of our developed
methodology to cloud free RTM calculations. To probe whether our

FIGURE 7 |Modeled spectra and associated errors for one representative sounding, before and after convolution with the OCO-2 instrument lineshape function,
for each instrument channel. O2A-band (A,B) after convolution (G,H); WCO2-band (C,D) after convolution (I,J); SCO2-band (E,F) after convolution (K,L). The modeled
spectra are shown in blue, the original spectra in red, and the difference in percent relative to the continuum in black.
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approach is generalizable to cloudy scenes, which might be
important for other applications (e.g., extracting cloud or aerosol
properties from OCO-2/3 observations (Richardson and Stephens,
2018; Richardson et al., 2019; Zeng et al., 2020)), we fit a separate
correlationmatrix to spectra that contain both, cloud-free and cloud
contaminated spectra following the same procedure described in
Section 3.1. The results are shown in Table 2. For cloud-free
soundings, the error of the model trained with cloud
contaminated and cloud-free spectra “mixed” has a similar
performance to our model trained on cloud-free data only.

However, applying the “mixed” model on cloud contaminated
spectra increases the average modeling error by roughly 50% for
all three bands, which itself is possibly still low enough for retrieving
cloud or aerosol properties. For comparison, the last row shows the
performance for themodels trained and tested on cloud-free spectra,
as proposed in this study to be used in the ACOS XCO2 retrieval.

4.2.3 Land vs. Ocean
The developed approach uses the same correlation matrix, for
glint observations over the ocean and nadir observations over

FIGURE 8 | Modeling error over the full testing set for each wavelength of the O2A-band (A), WCO2-band (B), and SCO2-band (C). The mean error is shown in
black, the 5th to 95th percentile is shown in turquoise.
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land. Table 3 shows what performance gains would be enabled if
two separate matrices would be used for each observation type.
While this would make the implementation of the RTM speed-up
slightly more complicated, it would reduce the error another
0.001%–0.004% depending on the instrument channel. The
biggest improvement would be for land nadir observations in
the SCO2-band. Since we aim to keep our developed approach as
simple and general as possible, we propose to use only one model
per channel without differentiating by observation type.

4.2.4 Wavelength-Dependent Error
So far, we have discussed only the average error for each band. It is
important to further understand how this error is distributed
across the various wavelengths. An example of a representative
modeled spectrum of each band and its error before and after
convolving it with the OCO-2/3 instrument line function is shown

in Figure 7. The three spectra were selected from the testing set and
contain an RMSE close to the average RMSE of each band. For all
three bands, the difference in modeled and original radiance is
almost invisible when overplotting both spectra. Looking at the
difference plot of the O2A-band, the biggest errors are in the
continuum. Furthermore, after convolution, we see some
discrepancy around 762 nm on the order of 0.01%. For the
modeled WCO2-band, the error is more evenly distributed with
some overestimation by the model around 1,598 nm. The error in
the modeled SCO2-band seems equally distributed as well.

Analyzing the wavelength-dependent error over the complete
testing set, we find no systematic biases in any of the wavelengths
for all three channels (see Figure 8) with the absolute average error
being below 0.1% at all wavelengths of each band. The 5th to 95th
percentile is mostly symmetrically centered around zero. For the
O2A andWCO2 bands, 90% of the modeled spectra have an error

FIGURE 9 | Sensitivity of model error to individual input wavelengths for O2A-band (A), WCO2-band (B), and SCO2-band (C). Note: the y- and x-axis have different
scales for each plot.
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of less than ±0.02% on a per-wavelength basis. For the SCO2 band,
the error is approximately twice that of the O2A band.

5 DISCUSSION

5.1 Dependency of Reconstructed Spectra
to Model Inputs
To build intuition of how individual wavelengths contribute to
the modeled spectrum, we further contrast the relative
importance of the 100 most important wavelengths. The
radiance at each of the 100 wavelengths is perturbed
independently by 1%, the full spectrum is reconstructed from
the perturbed spectrum, and the RMSE in percent relative to
continuum is evaluated. This is repeated for each of the 100 input
wavelengths and each spectrum in the testing set. The average
increase in error to this perturbation is shown in Figure 9 for the
O2A-band, WCO2-band, and SCO2-band as a function of mean
reflectance. All three bands show a similar dependence in their
sensitivity to mean reflectance. Wavelengths at which most of the
incoming sunlight is attenuated have a smaller sensitivity
compared to wavelength where most radiation is scattered.

5.2 Comparison to Linear Interpolation
The current method to reduce the number of RTM evaluations
relies on linear interpolation between radiances at neighboring
wavelengths. While this method allows reducing the number of
necessary RTM calculations, it requires an order of magnitude
of more wavelengths than the method proposed in this
manuscript (see Figure 10). This is due to the inability of
the current method to exploit the correlations of non-
neighboring wavelengths, for example, absorption features of
the same gas. However, due to the simplicity of the linear
interpolation, it generalizes well to new data and is relatively
robust to small spectroscopic updates to the RTM. In contrast,
the method proposed here will require retraining the model if

virtually any updates to the RTM are made, for example,
updated absorption profiles for trace gases.

As mentioned earlier, the use case for our proposed method
only addresses the computational cost associated with the low-
accuracy calculations of the RTM used by OCO-2, whichmake up
approximately 57% of the processing time for a given retrieval. To
evaluate the speed-up for our application, we calculated
100 spectra with the RTM, including low-accuracy, high-
accuracy calculations, and convolution to the OCO-2
instrument channels. The presented approach takes on average
7.1 s for one sounding and the associated spectra for all three
instrument channels on a single CPU. In comparison, the current
approach takes 13.1 s and calculating all wavelengths directly
takes 16.7 s. This illustrates how we effectively reduced the most
expensive part of the RTM to being negligible and further
acceleration needs to come from other parts of the RTM, for
example, the high-accuracy calculations.

5.3 How Much Training Data Are Needed?
The presented approach can speed up a forward model by
orders of magnitude. However, it first requires building a
training set with repeated evaluations of a RTM. The
additional computational cost of building this initial training
set needs to be considered together with the reduction in
computational cost provided by the proposed method. The
cost of building the training set directly depends on how
many spectra are needed to fit the correlation matrix. After a
certain point, the correlation matrix cannot be further
constrained even if more training data would be available. To
test how many spectra are required, we sampled every nth
spectrum from the training set, with n = 1, 2, 4, 25 and fit
the correlation matrix with those reduced training sets. The
error evaluation was carried out on the same test set for all
models. The number of training iterations was held constant
across all models to compensate for the changing training set
sizes. Figure 11 shows the error for the three instrument
channels and how they depend on the size of the training

FIGURE 10 | Number of required monochromatic RTM calculations to
model a complete spectrum: calculating radiances at each wavelength (“Full”:
blue), the current approach using linear interpolation of neighboring
wavelengths (“Current”: orange), and the approach proposed in this
manuscript (“Y = x*A”: green). The number of required RTM calculations is
approximately proportional to the computational cost. Comparisons are
shown for each OCO-2 instrument band.

FIGURE 11 |Modeling error in percent relative to continuum for different
training set sizes. O2A-band is shown with blue stars, WCO2-band with
orange dots, and SCO2-band with green squares.
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set. For the O2A-band and SCO2-band, there are negligible
improvements for more than 6,000 spectra. The model for the
WCO2-band does not show a strong dependency on training set
size and can be successfully trained with only 1,000 spectra
(given that they adequately capture the variability of the full
state space). Thus, compared to the roughly 100,000 cloud-free
spectra OCO-2 obtains every day, the computational cost of
making the initial training set is negligible. The small training
set size is a direct result of the simplicity of our model, limited to
a single matrix that needs to be determined.

6 CONCLUSION

The presented research addressed only the acceleration of one
element of the OE retrieval, namely, the low-accuracy RTM
calculations. These calculations consume about half of the total
time needed for each OE iteration. Thus, even with the
demonstrated speed up of more than an order of magnitude,
we will be able to accelerate the OCO-2/3 retrieval only by a
factor of two. Reducing the computation needed for the high-
accuracy RTM, calculations that take up most of the remaining
computing time should be addressed going forward. The
purpose of these high-accuracy RTM calculations is to
correct the low-accuracy calculations to account for
computationally expensive multiple scattering. Compared to
fully modeling the low-accuracy calculations, the
dimensionality of these correction terms is much smaller.
Thus, deriving the correction factors directly from the state
vector using machine learning might be a viable option and
would allow to speed up the whole OE retrieval by an order of
magnitude compared to the current implementation.

We showed that high-resolution spectra in the O2A-band,
WCO2-band, and SCO2-band that contain tens of thousands of
wavelengths can be modeled from a small subset of wavelengths

(hundreds) to better than 0.01%. The presented approach is
tunable to a desired speed-accuracy trade-off. The described
technique allows to significantly speed up a RTM for the
discussed wavelength bands by an order of magnitude. This is
especially important for OE retrievals that heavily rely on RTM
evaluations in each retrieval iteration as applied to the retrieval of
XCO2 from OCO-2/3 observations. The presented modeling
approach results in spectra that are free of systematic biases
and will be used operationally for OCO-2/3 retrievals. Our
approach is simple, robust, requires little training data and can
be readily expanded to wavelength ranges beyond the three
discussed bands.
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